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Abstract

similarity to those in bacteria.

evolutionary period in the ancestor of land plants.

Background: The [-Ala-D/L-Glu epimerases (AEEs), a subgroup of the enolase superfamily, catalyze the
epimerization of L-Ala-D/L-Glu and other dipeptides in bacteria and contribute to the metabolism of the murein
peptide of peptidoglycan. Although lacking in peptidoglycan, land plants possess AEE genes that show high

Results: Similarity searches revealed that the AEE gene is ubiquitous in land plants, from bryophytas to
angiosperms. However, other eukaryotes, including green and red algae, do not contain genes encoding proteins
with an L-Ala-D/L-Glu_epimerase domain. Homologs of land plant AEE genes were found to only be present in
prokaryotes, especially in bacteria. Phylogenetic analysis revealed that the land plant AEE genes formed a
monophyletic group with some bacterial homologs. In addition, land plant AEE proteins showed the highest
similarity with these bacterial homologs and shared motifs only conserved in land plant and these bacterial AEEs.
Integrated information on the taxonomic distribution, phylogenetic relationships and sequence similarity of the AEE
proteins revealed that the land plant AEE genes were acquired from bacteria through an ancient horizontal gene
transfer (HGT) event. Further evidence revealed that land plant AEE genes had undergone positive selection and
formed the main characteristics of exon/intron structures through gaining some introns during the initially

Conclusions: The results of this study clearly demonstrated that the ancestor of land plants acquired an AEE gene
from bacteria via an ancient HGT event. Other findings illustrated that adaptive evolution through positive selection
has contributed to the functional adaptation and fixation of this gene in land plants.
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Background

Horizontal gene transfer (HGT), also known as lateral
gene transfer (LGT), refers to the transfer of genetic ma-
terial between organisms that are reproductively isolated
[1,2]. HGT plays important roles in accelerating the evo-
lution of the acceptor lineages because it can consider-
ably expand the gene pool beyond species barriers. It is
believed that HGT is one of the major forces driving the
evolution of prokaryotes, leading to the acquisition or
modification of certain adaptive traits, such as antibiotic
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resistance, virulence, and photosynthesis [3]. For ex-
ample, a genome-wide analysis revealed that 755 out of
4,288 genes have been transferred to the Escherichia coli
genome, and at least 234 HGT events contributed to the
origin of these transferred genes [4].

The frequency of HGT into eukaryotic genomes is pos-
sibly lower than in prokaryotes, but HGT has also been an
important force in the evolution of eukaryotes [5].
Genome-wide identification revealed that 7.6% of the se-
creted proteome of Phytophthora ramorum has been ac-
quired from fungi via HGT, suggesting that oomycetes
became successful plant parasites through multiple acquisi-
tions of genes from fungi [6]. Single-celled organisms have
been found to be the dominant agent for genetic transfer,
and many microbial eukaryotes and plant mitochondria
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provide rich in examples of HGT [7]. Gene recruitment
has been thought to be difficult in multi-cellular eukary-
otes. However, recent investigations in plants, fungi and
animals have refuted this conjecture [8,9]. The classical ex-
ample of plant HGT is that the ct-DNA sequences in some
tobacco nuclear genomes were probably horizontally ac-
quired from Agrobacterium rhizogenes during ancient in-
fections [10]. In addition, evidence has also showed that
land plants can recruit genes from species with distinct re-
lationships, such as fungi, bacteria, and other plant species
[11-15]. Although land plant genes acquired through HGT
are quite rare, they might play critical roles in adaptation
to environments. For example, some anciently employed
genes have been found to be involved in many plant-
specific activities, including xylem formation, plant defense,
nitrogen recycling and the biosynthesis of starch, poly-
amines, hormones and glutathione [14].

L-Ala-D/L-Glu epimerase (AEE) belongs to the
enolase superfamily and catalyzes the epimerization of
L-Ala-D/L-Glu and other dipeptides [16]. Studies exam-
ining AEEs in E. coli and Bacillus subtilis indicated a
probable role in the metabolism of the murein peptide
of peptidoglycan, of which L-Ala-D-Glu is a component
[16,17]. However, it has been shown that the AEE family
contains members from plants and archaea that lack
peptidoglycan, suggesting that the proteins of this family
might have other functions [18]. A recent investigation
in Thermotoga martima, a species of thermotoga bac-
teria, resulted in the assignment of epimerase activity for
L-Ala-D/L-Phe, L-Ala-D/L-Tyr, and L-Ala-D/L-His to
one member of the AEE family [18]. It has also been
noted that the genomes of Oryza and Arabidopsis pos-
sess genes encoding AEEs [19]. However, the AEE mem-
ber found in Arabidopsis has long been annotated as a
protein of the cytochrome P450 superfamily and was
looked at as a pseudogene until it was found to be
expressed [20]. Because the Arabidopsis AEE shows
similarity with bacterial TfdD, an enzyme in the degrad-
ation pathway for chlorinated aromatics, it is assumed to
have the potential to degrade aromatic compounds when
the bacterial TfdC gene is introduced to the plant [21].

The ubiquity of the AEE gene in land plants suggests
that its functions could include a wide range of selectiv-
ity, although its actual function remains unclear. The
origin of this gene in land plants remains unknown at
present. The increased availability of AEE sequences in
public databases allows us to explore the functional di-
versity from a phylogenetic perspective within the AEE
family in land plants. Here, we examined the evolution-
ary relationship of the land plant AEE genes and their
homologs in cellular organisms. Our bioinformatic ana-
lyses revealed that land plant AEE genes originated from
an ancient HGT event, and the putative donor was bac-
teria. Further evidence showed that positive selection
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followed by purifying selection has contributed to the
evolution of this gene in land plants.

Results

AEE genes in land plants

BLAST searches revealed AEE genes in various land
plants, including bryophytas, lycophytes, gymnosperms,
monocots and dicots; all of the sequenced land plant ge-
nomes were found to contain at least one AEE gene. Al-
though no whole-genome sequences have yet been
reported for gymnosperms, several ESTs from Picea
sitchensis, P. glauca, Pinus taeda and P. contorta showed
high similarity with AEE genes. To explore the origin and
evolution of the land plants AEE genes, we characterized
AEE genes from species representing the main lineages of
land plants, including the bryophyta Physcomitrella
patens, the lycophyte Selaginella moellendorffii, and 5
monocot and 6 dicot angiosperms (Table 1). Among the
tested land plant genomes, four (Linum usitatissimum,
Glycine max, Zea mays and S. moellendorffii) contained
two AEE genes, and all other genomes contained only
one. In the phylogeny (Figure 1), all of the paralogous
genes were found to be located at the termini of branches,
illustrating that these paralogs were formed through re-
cent duplication events. We also found that three paralogs
in angiosperms were results of segmental duplication be-
cause there were highly conserved genes within the
flanking regions of these three pairs of paralogous AEE
genes. However, the locations in neighboring genomic re-
gions revealed that the paralogous pair in S. moellendorffii
was the result of tandem duplication. BLAST searches
showed that all of the AEE genes in land plants exhibited
at least one significant EST hit in NCBI, except for two
genes from L. usitatissimum. The land plant AEE genes
generally contained 4—6 introns in their coding regions.
Although intron gain/loss was also found in some species,
the structure of these AEE genes showed highly similarity
(Figure 1), illustrating that the main characteristics of the
gene structure of this family were formed in the common
ancestor of land plants.

The origin of land plant AEE genes

There is no doubt that land plants originated from green
algae and that most of the genes in the genomes of land
plants were vertically inherited from their common an-
cestor [22,23]. We searched the nr and EST databases of
NCBI and available eukaryotic genome databases for ho-
mologs of land plant AEE genes. To our surprise, the re-
sults indicated that there was no homolog in any other
eukaryote, including in the genomes of green and red
algae. Blast results also revealed that homologs of land
plant AEE proteins only existed in prokaryotes, mainly
in bacteria. The taxonomic distribution of the AEE genes
suggested that their emergence in land plants might
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Table 1 List of AEE genes in 13 representative land plant genomes
Lineage Species Locus® Length (aa) Intron Chr/scaffold Location EST hits
Dicot Arabidopsis thaliana AT3G18270 410 5 3 6261905 - 6264309 1
Populus trichocarpa POPTR_0012s05040 421 6 scaffold_12 4532099 - 4536153 5
Glycine max Glyma05g27030 443 6 5 32914724 - 32919062 19
Glycine max Glyma08g10010 443 6 8 7188312 - 7191927 21
Prunus persica ppa006194m 423 5 scaffold_5 17393161 - 17395652 1
Vitis vinifera GSVIVG01008335001 401 6 17 3148656 - 3153072 4
Linum usitatissimum Lus10020434 383 5 scaffold44 148949 - 150726 0
Linum usitatissimum Lus10007062 408 5 scaffold772 42573 - 44511 0
Monocot Sorghum bicolor Sb039006670 439 6 3 6866003 - 6869858 8
Setaria italica Si001444m 447 4 scaffold_5 8094542 - 8098228 1
Oryza sativa LOC_0Os01g04630 446 6 1 2074753 - 2077903 19
Zea mays GRMZM2G169152 552 6 3 19939526 - 19944315 22
Zea mays GRMZM2G094273 440 6 8 13336541 - 13339982 1
Brachypodium distachyon Bradi2g02560 442 6 2 1705605 - 1709251 2
Lycophyte Selaginella moellendorffii 413825 378 5 scaffold_21 1839471 - 1840852 2
Selaginella moellendorffii 98948 374 4 scaffold_21 1851300 - 1852645 2
Bryophyta Physcomitrella patens Pp1s76_15V6 397 6 scaffold_76 98135 - 100510 8

2 The locus and the sequence information for each gene in this table were obtained from Phytozome v9.0 (http://www.phytozome.net/).

have been a result of horizontal gene transfer (HGT)
from a prokaryote, and the universality of their distribu-
tion in bacteria also suggested that this gene first
emerged in bacteria.

To reveal the origin of the land plant AEE genes, we
selected representative homologs from each taxonomic
group of cellular organisms in the nr database to build a

phylogenetic tree (Figure 2). Each of the proteins se-
lected for phylogenetic analysis possessed an L-Ala-D/L-
Glu_epimerase domain. Although the selected sequences
cover most of the main taxonomy of the bacteria, the
phylogenetic tree of the AEE proteins in our analysis is
not congruent with the species phylogeny, suggesting ex-
tensive gene losses, HGT, and selection within bacteria.
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Figure 1 Phylogenetic tree of land plant AEE genes and their exon/intron structures. The numbers above the branches provide the
bootstrap values for maximum likelihood and distance analyses, respectively. Asterisks indicate values lower than 50%. Exons are indicated by
boxes, while introns are indicated by lines. The number above an intron indicates the phase.
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Figure 2 Phylogenetic analyses of AEE proteins. The numbers above the branches provide the bootstrap values for maximum likelihood and
distance analyses. Asterisks indicate values lower than 50%. Blue shading indicates lineages in which land plant AEE genes evolved. Red, green

and black branches indicate genes from land plants, archaea, and bacteria, respectively. All sequences were obtained from NCBI, except for those
in green plants, and each protein is indicated by the Gl numbers in NCBI and its genus.
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In the phylogenetic tree, all of the land plant AEE genes
formed a single clade with high bootstrap support. The
monophyly of the land plant AEE genes strongly suggests
that they have a single origin and are derived from a
unique gene that was already present in the ancestor of the
land plants. In addition, we noted that the land plant AEE
genes fell within the branch of bacterial genes showing
high bootstrap support values in both maximum likelihood
and distance analyses. The bacterial genes in this branch
come from species of deltaproteobacteria, nitrospirae, and
green non-sulfur (GNS) bacteria. In addition, we observed
that the land plant AEE proteins showed the highest simi-
larity to the bacterial genes in this clade; in particular, a
motif in the C terminus is only conserved in land plants
and these bacterial AEEs (Additional file 1). These findings
illustrated that the land plant AEE genes originated from a
single ancient HGT event from bacteria prior to the separ-
ation of land plant lineages.

HGT has been demonstrated to be one of the major forces
driving the evolution of prokaryotes. Recently, accumulating
data have indicated that this process has also occurred during
the evolution of eukaryotic genomes [5]. However, in eukary-
otes, another contributor to the accumulation of nuclear
genes is intracellular gene transfer (IGT), which is gene
transfer from the genomes of mitochondria or plastids to the
nucleus [3]. It has been demonstrated that all mitochondrial
genomes originated from an ancient endosymbiotic uptake
of an alphaproteobacterium [24]. In addition, the chloroplast
genome has been confirmed to have originated from the
genome of an ancestor of extant cyanobacteria [25]. Thus,
genes showing cyanobacterial and plastid-containing
eukaryotic homologs as top hits were mostly considered
plastid derived, while those with alphaproteobacterial and
other eukaryotic homologs as top hits were considered to
likely have been mitochondrion derived [5]. In our analysis,
additional searches were performed to exclude the possibility
of an IGT origin of land plant AEE genes. First, we searched
the nr database, NCBI dbEST database and available
eukaryotic genomic databases and found that there was no
eukaryotic gene encoding an AEE other than those in land
plants. Second, database searches revealed that no AEE pro-
tein was encoded by a mitochondrial or chloroplast gene.
Third, although there were AEE genes found in both
alphaproteobacteria and cyanobacteria, none of the AEE
genes in these bacteria fell within the land plant branch in
the phylogeny. Therefore, the scenario that land plant AEE
genes originated through IGT requires too many independ-
ent gene loss events to seem likely. In addition, the hypoth-
esis that this gene was present in the common ancestor of
eukaryotes and only retained in land plants also requires nu-
merous independent gene losses. Thus, under the assump-
tion that the chance of the same gene being repeatedly
transferred among different organismal groups is relatively
low, the most parsimonious explanation is that the origin of
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land plant AEE genes was the result of an ancient HGT
event from bacteria.

Selective constraints on land plant AEE genes

Likelihood ratio tests of positive selection were applied
using ML methods and the codon substitution models of
Yang and his colleagues [26-28]. First, we compared
models MO and M3 to evaluate whether there were varia-
tions in the dx/ds ratio among codon positions in the AEE
genes of land plants (Additional file 2). Overall, the max-
imum likelihood estimate of the dx/ds value for land plant
AEE genes under model MO was 0.1401, suggesting that
relaxed purifying selection was the predominant force for
the evolution of the AEE genes in land plants. Interest-
ingly, the log-likelihood differences between models M3
and MO were statistically significant (LRT=644.6478,
p <0.01), illustrating that the overall level of selective con-
straint has fluctuated. Second, the LRTs employed to com-
pare the fit of the data to model M2a vs. M1a and M8 vs.
M7 were used to address whether positive selection pro-
moted the divergence of this family in land plants. To our
surprise, neither of these comparisons provided evidence
of positive selection. This result revealed that the main
constraint on the evolution of AEE genes in land plants
was relaxed purifying selection following fixation after an
HGT event. To compare the driving forces with the AEE
genes in bacteria, 7 bacterial AEE genes that fell within
the same branch as those in land plants were also selected
to test selective constraints. The results revealed that puri-
fying selection was the predominant force for the evolu-
tion of the AEE genes in bacteria, and no positive
selection signature was found during their evolution in
bacteria.

To test whether positive selection played a role in the
fixation of this gene in the genome of the land plant an-
cestor following HGT, the improved branch-site model
[29] was employed to detect positively selected amino
acid sites. In this analysis, we used the branch of land
plants as the foreground, while 7 bacterial genes that
were present in the same branch as the land plant AEE
genes in the phylogeny were used as the background.
We found that the model that permitted a class of posi-
tively selected codons with dy/ds >1 for the land plant
branch was a significantly better fit to the data than the
model in which this class of codon was restricted to
dn/ds =1 (Table 2). Because an LRT suggested that posi-
tive selection acted on the fixation of the AEE gene in
the land plants, the Bayes empirical Bayes method was
used to evaluate the positively selected sites and their
posterior probabilities. A total of 34 codons were identi-
fied as showing a >50% posterior probability of a dp/ds >1
along the land plant branch. Among these codons, 14
amino acid sites were identified as exhibiting a >95% pos-
terior probability of positive selection, and 6 sites
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Table 2 Parameters of the branch-site models used for the detection of positive selection

Model inL Parameters
Null ~16116.4086 Po=06577,p1 =0.1957, po, = 0.1130, p2, = 0.0336
Background: wy = 0.0838, w; = 1.0000, w,, = 0.0838, w,, = 1.0000
Foreground: wo=0.0838, w; = 1.0000, w,, = 1.0000, w,, = 1.0000
Alternative ~-16102.3265" po=06537,p1 =0.1911, p2 = 01201, po, = 0.0351

Background: wg = 0.0845, w; = 1.0000, w,, = 0.0845, w,, = 1.0000
Foreground: wo = 0.0845, w; = 1.0000, w54 = 999.0000, W, = 999.0000

presented a value higher than 99%. For example, site 18
was found to be influenced by positive selection with a
posterior probability of greater than 95%. In all of the se-
lected bacterial AEE genes, this codon encodes a glycine
(G), whereas it encodes a serine (S) in plants. However,
site 37, which also shows a >95% posterior probability of
positive selection, is quite divergent among the selected
bacterial genes, while it is conserved and encodes a valine
(V) in all of the land plant AEE genes. This alternation
might be the result of positive selection at these sites and
have contributed to the functional adaptation and fixation
of this gene in land plants.

Discussion

The origin of land plants has played fundamental roles
in the formation of modern terrestrial ecosystems [12].
Numerous lines of evidence have revealed that land
plants evolved from water-based green algae. In the
transmission from water to land, the ancestor of land
plants is expected to have evolved genes with new func-
tions to colonize the land. Among the mechanisms
underlying the formation of these genes, HGT is one es-
sential way to acquire new genetic material [30]. Recent
investigations have revealed that HGT-derived genes
play important roles in plant colonization of land, as
some land plant genes that function in plant-specific ac-
tivities, including plant defense, stress tolerance and the
biosynthesis of plant polyamines and hormones, have
been demonstrated to have been acquired through HGT
[14]. In the present work, using integrated information
on the taxonomic distribution, phylogenetic relation-
ships and sequence similarity of the proteins possessing
L-Ala-D/L-Glu_epimerase domains, we concluded that
an ancient HGT event from bacteria contributed to the
origin of AEE genes in land plants. The function of these
genes in bacteria was demonstrated to be metabolism of
the murein peptide of peptidoglycan [16,17]. Although
no peptidoglycan has been found in land plants, the ubi-
quity of AEE genes in land plants and the evidence of
their expression indicate that they are functional and
may play important roles in the growth and develop-
ment of plants. These genes are expected to exhibit
other functions or have evolved new functions in land
plants.

In this study, we also noted that all of the AEE genes
include introns in their coding regions and that the posi-
tions and phases of these introns are quite conserved, il-
lustrating that most of the introns were present in the
ancestor of land plants. The vast majority of prokaryotic
genes contain no introns, and the only introns that have
been shown to be present in prokaryotic genes are self-
splicing type II introns, which are functionally quite dis-
tinct from the spliceosome-dependent nuclear introns in
eukaryotic genes [31]. Because no sequences showed
highly similarity with these introns, it is currently un-
clear where they originated. However, it is conceivable
that the introns in land plant AEE genes arose through
insertions shortly after the HGT event and before the
separation of land plant lineages.

It has been demonstrated that the phenotypic diversity
of a gene family is controlled by selection as a function of
evolutionary fitness [32]. A rigorous and clear signal of se-
lection pressure in molecular evolution is a significantly
higher nonsynonymous (dy; resulting in amino acid re-
placement) than synonymous (ds; silent) substitution rate.
The ratio of the two rates, dy/ds, or @, measures the
quantity and direction of selective pressure on a protein,
where w~1, w<1, and w>1, indicate neutral evolution, puri-
fying selection, and positive selection, respectively [33].
Purifying selection is important for the evolution of a gene
family because it can help the genes that belong to a fam-
ily maintain their optimal function. However, positive se-
lection is an important source of evolutionary innovation
and is a major force underlying the adaptation of species
to a new environment [34]. In our analysis, we found that
the dominant driving force for AEE genes was purifying
selection in both land plants and bacteria, which would
contribute to functional stabilization. However, when we
employed the bacterial genes as background, positive se-
lection was found to contribute greatly to the evolution of
land plant AEE genes.

In general, positive selection is thought to act on only
a few amino acid sites and for a short evolutionary
period [35]. Land plant AEE genes originated from bac-
teria through HGT as well as both the genomic and liv-
ing conditions differ tremendously between bacteria and
land plants. The functional adaptation of the AEE genes
to the genomic and living environment of the ancestor
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of land plants was aided by positive selection. A success-
ful HGT event leading to gene fixation results from pro-
viding a benefit to the host. Through positive selection,
the AEE gene underwent complete functional innovation
during a short evolutionary period in the ancestor of
land plants. It is thought that if a transferred protein is
not functional, neutral mutation will occur in the gene
encoding it. The fate of the transferred gene will there-
fore be that it will be lost during evolution because of
the accumulation of mutations. In addition to facilitating
the adaptation of an organism to a particular niche,
HGT can also provide a mechanism for genomic
innovation and plasticity. After acquiring materials for
innovation and adaptation to a new environment, posi-
tive selection acting on the transferred gene will modify
its sequences to generate new functions. Thus, positive
selection will reduce the chances of transferred gene
losses caused by the accumulation of mutations.

Conclusions

The gene encoding L-Ala-D/L-Glu epimerase (AEE) was
found to be present in all of the available sequenced ge-
nomes of land plants, whereas homologs of this gene
were not found in any other eukaryotic genome, includ-
ing those of green and red algae. In this study, we
performed extensive analyses of the taxonomic distribu-
tion and phylogeny of the AEE protein, which catalyzes
the epimerization of L-Ala-D/L-Glu and other dipep-
tides and plays an important role in the metabolism of
the murein peptide of peptidoglycan in bacteria. Our re-
sults revealed that the ancestor of land plants acquired
the AEE gene from bacteria through an ancient HGT
event. We also noted that rapid evolution and drastic
sequence variation occurred during the initially short
evolutionary period of the AEE gene in land plants fol-
lowing HGT. In addition to generating additional introns
in the coding region of the gene, adaptive evolution via
positive selection helped the AEE to undergo functional
innovation and fixation in the genome of the land plant
ancestor.

Methods

Sequence data sources

To identify the land plant genes encoding AEEs, BLASTP
searches were performed in the Phytozome database [36]
using the amino acid sequence of the B. subtilis YkfB gene
[16] as a query. The CD-search tool in the Conserved
Domain Database [37] of NCBI was used to predict the
L-Ala-DL-Glu_epimerase domain (cd03319) for the ob-
tained BLAST hits. The proteins that contained this con-
served domain were defined as land plant AEEs. The new
AEE sequences detected in land plants were used reitera-
tively to search the respective sequence database. EST
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searches for land plant AEE genes were performed using
the BLASTN tool against the EST database of NCBI.

To identify the homologs of land plant AEE genes,
BLAST searches against the non-redundant (nr) protein
sequence database, NCBI EST database and available
eukaryotic genome databases (Additional file 3) were
performed using the land plant AEE protein sequences
as queries. The obtained hits were further analyzed via
an NCBI conserved domain search to confirm the pres-
ence of the L-Ala-D/L-Glu_epimerase domain in their
protein structure. Protein sequences were sampled for
further combined phylogenetic analysis from representa-
tive groups within each domain of life (bacteria, archaea,
and eukaryotes) based on the BLASTP results.

Multiple sequence alignment and phylogenetic tree
reconstruction

All of the selected representative protein sequences were
aligned using Clustal X [38]. The gaps and ambiguously
aligned sites were removed manually. Phylogenetic analyses
were performed using a maximum likelihood (ML) ap-
proach with PhyML version 3.0 [39] and a neighbor-joining
(NJ) method using MEGA [40]. The ML phylogenetic ana-
lyses were conducted with the following parameters: JT'T
model, estimated proportion of invariable sites, 4 rate cat-
egories, estimated gamma distribution parameter, and opti-
mized starting BIONJ tree. The JTT model was also
employed for the construction of NJ trees. A total of 100
non-parametric bootstrap samplings were carried out to es-
timate the support level for each internal branch for both
the ML and NJ trees. The branch lengths and topologies of
all phylogenies were calculated with PhyML. Phylogenetic
trees were visualized using the explorer program in MEGA.

Detection of positive selection

A phylogenetically based maximum likelihood method
was used to estimate the selective pressure acting on
coding regions. The values of the dj/ds ratio (or w) for
the land plant and selected bacterial AEE genes were cal-
culated using the program codem! from PAML v4.4 [26].
The PAL2NAL program [41] was utilized for conversion
of the protein sequence alignment into the correspond-
ing codon-based nucleotide alignment, which, in turn,
was input into the codeml program in PAML. Using the
codeml program, we detected a variation in w between
sites by employing likelihood ratio tests (LRTs) of MO vs.
M3, M1la vs. M2a, and M7 vs. M8. The LRT for the MO
vs. M3 comparison was used to test the heterogeneity in
® between the codon sites, while the other two LRTs
were used to detect the role of positive selection. For
one LRT, twice the difference of the log likelihood of the
two models was compared with chi-square ()°) statistics,
with degrees of freedom (DFs) equal to the difference in
the number of parameters. In our analyses, the DFs were
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3 for the MO/M3 test and 2 for the M1la/M2a and M7/
MBS tests [28,42].

An improved branch-site model [29] was also used to
detect the role of positive selection acting on the land
plant AEE gene following HGT. For this analysis, we
compared the null hypothesis (o fixed to 1) with the al-
ternative hypothesis (free w) to test whether positive se-
lection acted on the evolution of land plant AEE genes.
A phylogenetic tree was generated using the land plant
and bacterial AEE genes with the program PHYML.
Here, only the bacterial genes falling within the same
branch as the land plant genes were used. The land plant
branch was used as the foreground, while the branch
containing the genes from bacteria, the putative donors
of the land plant AEE gene, was used as the background.
The Bayes empirical Bayes procedure [27] in codeml was
used to calculate the posterior probability that each site
was subject to positive selection in the foreground
branch.

Additional files

Additional file 1: Supplementary file 1. The alignment of AEE
sequences used for the phylogeny construction. The conserved motif
was indicated by a box.

Additional file 2: Supplementary file 2. The parameters of site-specific
models.

Additional file 3: List of 50 eukaryotes whose complete genome
sequences or ESTs were used in this study, in addition to NCBI nr
database.
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