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Abstract

Background: Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically
active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding
gene expression in the rhizomes of ginger and turmeric.

Results: In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and
pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different
ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene
transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of
rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and
transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate
in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications
of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development.
Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their
putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both
primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the
utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the
phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier
hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols.

Conclusion: A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of
ginger and turmeric. Specific transcription factors and other regulatory genes were found that were common to
the two species and that are excellent candidates for involvement in rhizome growth, differentiation and
development. Large classes of enzymes involved in specialized metabolism were also found to have apparent
tissue-specific expression, suggesting that gene expression itself may play an important role in regulating
metabolite production in these plants.
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Background
Ginger (Zingiber officinale Rosc.) and turmeric (Curcuma
longa L.) are important not only as spices but also
as traditional Eastern medicines for arthritis, rheuma-
tism, fever, nausea, asthma and other ailments [1].
Terpenoids (e.g., turmerones) and phenylpropanoid-
polyketides (diarylheptanoids, including the curcuminoids,
and the gingerol-related compounds) are believed to be
responsible for most of these medicinal properties.
Curcumin in particular is used in treatment of cancer, arth-
ritis, diabetes, Crohn’s disease, cardiovascular diseases,
osteoporosis, Alzheimer’s disease, and psoriasis, among
others [2,3]. [6]-Gingerol also has potential in treating
chronic inflammation, such as in asthma and rheumatoid
arthritis [4]. This interest in the ginger and turmeric
rhizome-associated diarylheptanoids and gingerols has
prompted both enzyme assay and metabolic profiling-based
inquiries into the biosynthesis of these compounds [2,5-7].
Nevertheless, many of the enzymes involved in production
of these compounds in ginger and turmeric have not been
identified.
Rhizomes hold greater biological significance as well.

The rhizome was the original stem of the vascular plant
lineage [8] and is still the only type of stem found in
primitive plant groups such as ferns and fern allies. In
order to understand the evolution of the upright stem
from its rhizomatous origins, we must understand how it
differs from the rhizome. Furthermore, we do not under-
stand why and how many advanced plants have “reverted”
back to rhizomatous growth. Such reversions have huge
economic implications, being responsible for the
invasiveness and hardiness of many of the world’s most
significant weeds, such as purple nutsedge (Cyperus
rotundus L.), Johnson grass (Sorghum halepense (L.) Pers.),
and cogon grass (Imperata cylindrica (L.) Beauv.). Thus,
increasing our understanding of rhizome biology may
have significant impacts not only on our understanding of
how important medicinal compounds are produced, but
also on our ability to control important weedy species.
Despite the importance of ginger and turmeric and of

rhizomes in general, very few genes have been identified
from ginger or turmeric rhizomes [9-11]. Moreover, very
little is known about the genes involved in rhizome iden-
tity, growth and development in general [10-14]. Paterson
and coworkers published work on several Sorghum species
that identified many genes that are expressed in the
rhizomes of S. halepense and S. propinquim [12]. Several
of these mapped to QTLs for “rhizomatousness” on the
Sorghum genetic map. However, the exact role that any of
these genes may play in rhizome development remains
unclear.
Here we describe the analysis of over 50,000 expressed

sequence tags (ESTs) from rhizomes, leaves and roots of
two ginger lines (white ginger, GW and yellow ginger, GY)
and rhizomes and leaves of one turmeric line (orange tur-
meric, T3C). Using these ESTs, we identified ginger and
turmeric transcripts potentially involved in rhizome biology
and specialized metabolism, particularly in the production
of curcuminoids, gingerols and terpenoids. Moreover, we
provide an explanation for previously observed growth
responses of rhizomes to the phytohormones auxin and
ethylene [15-18].

Results and discussion
Production and analysis of a database of ginger and
turmeric ESTs
Random clones from eight cDNA libraries representing
rhizome, leaf and root of two ginger lines, and rhizome
and leaf of one turmeric line (Additional file 1: Table
S1), were 50 and 30 end-sequenced to produce ESTs,
which were then assembled into contiguous unique tran-
scriptional units (unitrans) in the Program for Assem-
bling and Viewing ESTs (PAVE, see Methods section).
The resulting ArREST (Aromatic Rhizome EST) data-
base (available online at http://www.agcol.arizona.edu/
cgi-bin/pave/GT/index.cgi) contains a total of 50,139
ESTs (37,717 from ginger and 12,422 from turmeric)
that assembled into 21,215 unigenes (unitrans; 13,717
contigs containing more than one EST and 6,882
singletons). The average EST sequence length was
817 bp, with unitrans lengths ranging from 151 to
4021 bp, with the greatest number of unitrans having
between 701 and 800 bp, and with 95% exceeding 300 bp
(Additional file 2: Figure S1). Average EST number per
unitrans was approximately 3.2, and only fifteen unitrans
contained 40 or more ESTs (Additional file 1: Tables S2
and S3), whereas a very large number of the unitrans
contained less than 10 ESTs. Many unitrans contained
ESTs from both species, suggesting significant homology
between these two members of the Zingiberaceae.
Of the 21,215 unitrans identified in the ArREST data-

base, 87.6% could be annotated with Gene Ontologies
(GOs). Eight GO categories (Additional file 2: Figure S2)
had EST abundances greater than 5%, including protein
modification (10.5%), transport (9.2%), metabolism (9.0%),
transcription (8.6%), cellular process (8.0%), protein bio-
synthesis (6.9%), electron transport (5.6%), and biological
process unknown (5.3%). Although compounds such as
the curcuminoids and gingerols accumulate to high con-
centration in the rhizome of these plants, the GO category
secondary metabolism contained relatively few ESTs
(0.3%). Early steps in the pathways to these compounds
are covered by other metabolism categories. Other
interesting findings from the GO categorization are as
follows: 1) transport and metabolism genes appeared to be
more highly expressed (based on EST counts) in root than
in leaf or rhizome of ginger; 2) genes related to protein
modification appeared to be expressed at higher levels in

http://www.agcol.arizona.edu/cgi-bin/pave/GT/index.cgi
http://www.agcol.arizona.edu/cgi-bin/pave/GT/index.cgi
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the rhizome than in the leaf or root for both turmeric
and ginger; 3) protein biosynthesis genes appeared to be
expressed at higher levels in GW roots than other
tissues or other plant accessions; and 4) genes classified
under the biological process unknown GO category
appeared to be expressed at higher levels in turmeric
than in ginger.
Based on the GO categorization described above, we

were able to outline a metabolic network in ginger and
turmeric rhizomes that connects the metabolism of
sucrose to the phenylpropanoids and terpenoids (see
Additional files 1 and 2: Table S4 and Figure S3). We
were also able to analyze the apparent relative expres-
sion levels (based on EST abundance) of genes governing
the commitment of carbon flux into several primary and
specialized metabolic pathways in different tissues
(Table 1), as we have previously done for glandular
trichomes [19]. These results, which were validated by
additional expression studies, suggest that metabolism is
regulated in ginger and turmeric rhizomes differently
than in leaves or roots, and also support the hypothesis
that ginger and turmeric rhizomes are highly specialized
for the production of high levels of specialized
metabolites.
We also investigated the expression levels for members

of eight specific gene families (see Additional file 1: Tables
Table 1 Entry point enzymes that regulate carbon partitionin

Descriptive name EC # Abbr.

Primary/core metabolism

sucrose synthase 2.4.1.13 SUS

pyruvate kinase 2.7.1.40 KPY

pyruvate dehydrogenase 1.2.1.51 PNO

Shikimate pathway

DAHP synthetase 2.5.1.54 DAHPS

Phenylpropanoid pathway

phenylalanine ammonia lyase 4.3.1.5 PAL

Terpenoid pathway

MEP pathway

DOXP reductoisomerase 1.1.1.267 DXR

MVA pathway

HMG-CoA reductase 1.1.1.34 HMGR

Common steps

isopentenyl diphosphate isomerase 5.3.3.2 IDI

farnesyl diphosphate synthase 2.5.1.10 FPPS

terpene synthases N/A CS

One carbon metabolism

methionine synthase (cobalamin-independent) 2.1.1.14 METE

Values given are normalized total EST number (TEN) (×104). TEN, an indicator of EST
with gene products carrying out a specific enzymatic activity, divided by the total E
S5 and S6) that play important roles in the biosynthesis of
large numbers of specialized metabolites in plants:
polyketide synthases (PKSs), terpene synthases (TPSs),
NAD(P)H-dependent dehydrogenases/reductases, BAHD
acyltransferases, 2-oxoglutarate-dependent dioxgenases
(ODDs), SABATH carboxyl methyltransferases, small mo-
lecule O-methyltransferases (SMOMTs) and cytochrome
P450 monooxygenases (P450s). Five of these gene families
were particularly well represented in the ArREST database,
with normalized total EST numbers of more than 100 for
specific family sub-categories. In particular, the P450 gene
family was very well represented in the database (see
Additional files 1 and 2: Table S6 and Figure S4), suggesting
that reactions carried out by members of this family are
very important for metabolism in these plants.

Biosynthesis of diarylheptanoids and gingerols in ginger
and turmeric
Of the more than 2,000 nonvolatile compounds detected
so far by LC-MS in fresh ginger or turmeric rhizome, less
than 100 have been isolated or structurally identified, let
alone biosynthetically evaluated [4,20-28]. What is known
is that both the diarylheptanoid and gingerol-related
classes of compounds are polyketides with origins in the
phenylpropanoid pathway [29]. ESTs for phenylpropanoid
pathway enzymes were abundant in almost all of the
g into specific metabolic pathways

T3C GW GY

Rh L Rh L R Rh L R

25 0 39 7.1 38 23 14 14

8.8 4.4 16 2.8 6.3 12 0 7.1

1.8 3.0 6.4 5.7 6.3 3.1 10.1 3.5

3.5 0 6.4 0 1.6 14 3.4 7.1

11 0 4.8 16 13 3.1 0 11

1.8 0 6.4 0 0 0 0 20

0 0 0 0 0 0 0 3.5

3.5 0 4.8 1.4 6.3 7.7 0 0

12 8.9 6.4 0 11 34 6.7 11

30 7.4 16 0 14 36 0 20

7 22 18 4.3 17 17 3.4 21

expression levels, was calculated as the sum of all ESTs that are associated
ST number within a particular library.
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tissues examined. Cinnamate 4-hydroxylase ESTs were the
most abundant of the six phenylpropanoid pathway
enzymes. Phenylalanine ammonia lyase ESTs, the entry
point into the pathway, were abundant in most of the gin-
ger/turmeric cDNA libraries except leaves. Caffeoyl-CoA
O-methyltransferase (CCOMT) was apparently expressed
at higher levels (about 2-fold higher EST counts) in ginger
rhizomes than in ginger leaves (Additional file 1: Tables S4
and S5) and was not detectable in turmeric leaf. These
results paralleled previous work that showed that
CCOMT specific activity was significantly higher in
extracts from shoots when compared to leaves and
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in turmeric [6]. One such enzyme can apparently utilize
p-coumaroyl-CoA and feruloyl-CoA but not caffeoyl-
CoA as substrate and produces the major curcuminoids.
Additional PKSs can utilize caffeoyl-CoA to produce
compounds with an ortho-diol on one of the two aro-
matic rings, such as 30-hydroxy-bisdemethoxycurcumin
(A) and 30-hydroxy-demethoxycurcumin (B) (see [6]
Figure 1). To further investigate the role of PKSs in gin-
ger/turmeric specialized metabolism, we identified >40
unitrans as putative PKSs by comparing representative
type III PKS genes [30] against the ArREST database
using BLASTX. These potential PKS genes belong to
three major groups: chalcone/naringenin-chalcone
synthases (CHSs), relatives of a polyketide synthase from
Wachendorfia thyrsiflora (Haemodoraceae) (WtPKS1)
and hydroxycinnamoyl-diketide synthase (DKS) from
turmeric [31-34], and relatives of curcuminoid synthase
(CURS) from turmeric [33,34], as well as a diverse group
of putative polyketide synthases (Figure 2, Additional file
1: Table S5). The ginger and turmeric enzymes tenta-
tively identified as CHS or naringenin-CHS showed
CU
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curcuminoid or gingerol synthase, but is rather a
diketide synthase. Other members of this sub-family
have been shown to belong to the curcumin synthase-
like subclass. Certain members from both groups of
enzymes are involved, apparently, in production of
curcumin in planta; they have been demonstrated to
produce curcumin in vitro when expressed in recombin-
ant form. None of these genes have been shown to be
involved in the production of gingerols. Another gene of
this class (Os07g17010) was identified in rice and also
annotated as a “curcuminoid synthase” despite the fact
that rice does not produce curcuminoids [31]. Expressed
exclusively at low levels in the developing rice anther,
this protein likely plays a different role in vivo than what
is suggested from in vitro analysis of the recombinant
rice protein. Moreover, Os07g17010 is not closely related
to WtPKS1 or to any of curcuminoid synthase or
diketide synthase genes identified from curcuminoid-
rich ginger and turmeric (see Figure 2). As a result, we
cannot determine the exact roles of all of the members
of the class of WtPKS1 gene family in ginger and tur-
meric at this time. Nevertheless, available data so far
suggest that the large array of PKS-derived compounds
in ginger and turmeric may be the result of multiple
PKS-like enzymes catalyzing slightly different reactions,
each with different substrate specificities and product
outcomes. Other ginger and turmeric genes from the
WtPKS1/curcumin synthase-like subclass are excellent
candidates for involvement in these processes, and are
the subject of ongoing investigation. Furthermore, the β-
ketoacyl-CoA synthase-like subclass (Figure 2) is also
noticeably expanded in ginger and turmeric relative to
other species and may also play a role in production of
these compounds.
Other enzymes required to decorate or modify the

diarylheptanoid and gingerol-related backbone structures
could well belong to the other major gene families
evaluated for expression. For example, specific reductases
and hydroxylases are likely to be involved in elimination
of double bonds and in forming hydroxyl groups on the
compounds found in these plants, and these classes of
enzymes were well represented in the ArREST database.
Many of these potential genes show relatively high expres-
sion in all or most tissue types of ginger/turmeric (see
Additional file 1: Table S5). These results provide impor-
tant clues for further research to elucidate the pathways/
networks involved in producing diarylheptanoids and
gingerol-related compounds in these plants.

Terpenoid biosynthesis in ginger and turmeric
Terpenoids are another major class of bioactive compounds
found in ginger and turmeric [22,25,36-40]. Isopentenyl di-
phosphate and dimethylallyl diphosphate (IPP and
DMAPP), the common building blocks for mono-, sesqui-
and other terpenoids, appear to be produced mainly by the
plastidic methylerythritol phosphate (MEP) pathway in
these species as ESTs for all enzymes in this pathway were
readily identified in the ArREST database at high levels
(Additional file 1: Table S4), especially the potential regula-
tory enzyme, 1-deoxy-D-xylulose-5-phosphate (DOXP)
synthase. In contrast, two important enzymes of the
cytosolic mevalonate (MVA) pathway, phosphomevalonate
kinase and pyrophosphomevalonate decarboxylase, were
not detected in the database. Also, other genes in the
MVA pathway were represented by very low EST levels
for all tissues, even those producing high levels of
sesquiterpenoids, which are derived from farnesyl diphos-
phate, a compound believed to be synthesized in the cytosol
of most plants. These results suggest that the MEP pathway
is the essential pathway for production of precursor
IPP/DMAPP involved in the biosynthesis of terpenoids
found at high levels in ginger and turmeric, including
sesquiterpenoids. Furthermore, the transport of IPP/
DMAPP out of the plastid to the cytosol is likely to also
occur in these plants, as has been shown for other plants
such as snapdragon and sweet basil [19,41].
Only two terpene synthases (TPS), a germacrene D syn-

thase and (S)-β-bisabolene synthase from ginger, have
been reported from either of these species [11,42]. How-
ever, the ArREST database contains 45 unitrans identified
as putative TPSs including: 19 monoterpene synthases, 11
sesquiterpene synthases, 2 diterpene synthases, 3 triter-
pene synthases and 10 tetraterpene synthases (Additional
file 1: Table S5). Most of the TPS unitrans in the ArREST
database possess few ESTs (average 2.47), several may rep-
resent different regions of the same gene (such as 50 and 30

regions), and all putative triterpene synthases appear
to be exclusive to the rhizomes. Two of the unitrans
appeared to represent full-length monoterpene synthase
(MTS) cDNAs, one from ginger rhizome and the other
from turmeric leaf. The corresponding recombinant pro-
tein from ginger rhizome was expressed in E. coli and
assayed for enzymatic activity. The ginger MTS catalyzed
the formation of 1,8-cineole and small amounts of
p-menth-1-en-8-ol, which is a intermediate product dur-
ing GPP conversion to 1,8-cineole. Although all ginger
tissues produce 1,8-cineole, the rhizome contains much
more than root or leaf tissues. Gene expression profiling
from a microarray analysis also verify that 1,8-cineole syn-
thase is predominantly expressed in the rhizome (Figure 3).
Although the turmeric rhizome also produces large
amounts of 1,8-cineole, this ginger MTS was not expressed
in the turmeric rhizome according to the microarray ana-
lysis, suggesting that there is/are other 1,8-cineole synthase
(s) in the turmeric rhizome.
In addition to the TPSs discussed above, other gene

families possibly involved in ginger and turmeric terpen-
oid biosynthesis are easily identified in the database,
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including P450s. Of these, a limonene hydroxylase-like
enzyme (CYP71D class) is one of the most highly
expressed P450s (see Additional file 1: Table S6), based
on EST counts. This enzyme class is associated with the
biosynthesis of oxygenated monoterpenoids (i.e. carvone,
menthone, menthol, and pulegone, etc.). Because these
specific compounds have not been detected in ginger or
turmeric, CYP71D in ginger and turmeric plants is likely
to be involved in producing highly accumulating
compounds such as the turmerones, suggesting that this
enzyme class may have evolved unique functions in
these two plants.

Conservation of rhizome-enriched genes
In an attempt to discover genes involved in defining rhi-
zome tissue identity and rhizome development, we
compared 1,223 rhizome-specific ESTs from Sorghum (see
Additional file 3) [12] to our ArREST database using
TBLASTX. As a result, 2,383 ginger/turmeric unitrans
containing 8,017 ESTs were identified as having significant
homology (E ≤ 1 × 10-10) to the Sorghum rhizome ESTs.
Of these, 1,606 ginger/turmeric unitrans (6,425 ESTs)
were expressed in tissues besides the rhizome, leaving 777
unitrans (1,592 ESTs) that appeared to be exclusively
expressed in ginger or turmeric rhizome (according to
EST data). Within this group of 777 rhizome-enriched
unitrans, 70.6% or 547 unitrans (1,124 ESTs) had GO
annotations in “biological process”, compared to 87.6% of
the entire ArREST database. The remaining unknown
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unitrans, while lacking any known biological function, ap-
pear to represent actual genes and not random or “junk”
sequence data. This result corresponds to earlier findings
for Johnsongrass rhizomes [12,43].
The rhizome-enriched ESTs were enriched (2-fold more

compared to leaf or root) for genes involved with “protein
modification” (GO:0006464; Additional files 1 and 2: Table
S7 and Figure S5), with 50% of these possessing homology
to genes associated with kinase-mediated signal transduc-
tion, and the remainder having homology to other serine-
threonine kinases or ubiquitin-associated activities. Such
post-translational protein modifications are suggestive of
possible roles in biotic/abiotic stress response and
phytohormone signal transduction [44-47]. In contrast, a
number of GO categories were noticeably deficient. For
example, few unitrans were found with GOs associated
with transport or cell organization and biogenesis
(Figure 4) (these were primarily devoted to cell wall
biosynthesis and lignification [48,49]), while 37% of the
ESTs in the “catabolism” gene ontology are actually
involved with the early stages of the phenylpropanoid
pathway [50,51]. Other GO categories underrepresented
in the rhizome include nucleotide/nucleic acid metabo-
lism and generation of precursor metabolites/energy
(Additional file 2: Figure S5). This apparent lack of a
diversity of metabolic processes displays a bias in the rhi-
zome toward processes associated with cell wall biosyn-
thesis and remodeling as well as specific specialized
metabolic pathways.
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Figure 4 Fraction of ESTs (standardized per 10,000 ESTs) of different classes of transcriptional regulators (GO category 0003677) in
ginger and turmeric libraries. Library descriptions are listed under the graph, followed by additional information per library in the parenthesis:
(number of unitrans, number of ESTs, number of unitrans with GO:0003677, number of ESTs with GO:0003677). ArRESTs: EST collection of all
ginger and turmeric libraries within ArREST. ZO_CL_Rh_ESTs_ArREST: combined ESTs of all ginger and turmeric rhizome libraries within ArREST.
CL_Ea_ESTs_ArREST: turmeric rhizome library. ZO_Rh_ESTs_ArREST: combined EST collection of two ginger rhizome libraries. ZO_Ec_ArREST:
White ginger rhizome EST library. ZO_Ed_ArREST: Yellow ginger rhizome library. Values per category are shown in Additional file 1: Table S8.
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Identification of transcriptional regulators in ginger and
turmeric rhizomes
MYB factors easily dominated other classes of transcrip-
tion factors in both unitrans and EST numbers in the
total ArREST database (Figure 4, Additional file 1: Table
S8). The other major groups of transcription factors are
the NAC, WRKY, homeobox, bZIP and CONSTANS
classes. This contrasts with what has been found in ei-
ther Arabidopsis thaliana or Oryza sativa, where the
basic helix-loop-helix (bHLH) family is one of the largest
families of transcription factors, closely followed in num-
ber by the MYB proteins [52-55]. In the case of ginger
and turmeric, this trend is reversed: the MYB class is the
most highly expressed class of transcription factors and
apparently possesses the largest number of distinct
genes, whereas the bHLH class is one of the lowest
abundant classes (see Figure 4, Additional file 1: Table
S8), based on EST counts and confirmed by additional
expression profiling (see below). Although this trend
may merely be a reflection of the genes being
transcribed rather than the actual genomic content, it is
an interesting finding. These two classes of transcription
factors have been shown to complex together and regu-
late a variety of processes, most notably the specification
of hairy trichomes, root hairs and petal conical cells in
Arabidopsis and Antirrhinum majus [56-59]. In addition,
both ginger and turmeric possess noticeably expanded
numbers of the WRKY and NAC types of transcription
factors compared to Arabidopsis and rice. Both WRKY
and NAC transcription factors have also been shown to
play integral roles in plant defense, stress response and
development [60-63].
In the case of ginger, turmeric and Sorghum rhizomes,

it will be interesting to see which genes are regulated by
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Figure 5 Comparisons of microarray signal intensities of several rhizome-enriched transcription factor unitrans in ginger and turmeric.
Each of these selected genes possesses signal intensities with rhizome–enriched expression in at least one of the species compared to other
tissues and/or time-points with coefficients≥ 2 and p-values≤ 0.05.
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these classes of transcription factors, because rhizomes
lack trichomes and root hairs and do not typically accu-
mulate appreciable levels of anthocyanins. Anthocyanin
production and trichome development in plants are
processes known to be regulated by MYB proteins
[64,65]. A plausible role for MYB proteins in ginger and
turmeric rhizomes might lie in the regulation of rhizome-
specialized metabolism (particularly the phenylpropanoid-
derived diarylheptanoids or gingerols in ginger and
turmeric) or general rhizome structure and development.
To verify the rhizome-enriched expression of specific

transcriptional regulators, we analyzed the expression
patterns of 745 of the 777 rhizome-enriched data set using
a custom oligonucleotide-based microarray (the other 32
genes did not yield good quality oligos for inclusion in the
array). Ten unitrans putatively encoding transcriptional
regulators were expressed at higher levels (expression
coefficients >2 and p-values ≤0.05) in rhizome versus
other tissues in various tissue and/or age specific
comparisons in both ginger and turmeric: a MYB, an
ethylene response factor (ERF), 2 MADs, 3 auxin response
factors (ARFs) and 2 AUX/IAA transcriptional regulators
(Figure 5). It is notable that 7 of the 10 transcriptional
regulators identified in this manner (the ERF and 5 AUX/
IAAs, Figure 5) appear to encode phytohormone-related
proteins and are significantly up-regulated in the rhizome
tissues at several time points in both ginger and turmeric.
Two other genes shown by the microarray experiments to
be up-regulated within the rhizome of ginger or turmeric,
respectively, were the MADS box genes GT_01880 and
GT_15843 (Figure 5D & E). Whether these two genes play
complementary or different roles in these two species
remains unclear. Nevertheless, these results suggest roles
for auxin and ethylene in the establishment or mainten-
ance of rhizome cell fate or rhizome apical dominance
[66-68].

Identification of genes involved in rhizome development
AUX/IAA proteins have been implicated in the develop-
ment of auxin-dependent vascular tissues [69]. The pres-
ence of AUX/IAA proteins with rhizome-enriched
expression is notable because auxin has been proposed
to repress the initiation of shoots from rhizomes in other
rhizomatous species [15,16]. The simplest explanation
for the role of these transient proteins is that the AUX/
IAA ESTs observed represent the basal transcripts
produced in the rhizomes. The corresponding translated
AUX/IAA proteins would bind to and inhibit their ARF
counterparts that otherwise directly control gene expres-
sion via DNA binding [70,71]. However, since auxin
from the shoot is readily available in the rhizome, the
AUX/IAA proteins would be quickly degraded by a com-
plex analogous to the auxin responsive SCF complex
[72], allowing for ARF-DNA binding. As a result, the
ARF would not play the role of a transcriptional activa-
tor, but rather of a transcriptional repressor. As
repressors, these ARF proteins would bind to their re-
spective promoter regions and repress shoot develop-
ment, as well as possible transcription of relevant ARF
genes. This would help explain the lack of putative ARF
genes in the 777 ESTs common to rhizomes from gin-
ger/turmeric and Sorghum.
Although apical dominance is pronounced in rhizomes

of S. halepense [73], it appears to be reduced in ginger and
turmeric, possibly due to the differential presence/absence
of specific NAC transcription factors. Such a hypothesis is
plausible because the rhizome is a stem and mutations in
NAC transcription factors have been associated with loss
of apical dominance in stems [74]. NAC proteins, which
may also regulate various aspects of meristematic develop-
ment like rhizome bud dormancy, are known to be
expressed in monocot meristems [75] and to be regulated
by auxin via a similar auxin-responsive ubiquitination
process [76,77].
Ethylene was also implicated in the maintenance of

the rhizome as a distinct tissue by the abundance of
ESTs in the rhizomes of ginger, turmeric, and Sorghum
for genes associated with ethylene signaling (ERF
proteins); the potential role of this phytohormone in rhi-
zome biology has also been suggested for other species
[17,18]. Ethylene may play a role in both the promotion
of rhizome elongation and the suppression of shoot de-
velopment. Could shoot-derived auxin be stimulating
ethylene evolution in the rhizome, thereby repressing
shoot formation? This idea has been hinted at in earlier
experiments where the addition of auxin resulted in
increased production of ethylene from exposed plant
tissues [78,79], although rhizomes were not tested. How-
ever, this hypothesis does not completely explain the
previously observed roles of gibberellins in rhizome
growth and development [18,80]. A possible explanation
is that gibberellins may be acting as agents in the cross-
talk between auxin stimulus and the ethylene response
pathways. Such a relationship has been suggested for
other tissues such as stem, root, and tuber [81-83], but
has not been established for rhizomes.
MADS box transcription factors may also play an im-

portant role in rhizome initiation and development.
Three (GT_01880, GT_13200, and GT_15843) of the
eight MADS box unitrans that were identified in
rhizomes appeared to be expressed exclusively in the
rhizomes of ginger, turmeric and Sorghum, based on
EST data. Microarray analysis confirmed rhizome-
specific expression for one of these genes GT_01880
(Figure 5D). This gene appears to be homologous to
MADS box genes whose positions are close to quantita-
tive trait loci (QTLs) (Figure 6) associated with
rhizomatousness in Oryza and Sorghum [12,43]. In
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addition, related rice MADS box proteins have been
implicated as possibly having roles in flower develop-
ment; flower tissue was not included in our analysis due
to the difficulty in obtaining this tissue from these
plants. Possible functional overlap between flower and
rhizome development is not unreasonable and some
MADS box transcription factors have been implicated in
the development of both floral and vegetative tissues
such as tubers and rhizomes [13,14]. It will be very
interesting to determine if the proteins encoded by these
three unitrans do in fact play some role in controlling or
directing rhizomatous growth and development.

Conclusion
We have analyzed ESTs from two ginger lines (white ginger
and yellow ginger) and one turmeric line (orange turmeric)
and investigated the expression of the corresponding genes
in rhizome, root and leaf tissues. Many candidate genes for
involvement in many core and specialized metabolite
pathways were present and highly expressed in especially
the rhizomes of these plants. Several transcription factors
and transcriptional regulators were specifically expressed in
ginger and turmeric rhizome, with corresponding homologs
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Methods
cDNA library construction and sequencing
Using the white ginger (GW), yellow ginger (GY), and
red/orange turmeric (T3C) lines described previously
[2,5], total RNA was extracted from rhizomes, young
leaves, and roots using the method of Dong and
Dunstan [84]. Poly(A)+ RNA was purified from 1000 μg
of total RNA using the PolyATractW mRNA isolation kit
(Promega, USA) and cDNA was synthesized from 1 μg
of poly(A)+ RNA using a Uni-ZAP W XR cDNA synthe-
sis kit (Stratagene, USA) according to the manufacturers’
instructions. The directionally cloned (EcoRI/XhoI) cDNA
libraries were then mass-excised in vivo and the resulting
phagemids (pBluescript SK(−)) were propagated in the
E. coli strain TJC-121 [85]. Individual cDNA clones
containing inserts were sequenced from the 5′and 3′ ends
using the T7 and T3 promoter sequencing primers,
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Production of the EST database in PAVE
ESTs were assembled with the Program for Assembling
and Viewing of ESTs, PAVE [86].
Classifying unitrans by gene ontology
All unitrans within the ArREST database were assigned
UniProt IDs based on BLASTX results. Microsoft Access
was used to assign GO terms from the Gene Ontology
Annotation (GOA) Database file, gene_association.
goa_uniprot.gz (http://www.ebi.ac.uk/GOA/index.html)
to ginger and turmeric EST unitrans based on their
corresponding UniProt IDs. Of the remaining 5,587
unitrans lacking GOs, 1,179 had GOs using the GO an-
notation search tool (http://www.arabidopsis.org/tools/
bulk/go/index.jsp). GO annotations were assigned to
additional 327 unitrans via the ArREST-PAVE website.
The remaining 4,081 unitrans that completely lacked
GO annotations were compared again against both the
Swiss-Prot and TrEMBL databases separately using
BLASTX (E-value ≤ 1E-10). We examined the 5 best hits
from both BLASTX results for each unitrans and, if ne-
cessary, considered all remaining hits until we found a
hit possessing a GO annotation. This approach allowed
us to annotate 87.6% of our ginger/turmeric unitrans,
leaving 12.4% of the unitrans unannotated. The unitrans
were assigned to their appropriate gene ontology categor-
ies using the map2slim program and the goslim_plant.obo
file downloaded from the Gene Ontology website (http://
www.geneontology.org/GO.slims.shtml).
Rhizome-enriched transcripts from ginger, turmeric and
sorghum
To determine rhizome-enriched transcripts common to
ginger/turmeric and Sorghum species, a subtractive-
reciprocal best BLAST hit approach was used [87] followed
by direct TBLASTX (E-value ≤ 1E-10) comparisons of the
species- and tissue-specific libraries (turmeric leaf vs. tur-
meric rhizome; combined ginger leaf vs. ginger rhizome;
and combined turmeric leaf/rhizome vs. combined ginger
leaf/root/rhizome). Nonredundant unitrans sequences were
sorted using Microsoft Access into three categories: unique
to rhizome, other tissue, and shared in all tissues. Unitrans
exclusive to ginger or turmeric rhizome were used in a
TBLASTX (E-value ≤ 1E-10) comparison with 1,223 pub-
licly available Sorghum rhizome EST sequences (see Supple-
mentary Information, http://www.ncbi.nlm.nih.gov/) from
either S. propinquum or S. halepense [12]. The reciprocal
best BLAST hit approach was used, but in contrast to the
comparisons in and between ginger and/or turmeric, the
reciprocal best hits produced in this assessment were
considered to contain possible orthologs required for
rhizomatous tissue identity and/or function.
Identification and evaluation of probable transcription
factors and transcriptional regulators in ginger and
turmeric
In order to identify possible trans-acting transcriptional
regulators and transcription factors within the ArREST
database, we queried the unitrans library for sequences
with the associated gene ontology identifier for DNA
binding: GO0003677. These queries produced 1,372
nonredundant unitrans with this particular gene onto-
logy identification, which were then analyzed using the
protein motif identification program INTERPROSCAN
[88] to identify any possible non-generalized DNA bind-
ing domains. Following analysis with INTERPROSCAN,
the 1,372 unitrans were manually curated to purge
unitrans possibly associated with generalized transcrip-
tional machinery, yielding a total of 818 unitrans that
were then tallied to determine the number of unitrans
or ESTs belonging to each of the DNA binding domain
categories.

Mapping of putative ginger/turmeric mads-box
transcription factors to rice
To determine if the ginger/turmeric MADS-box tran-
scription factors corresponded to known QTLs associated
with rhizomatousness [43], 3 rhizome-enriched ginger/
turmeric unitrans identified as having significant ho-
mology to ESTs found in Sorghum rhizomes [12] were
compared to the IGRSP build 4.0 pseudomolecules/
annotations (International Rice Genome Sequencing
Project 2005). A number of rice genes were identified as
possible orthologs of the ginger/turmeric unitrans. The
annotations of these genes were retrieved using the
various search tools available on Gramene [89]. Further-
more, annotations for all predicted rice MADS-box
proteins, QTLs and their associated simple sequence re-
peat (SSR) primer pairs were also retrieved using Gramene
[12,43,90,91]. These annotations were converted manually
into a general feature format (GFF) file and loaded into
the Apollo genome editor [92], along with the appropriate
IGRSP build 4.0 pseudomolecule (International Rice
Genome Sequencing Project 2005). As a result, a number
of virtual maps of rhizomatousness QTLs and their prob-
able spatial relationships to the positions of ginger/tur-
meric/rice MADS box transcription factors on the IGRSP
pseudomolecule were produced.

Microarray analysis of ginger and turmeric genes
A custom microarray was produced by Agilent using
oligos designed by us from the ArREST database. This
array and its design are available through Agilent’s
eArray site (https://earray.chem.agilent.com/earray/) as
published design Z.Officinale/C.Longa. Oligo design
procedures, experimental design and experimental steps
are outlined in Additional file 4. Spot intensities were

http://www.ebi.ac.uk/GOA/index.html
http://www.arabidopsis.org/tools/bulk/go/index.jsp
http://www.arabidopsis.org/tools/bulk/go/index.jsp
http://www.geneontology.org/GO.slims.shtml
http://www.geneontology.org/GO.slims.shtml
http://www.ncbi.nlm.nih.gov/
https://earray.chem.agilent.com/earray/
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extracted from the scanned microarray images using
Agilent Feature Extraction software, and data analysis
was performed using R [93], Bioconductor (PUBMED:
16939789), and limma [94,95]. Normalization within
and between arrays was carried out using the limma
normalizeWithinArrays and normalizeBetweenArrays
functions, utilizing the loess method [96] for within
array normalization and the quantile method for be-
tween array normalization. A linear model containing
each of the sample types (as defined by the combination
of turmeric or ginger cultivar, time of harvest, and tis-
sue), plus a term to account for differences in intensity
due to the labeling fluorochrome (Cy3 vs. Cy5), was then
applied to the data using the limma lmFit function. The
contrasts of interest were calculated using the contrasts.
fit function and their significance (statistical analysis)
was determined using the eBayes function in limma. The
resulting p-values were adjusted for multiple comparisons
using the write.fit function employing the Benjamini-
Hochbergfalse-discovery rate adjustment [97].

Cloning, expression and enzyme assay of 1,8-cineole
synthase
PCR product amplified with 50-ATGAGGAGGTCGGGAA
ATTACCA-30 and 50-GAGCTGGACAGGCTCGATCA-30

using Pfu polymerase was inserted into the pCRT7CT-
TOPO vector (Invitrogen), which was transformed into
BL21 (DE3) CodonPlus RIL (Stratagene) and expressed for
18 h at 18°C with 0.005 - 0.4 mM of IPTG. After induction,
the pellet of E. coli was vortexed with Washing Buffer
(20 mM Tris–HCl, pH 7.0, 50 mM KCl) and then
centrifuged. Protein Extraction Buffer (50 mM 3-(N-
morpholino)-2-hydroxypropanesulfonic acid, pH 7.0, 10%
[v/v] glycerol, 5 mM MgCl2, 5 mM DTT, 5 mM sodium as-
corbate, 0.5 mM phenylmethylsulfonyl fluoride) was added
to washed E. coli pellet and vortexed, sonicated and
centrifuged. Supernatant was recovered and the buffer was
changed to Enzme Assay Buffer (10 mM 3-(N-
morpholino)-2-hydroxypropanesulfonic acid, pH 7.0, 10%
[v/v] glycerol, 1 mM DTT) using PD-10 column (GE
Healthcare Life Sciences). Divalent cations (20 mM MgCl2,
0.5 mM MnCl2 at final concentration), protease inhibitors
(0.2 mM NaWO4, 0.1 mM NaF at final concentration) and
either geranyl diphosphate (GPP, 10 μg) or farnesyl diphos-
phate (FPP, 10 μg) were added to total 500 μl of Enzyme
Assay Buffer containing soluble proteins and incubated for
3 h at 30°C with 200 μl of top-layered pentane. Either top
pentane and/or vortexed, centrifuged pentane was used
for metabolite analysis on a Rtx-5MS w/ 5 m Integra-
Guard Column (Restek, 0.25 mm ID, 0.25 μm df, 30 m) in
a Thermo Finnigan Trace GC 2000 coupled to a DSQ
mass spectrometer. Product identification was performed
by comparison of retention time and mass spectra to
known standards.
The data sets supporting the results of this article are
available in the NCBI dbEST (Database of Expressed Se-
quence Tags) repository under accession nos. DY344695 –
DY395309, beginning with http://www.ncbi.nlm.nih.gov/
nucest/DY344695.
Additional files

Additional file 1: Table S1. cDNA library sources for sequences and
unigene sets described in this study. Table S2. The most abundantly
represented transcripts in the ArREST database (EST number ≥ 40). Table
S3. The most abundantly represented transcripts in specific ginger and
turmeric rhizome libraries (EST number ≥ 10 per library). Table S4.
Normalized EST expression levels for selected enzymes in ginger and
turmeric metabolic pathways. Table S5. Normalized EST expression levels
for selected gene families. Table S6. Normalized EST expression levels for
cytochrome P450 monooxygenases. Table S7. Normalized percentage of
ArREST ESTs with GO associations. Table S8. Probable transcriptional
regulator classes within ArREST associated with GO:0003677.

Additional file 2: Figure S1. Distribution of EST sequence length. The
average EST sequence length was 817 bp, with unitrans (unique
transcripts, a.k.a. contigs) lengths ranging from 151 to 4021 bp, with the
greatest number of unitrans having between 701 and 800 bp, and with
95% exceeding 300 bp. Figure S2. Gene Ontology (GO) annotations of
ArREST unitrans. 87.6% of the ArREST unitrans could be annotated by GO
classification. Eight GO categories had EST abundances greater than 5%,
including protein modification (10.5%), transport (9.2%), metabolism
(9.0%), transcription (8.6%), cellular process (8.0%), protein biosynthesis
(6.9%), electron transport (5.6%), and biological process unknown (5.3%).
In contrast, the GO category secondary metabolism contained relatively
few ESTs (0.3%). Figure S3. Proposed metabolic map showing how the
curcuminoids, gingerols and terpenoids are produced from sucrose in a
large interconnected network. Names of enzymes identified in the
ArREST database are colored blue; % values indicate fraction of unitrans
in the database that are represented by genes encoding each protein.
Figure S4. Phylogenetic tree of P450 monooxygenases. A neighbor
joining tree was generated with 1136 P450s including 170 ginger and
turmeric P450s from the ArREST database (indicated by black diamonds),
247 Arabidopsis P450s, 350 rice P450s and 369 P450s from other plants.
P450 subfamily classifications are indicated. Additional file 1: Table S6
contains a summary of these data for ginger and turmeric. As the tree is
so large, it was impossible to display it at readable scale on a page size
that is typical. Thus, details of tree can been seen by zooming in on this
page of the PDF file. Figure S5. Overall gene expression in rhizomes is
similar to but distinct from that observed for other plant tissues. Total
ArREST ESTs, ESTs with shared expression in ginger or turmeric rhizomes
and at least one other ginger or turmeric tissue, and ESTs found
exclusively in ginger or turmeric rhizomes are represented as light grey,
dark grey and black bars, respectively. Values used to generate this graph
are presented in Additional file 1: Table S7.

Additional file 3: GenBank Accessions for Rhizome-specific
Transcripts from Sorghum.

Additional file 4: Microarray experimental methods,
oligonucleotide probe design, microarray design (interwoven
design).
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