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The sequence flanking the N-terminus of the CLV3
peptide is critical for its cleavage and activity in
stem cell regulation in Arabidopsis
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Abstract

cleavages and optimal function in stem cell regulation.

Background: Although it is known that CLAVATA3 (CLV3) acts as 12- and/or 13-amino acid (AA) secreted peptides
to regulate the number of stem cells in shoot apical meristems (SAMs), how functional CLV3 peptides are generated
and if any particular sequences are required for the processing remain largely unknown.

Results: We developed a mass spectrometry (MS)-based in vitro assay to monitor the cleavage of heterologously
produced CLV3 fusion protein. Through co-cultivation of the fusion protein with Arabidopsis seedlings, we identified
two cleavage sites: the previously reported one before Arg70 and a new one before Met39. Using synthetic
peptides together with MALDI-Tof-MS analyses, we demonstrated that the non-conserved 5-AA motifs flanking
N-termini of the CLV3 and its orthologous CLE1 peptides were critical for their cleavages and optimal activities in vitro.
We also found that substitutions of Leu69 by Ala in fusion protein and in synthetic peptide of CLV3 compromised their
cleavages, leading to significantly reduced activities in regulating the sizes of shoot and root meristems.

Conclusions: These results suggest that 5-AA residues flanking the N-terminus of CLV3 peptide are required for proper
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Background

It has been known for a long time that small peptides act
as endocrinal hormones and neurotransmitters to facilitate
intercellular communications in animals [1-4]. In plants
since the first peptide hormone, systemin, is discovered
twenty years ago [5], many small peptides have been
identified, regulating developmental and defense processes
including pollen tube guidance [6,7], microspore-tapetum
interaction [8,9], stomata patterning [10-13], cell prolifera-
tion [14,15], stem cell homeostasis [16-18] and wounding
responses [5,19,20].

CLV3 is one of the well-studied peptide hormones in
plants. The CLV3 gene encodes a 96-AA secretory protein
that functions in a feedback regulation loop to restrict the
number of stem cells in SAMs by repressing the expression
of the WUSCHEL (WUS) transcription factor [16,21]. Com-
bined genetic and biochemical analyses show that CLV3
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acts through interacting with leucine-rich repeat (LRR) re-
ceptor kinases of CLAVATA1 (CLV1) and Receptor Protein
Kinase 2 (RPK2), a CLAVATA2 (CLV2) receptor-like
protein, and a membrane-bound Suppressor Of LLP1 2
(SOL2)/CORYNE (CRN) protein [22-25]. CLV3 shares
a conserved 14-AA CLE motif with a large number of
CLE proteins [26,27]. Domain deletion analyses reveal that
most of the non-conserved sequence located between
the secretion signal peptide and the CLE motif, and the
sequence after the CLE motif are not required for the
CLV3 function in vivo [28]. In vitro experiments show that
synthetic 12-, 13- and 14-AA peptides, namely CLV3p12,
CLV3p13 and CLV3pl4, corresponding to the CLE motif
are functional in promoting stem cell differentiation in
both shoot and root meristems (RMs) [17,28-31]. Direct
interaction between CLV3p12 and CLV1 has been demon-
strated in tobacco BY-2 cells [32]. MALDI-Tof MS analyses
of transgenic calli over-expressing CLV3 identified a 12-AA
hydroxylated peptide [29], while more recently nano-LC-
MS analyses of Arabidopsis seedlings over-expressing CLV3
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identified a 13-AA arabinose-glycosylated peptide [30].
These two candidate endogenous CLV3 peptides share
the same N-terminal Arg70 (the number refers to the
residue in the full-length CLV3 protein) and hydroxyl-
ation modifications on Pro73 and Pro76. Although
Ala-substitution experiments showed that the glycosylation
on Pro76 is not required for CLV3 functions in SAMs [33],
analyses of chemically synthesized CLV3 glycopeptides in-
dicate that the glycosylation may contribute to the stability
of the peptide [34]. Using a heterologously produced GST-
tagged CLV3 fusion protein in combination with extracts
of cauliflower and tobacco BY-2 cells, two cleavage sites,
one before Met42 and one before Arg70, are detected by
gel blot and MS analyses [35,36]. For nematode GrCLE],
cleavages before Argl30, Argl51, Argl72 and Argl93 have
been observed using cauliflower and potato root extracts
[37]. In Medicago truncatula, it has been shown that
MtCLE36 is processed by enzymes in extracellular fluids,
producing a 15-AA peptide, SKRRVPNGPDPIHNR ([38].
Although these studies provide basic knowledge on the
cleavage of CLE peptides, sequences involved in the
cleavage recognition and how such cleavages contribute to
the activity of these peptides remain elusive.

In animals, enzymes involved in peptide cleavages are
serine endopeptidase sub-family subtilases (SBTs), also
known as subtilisin-like proprotein convertases [39].
The cleavage generally occurs between or after dibasic
Lys/Arg-Arg residues, or after the monobasic residue Arg,
releasing peptides with N- and/or C-terminal basic residues
[40]. These basic residues are then removed by exopepti-
dases such as carboxypeptidase E (CPE) [41]. In plants
most SBTs are predicted to function in extracellular spaces,
based on the presence of an N-terminal secretion signal
sequence [42]. In Arabidopsis, AtSBT1.1 and AtSBT6.1
have been shown to cleave PSK4 and RALF23, respectively
[43,44], suggesting a conserved peptide processing mech-
anism between animals and plants.

A conventional way to study peptide cleavage is through
gel-based assays in combination with heterologously
produced peptidases [45,46]. Due to the low sensitivity of
the method, it is often difficult to detect small peptide
fragments. The peptidomic technology developed in recent
years has the potential to solve this problem [47-50]. As an
example, peptidomic comparison between a mouse mutant
defective in carboxypeptidase E (CPE) and the wild-type
revealed a role of the carboxypeptidase in neuropeptide
processing [51]. In Medicago truncatula, peptidomic tech-
nology has been applied to identify small peptides, although
most peptides detected seem to be degradation products
from abundant proteins such as ribosomal proteins and
histones [52].

By taking advantage of the well-studied CLV3, we
established a MS-based peptidomic method to examine
peptide fragments cleaved by enzymes secreted from intact
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Arabidopsis seedlings. Using the method we identified two
internal cleavage sites in the CLV3 proprotein, one before
Met39 and another one before Arg70. Further, we dem-
onstrated that the Leu69 and 5-AA residues flanking the
N-terminus of the CLV3 peptide are important for the
cleavage before Arg70 and for the optimal activity in vitro.

Results

Heterologously produced CLV3 fusion protein is active

in vitro

For the production of the CLV3 proprotein (without the
secretion signal peptide), a construct was made in which
tandem aligned Trx and His tags were fused to the N-
terminus of CLV3 (named TH-ProCLV3). The construct
was transformed to E. coli strain BL21(DE3) to produce
the TH-ProCLV3 fusion protein with a total molecular
mass of 23.8 kD. The TH-ProCLV3 was then purified by
affinity chromatography using a Ni-NTA agarose column
(Figure 1A), and quantified by Bradford assay [53] after
dialyzed using a 7-kD cut-off dialysis bag.

In vitro activity assays of the TH-ProCLV3 fusion protein
in SAMs were performed using c/v3-2 and clvI-1 (both
in Ler background) mutants of Arabidopsis, as described
previously [28]. We observed that the incubation of c/v3-2
seedlings with 1 pM TH-ProCLV3 for 8 days led to signifi-
cant reduced sizes of SAMs (Figure 1B, H, and I), while no
evident reduction was observed in SAMs of clvI-1 seedlings
(Figure 1B, D, and E), suggesting that the TH-ProCLV3
fusion protein produced in E. coli is active in restricting
SAMs in a CLV1-dependent manner.

Similarly, in vitro root assays [17] were performed in Ler
and clv2-1 (in Ler background) seedlings. We observed that
root growths in Ler seedlings treated with TH-ProCLV3
were inhibited greatly (Figure 1C, E, and G), as previously
reported in the CLV3 peptide treatment [31], while Ler
seedlings grown on media without the fusion protein
showed normal root growth (Figure 1C, F, and G). In
contrast, no evident growth inhibition was observed in
clv2-1 seedlings grown on media with TH-ProCLV3
(Figure 1C, F, and G). Microscopic examinations revealed
that the TH-ProCLV3 treatment resulted in termination
of RMs in Ler, but not in c¢lv2-1 (Figure 1J-M). These
results together suggest that the TH-ProCLV3 fusion
protein produced in E. coli is active in regulating the
sizes of SAMs and RMs.

Detection of cleavages in CLV3 fusion protein

To analyze the cleavage of CLV3, we developed a
MALDI-Tof MS-based method to profile peptide frag-
ments produced in vitro. Pre-germinated Ler seedlings
were inoculated with the TH-ProCLV3 fusion protein in a
liquid medium, then the media were harvested at different
time points and subjected directly to MALDI-Tof MS
analyses. The fusion protein inoculated in the same medium
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Figure 1 Purification and in vitro assays of the TH-ProCLV3 fusion protein. (A) Affinity purification of TH-ProCLV3. M, molecular weight
marker; T, total cell lysate; S, supernatant; P, pellet; B, efflux with binding buffer; W, efflux with washing buffer; E, efflux with elution buffer;
arrowhead, TH-ProCLV3. (B) Sizes of SAMs of 8-d-old clvI-T and clv3-2 seedlings (n = 8) after the treatment with or without 1 uM TH-ProCLV3. Error
bar =+ SD. The asterisk indicates significant differences (P < 0.01 by Student’s t-test) between SAM sizes of clv3-2 seedlings with and without
TH-ProCLV3 treatments. (C) Root lengths of 8-d-old Ler and c/v2-1 seedlings treated with or without 1 uM TH-ProCLV3 (n = 8). Error bar =+ SD.
The asterisk indicates significant differences (P < 0.01 by Student's t-test) between root lengths of Ler seedlings with and without TH-ProCLV3
treatment. (D, E) SAMs of clvi-T seedlings treated with (E) or without (D) 1 uM TH-ProCLV3. (H, 1) SAMs of clv3-2 seedlings treated with (1) or
without (H) 1 uM TH-ProCLV3. Note the reduced sizes of the SAMs in clv3-2 seedlings after the treatment with TH-ProCLV3. Arrowheads point to
the margins of the SAMs. (F, G) Eight-d-old c/v2-1 and Ler seedlings treated with (G) or without (F) 1 uM TH-ProCLV3. (J-M) Root tips of civ2-1

(J, L) and Ler (K, M) seedlings after incubation with (J, K) or without (L, M) T uM TH-ProCLV3. Bar in D =50 um for D, E, H and I; Bar in F=1 cm
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without seedlings was used as a control. We observed that
the optimal time for analyzing peptide cleavage was 24
hr after the incubation with Ler seedlings, when abundant
small peptides with different molecular masses were
detected (Additional file 1).

To obtain exact sequences of these fragments, Q-Tof
MS/MS analyses were performed in these samples.
SEQUEST searches for peptide sequences matching the
CLV3 proprotein allowed us to identify over 20 peptides
(Figure 2). Among them, both the CLV3pl2 and the
CLV3p13 peptides, the backbones of two candidate forms
of mature CLV3 peptides [29,30], were included (Figure 2).
After alignment of these fragments with the CLV3 propro-
tein, two most frequently occurring termini, N-terminal
Met39 and Arg70, were detected (Figure 2), suggesting
internal cleavage sites located before Met39 and before
Arg70. The cleavage before Arg70 has been previously

reported [36], however, the one before Met39 is novel.
Since Met39 is located in the non-functional region [28],
the cleavage might be not functional relevant.

It should be noted that, although peptides with C-
terminal His81 and His82 were detected, no peptides
with matching N-terminal His82 and Val83 were found.
Instead, we detected peptides with variable C-termini.
It is plausible that no specific internal cleavage site(s)
are present in this region, while carboxypeptidases are
involved in processing the C-terminus of the CLV3. Re-
cently, Tamaki et al. showed that an endosome-localized
SOL1 carboxypeptidase is responsible for removing the
C-terminal Arg residue from the CLE19 proprotein
[54]. Since intact Ler seedlings were used in our assay,
the C-terminal processing activities detected may come
from non-specific extracellular carboxypeptidases instead
of SOLI.
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Figure 2 Peptide fragments produced from ProCLV3 after incubations. Matching fragments detected are shown below the ProCLV3 sequence,
as identified with Q-Tof MS/MS analyses. The core CLE motif (corresponding to the CLV3 peptide) of CLV3 is shown in blue. The CLV3p12 and CLV3p13
peptides are framed. Two internal cleavage sites, before Met39 and before Arg70, are indicated by arrowheads.

N-terminal flanking sequence affected the cleavage of CLV3
To examine if residues flanking the N-terminus of the
CLV3 peptide are required for internal cleavage, we
chemically synthesized the CLV3p12 and peptides with
additional 1, 3, 4 or 5 residues, namely L-CLV3p13, EEL-
CLV3p15, HEEL-CLV3p16 and LHEEL-CLV3pl7. These
peptides were inoculated in liquid media with Arabidopsis
(Ler) seedlings, and medium samples were harvested at
different time points and subjected directly to MALDI-
Tof MS analyses. We observed that the optimal time for
analyzing the cleavage of these peptides was 3 d after the
inoculation, when abundant cleaved fragments were
detected (Additional file 2). For CLV3p12 and L-CLV3p13
we observed a gradual removal of residues from both
N- and C-termini (Figure 3A and B). For EEL-CLV3p15,
removal of the C-terminal His residue was observed, but
not N-terminal residues (Figure 3C). No internal cleavages
for CLV3pl12, L-CLV3pl3 and EEL-CLV3pl5 were de-
tected. In contrast, in addition to gradual removal of ter-
minal residues for HEEL-CLV3p16 and LHEEL-CLV3p17,
internal cleavages were also observed (Figure 3D and E).
In particular, for HEEL-CLV3p16, a cleavage before Thr71
was observed, producing an 11-AA peptide that is
expected to be non-functional [28], while for LHEEL-
CLV3pl7, cleavages before Arg70 and Thr71 were detected,
producing the functional CLV3p12 and a non-functional
11-AA peptide, respectively (Figure 3E). As such, it is pos-
sible that the internal cleavage before Arg70 requires at
least 5 flanking residues, while exopeptidases are involved
in removing residues from both termini.

CLV3 peptide with five additional N-terminal flanking
residues showed similar activity as CLV3p12

To evaluate activities of above-mentioned synthetic
peptides with various N-terminal extensions, we performed
in vitro root assays using Ler seedlings. The lengths of
primary roots were measured after 8-d inoculations
with either CLV3p12, L-CLV3p13, EEL-CLV3pl5, HEEL-

CLV3pl6 or LHEEL-CLV3p17 at concentrations of 10 nM,
30 nM, 100 nM, or 1 uM (Figure 4). The results showed
that CLV2p12 was active at the concentration of 10 nM,
EEL-CLV3p15 was active at 100 nM, while L-CLV3p13 and
HEEL-CLV3p16 were not active even at 1 puM, suggesting
that these additional N-terminal Leu, Glu-Glu-Leu or
His-Glu-Glu-Leu residues caused severe damages to
their activities, Strikingly, LHEEL-CLV3p17 was equally
active as CLV3pl12, i.e. functional at 10 nM. Together with
the effective cleavage observed above, we believe that the
additional 5 residues in LHEEL-CLV3p17 lead to effective
release of CLV3p12, and hence the equivalent activity as
CLV3p12.

Leu69 is critical for the cleavage and activity in

synthetic peptide

Previous studies suggest that PSK and RALF are produced
through the cleavage after a Leu residue by endopeptidases
in Arabidopsis [43,44]. To examine if the Leu69 adjacent
to the N-terminus of the CLV3 peptide is involved in cleav-
age, we synthesized an Ala-substituted peptide, LHEEA-
CLV3pl7, and used MALDI-Tof MS to examine its
cleavage after inoculation with seedlings in vitro. Interest-
ingly, although removal of a C-terminal residue was ob-
served, no internal cleavage was detected (Figure 3F),
suggesting that the Leu69Ala substitution had compro-
mised the internal cleavage in the peptide. We also exam-
ined the activity of the LHEEA-CLV3pl7 peptide in root
assays, and observed that the substitution led to a signifi-
cantly reduced activity in terminating RMs (Figure 4).
These results together indicate that the N-terminal flanking
Leu69 is critical for the internal cleavage, and subsequently
for the activity of the peptide.

Leu69 is important for the optimal activity of CLV3

fusion proteins

To evaluate if the Leu69 is also important for the TH-
ProCLV3 fusion protein, we performed an Ala substitution
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Figure 3 MALDI-Tof MS analyses of CLV3 peptides with N-terminal extensions. Spectra of CLV3p12 (A), L-CLV3p13 (B), EEL-CLV3p15

(C), HEEL-CLV3p16 (D), LHEEL-CLV3p17 (E), and LHEEA-CLV3p17 (F) after 3-d incubations with Ler seedlings. Sequences of the original peptides
are shown on the upper right of each figure, and the observed cleavage sites are marked by black arrowheads; sequences of fragments are
labeled next to corresponding peaks. Original peptides, blue arrowheads; CLV3p12, red arrowheads. The Ala substitution in F is in red.
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to produce a TH-ProCLV3| ¢ 6941 fusion protein in E. coli.
The activity of TH-ProCLV3y cy69a1a in restricting the size
of SAMs was examined in vitro. The results showed that
SAMs in TH-ProCLV3| oeoa1a-treated clv3-2 seedlings were
significantly larger than those treated with TH-ProCLV3
(Figure 5B, C, and E). Of course compared to non-treated
clv3-2 seedlings (Figure 5A) they are still smaller. It is evi-
dent that the Leu69Ala substitution in TH-ProCLV 3 cu60Ala
has partially compromised its activity in SAMs.

The commonly known subtilase recognition site is
Lys/Arg-Arg [40]. Although in most CLE members of
Arabidopsis the residue located before the conserved
Arg of the 12-AA CLE motif is Lys (Additional file 3), for
CLV3 the residue is Leu. We examined if a Leu69Lys
substitution hampered the activity of the fusion protein.
TH-ProCLV3 cyeo1ys Was produced in E. coli and applied
to clv3-2 seedlings in vitro. As expected, no significant
difference was observed between the sizes of SAMs
treated with TH-ProCLV3| cue91ys and those treated with

TH-ProCLV3 (Figure 5B, D, and E), suggesting that the
Leu69Lys substitution did not affect the activity. Addition-
ally, we performed in vitro SAM assays in clvI-1, and
observed no significant differences among samples treated
with TH-ProCLV3, TH-ProCLV3y eyesales TH-ProCLV3 cugorys,
and non-treated ones (Figure 5E), implying that the func-
tions of TH-ProCLV3| cyeoaa and TH-ProCLV3| cueo1ys
fusion proteins in SAMs are CLV1-dependent, as the
CLV3 peptide [34].

To address if these fusion proteins are able to repress
the WUS expression in SAMs, qRT-PCR analyses were
performed with cDNAs from shoot apices after treatments
with various fusion proteins. As shown in Figure 5F, the
expression level of WUS in shoot apices of TH-ProCLV3-
treated clv3-2 seedlings was reduced to about 10% of those
non-treated ones. A similar result was obtained in c/v3-2
seedlings treated with TH-ProCLV3;cueo1ys (Figure 5F),
confirming that the Leu69Lys substitution did not impair
the activity of the fusion protein. In contrast, the expression
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Figure 4 In vitro root assays of CLV3 peptides with N-terminal
extensions. Average root lengths of 8-d-old Ler seedlings (n=8)
after incubations on media containing CLV3 peptides with different
N-terminal extensions. Error bar =+ SD. Aligned sequences of all
peptides are shown. The Ala substitution in the LHEEA-CLV3p17 is
highlighted in red. Average root lengths with significant differences
from the non-treated one (P < 0.01 by Student's t-test) are marked
with asterisks.

level of WUS in the TH-ProCLV 3y . ug0a1a-treated clv3-2
seedlings was only about 50% of the untreated ones
(Figure 5F). The fact that replacement of Leu69 by Ala,
but not by Lys, damaged the activity of CLV3 suggests
that, although the Leu69 is not part of the mature
CLV3 peptide, it is important for the optimal activity
in repressing the WUS expression in SAMs.

Leu69 is critical for the cleavage of CLV3 fusion proteins
To examine if the Leu69Ala and Leu69Lys substitutions
in fusion proteins, namely TH-ProCLV3| o601 and TH-
ProCLV3 cueo1yss Tespectively, led to compromised cleav-
ages, Q-Tof MS/MS analyses were performed on medium
samples collected after co-cultivations of these fusion
proteins with wildtype seedlings. The TH-ProCLV3| cy601s
showed a similar peptide profile as seen in the TH-
ProCLV3 (Figure 2 and Figure 6A), producing expected
CLV3p12 and CLV3pl3, and peptides with a C-terminal
Lys69. However, for TH-ProCLV3 cue0a10 although both
the CLV3pl12 and CLV3pl3 were detected, no peptide
fragment with C-terminal Ala69 was detected (Figure 6B),
suggesting that the Leu69Ala substitution may have
compromised the cleavage efficiency of the fusion protein
or decreased the stability of peptides produced. These re-
sults together indicate that both the Leu-Arg and Lys-Arg
junctions can be recognized and cleaved by enzymes
released by Arabidopsis seedlings.
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5-AA N-terminal flanking sequence is required for proper
cleavage of CLE1

To address if the requirement of 5-AA residues in the
proper cleavage of CLV3 is generic to other CLE peptides,
we synthesized CLE1 peptides with either 0, 1, or 5 N-
terminal flanking residues: CLE1p12, M-CLE1p13 and
ENESM-CLE1p17, respectively. CLE1 was selected as it
complements the ¢/v3-1 mutant phenotype when expressed
under the control of CLV3 regulatory elements in trans-
genic plants [35]. Within the 5-AA N-terminal flanking
sequence, only the Glu (E) residue is conserved between
CLV3 and CLE1 (Additional file 3). After 3-d incubation
with Ler seedlings, gradual trimmings of terminal residues
were observed in both CLE1p12 and M-CLE1p13, while an
internal cleavage was detected between Met (M) and Arg
(R) in FNESM-CLE1pl17, releasing CLE1p12 (Additional
file 4). This suggested that the 5-AA motif is required
for proper cleavage of CLE1. As expected, when in vitro
activity assays were performed in c/v3-2 seedlings, FNESM-
CLE1pl7 exhibited a similar activity as the CLE1p12 in
restricting the sizes of SAMs, while M-CLE1p13 was
about 100-fold less active (Additional file 5).

Discussion

Although it has been shown in Arabidopsis that CLV3 acts
as a peptide ligand to regulate the number of stem cells in
SAMs [21,29,30], how the peptide is generated from the
proprotein and if a particular sequence motif is required
for the cleavage remain largely unknown. In this study
using MS-based analyses, we identified two internal cleav-
age sites in CLV3 fusion protein produced in E. coli, one
before Met39 and another one before Arg70. Synthetic
peptides with 1, 3 or 4 extra AAs flanking the N-terminus
of the CLV3p12 showed greatly reduced activities in
terminating RMs in vitro, while a peptide with 5 extra
AAs restored the activity completely. Peptidomic studies
showed that CLV3 and its orthologous CLE1 peptides
with 5-AA N-terminal extension exhibited normal cleav-
age, while shorter extensions hampered the cleavage.

Two internal cleavage sites identified in CLV3

Peptide hormones are important signal molecules in
endocrinal and neural signal transductions in animals
[1-4]. They are usually generated from larger protein
precursors through post-translational processing by SBT
family endopeptidases [39,40]. Among 56 SBT endopepti-
dases identified in the Arabidopsis genome, 46 of them
carry a secretory signal peptide [42]; Two of them,
AtSBT1.1 and AtSBT6.1, are involved in PSK4 and
RALF23 processing, respectively [43,44]. CLV3 encodes a
96-AA preprotein and acts as a 12- and/or 13-AA peptide
with hydroxylation and glycosylation modifications [29,30].
We speculated that, if CLV3 is processed by secreted
enzyme(s), it should be possible to detect such enzymatic
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Figure 5 In vitro SAM assays using TH-ProCLV3, ¢ysoaia Or TH-ProCLV3, cgoLys. (A-D) SAMs of clv3-2 after treatment with 1 uM TH-ProCLV3
(B), TH-ProCLV3, ¢ ys0a1a (€) or TH-ProCLV3 ¢ 01y (D), as compared to control samples without fusion proteins (A). The arrowheads indicate margins of
the SAMs. The bar in A =50 um for A to D. (E) Areas of SAMs of 8-d-old c/v3-2 and clvi-7 seedlings treated with or without fusion proteins (n = 8).
Error bar =+ SD. (F) gRT-PCR analyses of WUS expression in 8-d-old c/v3-2 and clvi-1 shoot apices treated with or without fusion protein. The average
expression level of WUS in clvi-1 without the fusion protein was normalized to 1, and values for other samples represent as relative ratios. Error

bar =+ SD of 3 independent biological repeats. The asterisks in E and F indicate significant differences (P < 0.01 by Student’s t-test) between

activities in vitro. We produced the TH-CLV3 fusion
protein in E. coli and showed it is functional in restoring
the clv3 defect in SAMs in vitro through a CLV1-dependent
pathway. An in vitro cleavage assay was subsequently

developed to demonstrate that the TH-ProCLV3 fusion
protein was efficiently cleaved 24 hr after inoculation
with Arabidopsis seedlings, releasing both CLV3p12 and
CLV3p13 peptides. After alignments of all fragments
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Substituted AAs are in italics.

Figure 6 Peptide fragments released from TH-CLV3, o, 60a1a and TH-CLV3,cu601ys after incubations. Fragments released from TH-CLV3, e 6015
(A) and THCLV3\ e g0ai2 (B) are aligned below corresponding fusion protein sequences, as identified with Q-Tof MS/MS analyses of medium samples.

released from the CLV3 fusion protein, we confirmed a
previously reported cleavage site located before Arg70
[36] and found a novel cleavage one before Met39. As
Met39 is located in a region that is not required for the
CLV3 function [28], the cleavage might not be functionally
relevant.

The N-terminal junction region is critical for CLV3 cleavage
Previous studies have shown that the Leu69 residue is
moderately and Arg70 is highly important for the CLV3
function in vivo [33], although Leu69 is not part of the
CLV3 mature peptide [29,30]. The involvement of Arg70
in CLV3 processing in vitro has been reported [36]. To
evaluate the importance of the Leu69 in cleavage, we intro-
duced either Leu69Ala or Leu69Lys substitutions to the
TH-ProCLV3 fusion protein and examined their efficiencies
in cleavage and subsequently activities in restricting the size
of SAMs. We observed that TH-ProCLV3jceorys Was
cleaved in a similar manner as TH-ProCLV3, while specific
cleavages were compromised in TH-ProCLV3| ¢ue0a10r SUE-
gesting that enzymes released by Arabidopsis seedlings can
cleave both the Lys-Arg and Leu-Arg junctions. To be
noted, the cleavage in the Leu-Arg junction has not been
reported so far in peptide processing in animals. Among
CLE family members, although the N-terminal Arg residue
in the CLE motif is highly conserved, the residue immedi-
ately before the Arg is less conserved (Additional file 3). In
Medicago a cleavage at a upstream site before the con-
served Lys-Arg junction has been reported [38]. For PSK4
and RALF23, instead of the dibasic Arg-Arg site located up-
stream, cleavages were detected at the Leu-His and Leu-Ala
junctions, respectively [43,44]. It is possible that endopepti-
dases in plants have more diverse cleavage sites than those
in animals.

The N-terminal flanking sequence of CLV3 is critical for
efficient cleavage
Furin is the first SBT discovered in mammals [55]. A 4-AA
sequence, Arg-Asn-Lys-Arg, flanking the N-terminus of
ectodysplasin-A is essential for its processing by furin [56].
In Arabidopsis, six PSK members with different sequences
before the cleavage site show different efficiencies of
cleavage by AtSBT1.1 [43]. For CLV3 it has been shown
previously that addition of a C-terminal His82 to the
CLV3 peptide did not have significant effect on its activity
in terminating RMs in vitro, while addition of an N-
terminal Leu69 compromised the activity greatly [31].
In this study we examined effects of adding different
numbers of AA residues to the N-terminus of the CLV3
peptide, and observed that peptides with either 1, 3, or 4
additional residues showed reduced activities in terminating
RMs. However, the LHEEL-CLV3p17 with a 5-AA exten-
sion showed the same activity as the CLV3pl2. Further
peptidomic analyses revealed that peptides with 1-, 3- or
4-AA extensions were not processed properly, while the
one with 5-AA additional residues was. The positive
correlation between peptide activity and effective cleavage
in LHEEL-CLV3p17 suggests that the 5-AA motif flanking
the N-terminus is required for the recognition and proper
cleavage to release the functional CLV3 peptide. Consistent
with this hypothesis, we showed that the Leu69Ala
substitutions in the LHEEA-CLV3p17 peptide and TH-
ProCLV 3| cugoala fusion protein led to reduced activities in
terminating RMs and compromised internal cleavage.
With evidence obtained so far, we believe that the length
of the N-terminal flanking sequence is more important
than the AA identities, with the following reasons: 1) our
previous alanine substitution experiments in the flanking
residues of CLV3 showed that individual AA in this region
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contribute very little to CLV3 function in vivo [33]; 2)
alignment of all CLE proteins encoded in the Arabidopsis
genome showed very little conservation in the 5-AA flank-
ing region (Additional file 3); 3) CLE1 shares only one AA
(Glu) with CLV3 within the 5-AA motif and is able to
complement c/v3-1 when expressed under the CLV3
regulatory elements [35]; 4) synthetic CLE1 peptide with
the 5-AA N-terminal extension was cleaved properly
when inoculated with Arabidopsis seedlings. Most likely
the 5-AA flanking motif serves as an endopeptidase rec-
ognition and/or binding domain for CLV3 and CLE1
cleavages.

Conclusions

We developed an in vitro seedling assay to analyze peptide
cleavages and activities in shoot and root meristems in
parallel. Using the assay we showed that the maximal
activity of the CLV3 requires a proper cleavage between
Leu69 and Arg70, and the cleavage requires a recognition
domain with at least 5-AA flanking its N-terminus. These
findings may help to elucidate the cleavage and function
of other peptide hormones, and to identify enzymes
involved in peptide processing.

Methods

Molecular cloning

The coding region of CLV3 [GenBank: NM_001124926.1]
without the signal peptide was amplified by PCR from
c¢DNA prepared from inflorescences of Arabidopsis thaliana
(Columbia-0) using primers 5-GGGGTACCCCCATGCT
CA CGTTCAAG-3" and 5-GGAATTCCTCAAGGG AG
CTGAAAGTTGTTTCT-3. The PCR product was then
cloned into pEASY-T1 vector (TransGen, Beijing, China),
digested with EcoRI and Kpnl, and subcloned in-frame
into pET-48b(+) (Novagen, Germany) to fuse with the
Trx-His tandem tags to generate TH-ProCLV3.

To perform AA substitutions, a Fast Mutagenesis
System kit (TransGen, Beijing, China) was used to introduce
point mutations to TH-ProCLV3 using primers 5-TTAGG
ACTACATGAAGAGGCAAGGACTGTT-3' and 5-GCC
TCTTCATG TAGTCCTAAACCCTTCGTC-3; and 5-TT
AGGACTACATGAAGAGAAAA GGACTGTT-3 and
5-TTCTCTTCATGTAGTCCTAAACCCTTCGTC-3’ to
generate TH-ProCLV3,,6041 and TH-ProCLV3 6015
respectively, by following the manufacturer’s protocol.

Fusion protein production and peptide synthesis

Constructs of TH-ProCLV3, TH-ProCLV3;,,694 and TH-
ProCLV3, 601y Were transformed to E. coli strain BL21
(DE3) individually, and expressions of fusion proteins
were induced by 0.1 mM isopropyl p-D-1-thiogalactopy-
ranoside for 16 hr at 16°C. Bacteria were collected by
centrifugation and lysed via ultrasonication before the fu-
sion proteins were affinity purified using Ni-NTA agarose
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(QIAGEN, Germany) according to the manufacturer’s
manual. The eluted proteins were dialyzed using a 7-kD
retaining dialysis bag and quantified using a Bradford
Protein Quantification Kit (Biomed, Beijing, China).

All peptides used in this study were synthesized with over
80% purity (AuGCT, Beijing, China), dissolved in 50 mM
sodium phosphate buffer (pH 6.0), and sterilized using a
0.22 pm filter (Millipore, Germany).

In vitro activity assays

Seeds of clvI-1, clv2-1 and clv3-2 (all in Ler background),
Col-0 and Ler were gas-sterilized as reported previously
[33], and imbibed in sterilized distilled water at 4°C in
dark for 2 days before plating. In vitro root and SAM
assays were performed as described [17,28].

RT-PCR analyses

Total RNA was extracted using a Plant Total RNA Isolation
Kit (TIANGEN, Beijing, China) from approximately 30
shoot apices excised from 8-d-old seedlings cultured in
fusion protein-containing liquid media, and then reverse
transcribed to cDNA with the First Strand cDNA Synthe-
sis Kit ReverTra Ace-a (TOYOBO, Japan). qRT-PCR was
performed in a Rotor-Gene 3000 thermocycler (Corbett,
Australia) with the SYBR Premix ExTaq II kit (TaKaRa,
Dalian, China), and the relative expression levels of the
WUS [GenBank: NM_127349.3] were normalized against
the internal control EIF4A1 [GenBank: NM_001084679.1]
and calculated using the Rotor-Gene 6 software v 6.0
(Corbett, Australia) according to the 2728€T method [57].
Primer pairs of 5-GCTCCTCTTAACCCAAAGGC-3’ and
5'-CACACCATCACCAGAATCCAGC -3, and 5-TTCTC
TGCGACAATGCCTC-3' and 5-GCTTCCAGTCTTCT
TTC TCCAC-3’ were used to amplify WUS and EIF4A1,
respectively.

In vitro cleavage assay

Gas-sterilized and cold-treated seeds were pre-germinated
for 36 hr on half-strength Murashige and Skoog basal salts
medium (Sigma-Aldrich, USA), pH 5.8, plus 1% sucrose,
0.5 g/L MES (Merck, Germany) and 1.5% agar. Five seed-
lings were then transferred to Eppendorf tubes containing
200 pL medium with 10 uM fusion proteins or peptides.
These tubes were then placed on a roller bank and
cultured at 22°C under a 16 hr light/8 hr dark cycle. Ten
uL of media was collected at different time points.

Mass spectrometry analyses

For Q-Tof MS/MS analyses, medium samples were an-
alyzed with a Triple TOF™ 5600 Q-Tof Micro MS/MS
(AB SCIEX, USA) equipped with a CapLC high perform-
ance liquid chromatography (Waters, USA) using a fused
silica microcapillary column (10 c¢m) with an internal
diameter of 75 pum. Columns were packed with C18
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reversed phase resin (GEAgel C18 SP-300-ODS-AP; par-
ticle size, 5 um; pore size, 300 A; Jinouya, Beijing, China).
Separation was achieved using a gradient made from
solution A (4% acetonitrile (ACN):96% water, containing
0.1% formic acid) to 50% solution B (80% ACN:20% water,
containing 0.1% formic acid) over 70 min and to 100%
ACN in 10 min, at a flow rate of 300 nL/min. The flow
rate from pumps A and B was 2.5 pL/min, and reduced to
approximately 300 nL/min. The MS was operated in a
positive ion mode with a source temperature of 80°C and
a cone gas flow of 10 L/hr. A voltage of 3 kV was applied
to the nanoflow probe tip. MS and MS/MS spectra were
acquired in an automated, data-dependent mode, and all
data were processed using MassLynx version 4.0 software
to generate “DTA” files. The instrument was calibrated
with a multi-point calibration using selected fragment ions
that resulted from the CID of Glu-fibrinopeptide B (+2 ion,
m/z 785.8, Sigma-Aldrich, USA). Sequences of peptides
were obtained from Turbo SEQUEST searching with
Bioworks version 3.2 software (Thermo, USA) using indi-
vidual peptide databases made for TH-ProCLV3, TH-
ProCLV3| cue9ata and TH-ProCLV cyeo1ys followed by the
post-filter Xcorr value > 1.5 and DeltaCn value > 0.01.

For MALDI-Tof MS analyses, 2 pL medium samples
were spotted directly on a stainless steel plate, rinsed with
matrix solutions, and air-dried before analyses with an
AXIMA-CFR™plus (SHIMADZU, Japan), operated with a
pulsed nitrogen laser at 337 nm. One hundred to 150
shots per spectrum were performed on each spot. For
protein cleavage assays, sinapinic acid saturated in
ACN/0.1% trifluoric acid (TFA) 3:2 (v/v) was used as the
matrix solution, and positive-ion mass spectra were
acquired in linear, delayed extraction mode. For peptides,
a-cyano-4-hydroxycinnamic acid saturated in ACN/0.1%
TFA 1:1 was used as the matrix, and data were acquired
in the reflectron mode. The analyzer was externally
calibrated with aldolase (Sigma-Aldrich, USA) for protein
cleavage assays and with a mixture of Bradykinin fragment
1-7 (Sigma-Aldrich, USA), P14R (Sigma-Aldrich, USA)
and ACTH fragment 18-39 (Sigma-Aldrich, USA) for
peptides.

Additional files

Additional file 1: Cleavages of the TH-ProCLV3 fusion protein after
co-cultivation with Ler seedlings for 0, 12, 24 and 48 hrs, as showed
by MALDI-Tof MS analyses. Arrows indicate the peak of TH-ProCLV3.
Note the most abundant small peptides (marked by red brackets) were
detected after the 24-hr inoculation.

Additional file 2: Cleavages of the LHEEL-CLV3p17 peptide after
co-cultivation with Ler seedlings for 0, 1, 2 and 3 d, as showed by
MALDI-Tof MS analyses. Peptide sequences, defined based on their
accurate masses, are showed near corresponding peaks. The core CLE
motif of CLV3 is shown in blue.
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Additional file 3: Alignment of core CLE motifs and five N-terminal
flanking residues for all CLE proteins in Arabidopsis. The core CLE
motif (framed) and five N-terminal flanking residues of CLE proteins from
Arabidopsis are aligned. The Lys residue flanking the N-terminus of the
CLE motif is highlighted in red.

Additional file 4: In vitro cleavage assay of CLE1 peptides with
different N-terminal extensions. Mass spectra of CLE1p12 (A), M-CLETp13
(B) and FNESM-CLE1p17 (C) after 3-d incubations with Ler seedlings.
Sequences of the original peptides are shown at the upper right corner
of each figure, where detected cleavage sites are marked by black
arrowheads. Sequences of individual fragments are labeled near
corresponding peaks. Original peptide peaks are marked by blue
arrowheads, while CLE1p12 by red arrowheads.

Additional file 5: In vitro activity assay of CLE1 peptides with
different N-terminal extensions. (A-D) SAMs of c/v3-2 after treatments
with CLETp12 (B), M-CLE1p13 (C) or FNESM-CLE1p17 (D), as compared to
the control without peptide (A). The arrowheads indicate margins of the
SAMs. The bar in A=50 pum for A to D. (E) Average SAM areas of clv3-2
seedlings (n =16 for all treatments) after 8-d incubations in media con-
taining CLE1 peptides with different N-terminal extensions (showed
above). Error bar =+ SD. Average SAM areas with significant difference
from the non-treated one (P < 0.01 by Student’s t-test) are marked with
asterisks.
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