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Abstract

Background: Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit
ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to
be crucial during the ripening process, since both hormones have been shown to be implicated in the control of
ripening in a range of different fruit species.

Results: Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and
YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the
expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing
compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations,
indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to
the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations.
The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene
effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes
and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in
auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes
T-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase.

Conclusions: In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis

are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing
berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and

berry ripening.

ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might
lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape
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Background

The coordinated growth and development of plants re-
lies on a wide range of control systems, including an in-
tricate network of interactions between all classes of
known plant hormones and other signalling compounds
such as sugars [1-5]. Fruit ripening is an example of a de-
velopmentally controlled process that is dependent on a
range of plant hormones, but our knowledge about the mo-
lecular interactions of these different classes of hormones
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in the ripening process is still rudimentary (reviewed by
[6,7]). An interesting target for the investigation of hormo-
nal interplay in fruit is the interaction between the gaseous
hormone ethylene and the auxin class of hormones, of
which indole-3-acetic acid (IAA) is the most abundant
member. Ethylene plays a crucial role in the ripening of cli-
macteric fruit which display a sharp increase in ethylene
production and respiratory activity at the onset of ripening
(reviewed by [8]), but its relevance for the ripening of non-
climacteric fruit, which lack the dramatic, ripening-related
change in ethylene formation and respiration, is still un-
clear (reviewed by [6]). A moderate increase in ethylene
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concentration and respiration rate has been demonstrated
for the non-climacteric strawberry (Fragaria ananassa
Duch.) [9], but both events occurred after the transition
into the ripening phase. The only reports of small
peaks in ethylene concentration just before the initi-
ation of ripening in non-climacteric fruit come from
Litchi chinensis Sonn. [10] and grape (Vitis vinifera L.)
[11-13]. In grape, a role for ethylene is further evi-
denced by the developmental expression profiles of
genes encoding for the ethylene biosynthesis enzymes
1-aminocyclopropane-1-carboxylate synthase (ACS) and
1-aminocyclopropane-1-carboxylate oxidase (ACO), which
describe a pre-ripening expression for ACS [14] and a peak
in transcript accumulation for ACO [12,14] a short time
before the initiation of ripening (called ‘veraison’ in grape
berries).

Interestingly, in contrast to what is known from climac-
teric fruit, the treatment of pre-veraison grape berries with
the ethylene-releasing compound Ethrel has been shown
to delay ripening [15-17]. The Ethrel-induced delay in the
onset of sugar and anthocyanin accumulation resembles
the ripening-delaying effects caused by the pre-veraison
application of auxins [18-23], which have emerged as an-
other important factor in fruit ripening in both climacteric
and non-climacteric fruit (reviewed by [6,7]). In climac-
teric fruit, such as tomato (Solanum lycopersicum Mill.)
[24,25], or banana (Musa paradisiaca 1.) [26] and in non-
climacteric fruit like strawberry [27,28] and grape [29-32]
the concentrations of IAA before and during ripening
were generally found to be low. In all four fruit species
mentioned above, as well as in many other climacteric and
non-climacteric fruit, the application of natural or syn-
thetic auxins during the pre-ripening stage of fruit devel-
opment has often been found to lead to a ripening delay
(reviewed by [6]) and therefore auxins are widely viewed
as ripening inhibitors [24,26,29,33]. In contrast IAA-
amide conjugates have been reported to accumulate in
ripening bananas [26], muskmelons (Cucumis melo L.)
[34] and strawberries [27]. More detailed studies in grape
berries have revealed that the concentration of IAA-Asp,
an IAA-amide conjugate linked to IAA degradation [35]
and formed by the action of IAA-amido synthetases
(Gretchen Hagen (GH3) proteins) [36], increased sharply
at veraison and remained at high concentrations through-
out the ripening phase [29]. A similar pattern of IAA-Asp
accumulation has been found in tomato which suggests a
more complex role for auxins in fruit ripening that re-
quires further investigation [29].

The best understood interaction between auxin and
ethylene is the induction of ethylene biosynthesis by ap-
plied auxins, which was first described by Morgan and
Hall [37] who reported that 2,4-dichlorophenoxyacetic
acid application led to an increase in ethylene production
in cotton plants. It was later revealed that exogenous
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auxins induce the transcription of ACS genes in mung
beans (Vigna radiata (L.) Wilczek) [38]. A similar in-
duction of ACS expression and in some instances also
ACO expression has since been demonstrated for many
other plant species, including Arabidopsis (Arabidopsis
thaliana L.) [39-41], a range of climacteric and non-
climacteric fruit such as apple (Malus domestica Borkh.)
[42], pear (Pyrus communis L.) [43], peach (Prunus persica
(L.) Batsch) [44] and grape [45]. Reports about an acceler-
ation of at least parts of the ripening process by auxin
treatments in some climacteric fruit [46-50] can therefore
be interpreted as an indirect auxin effect mediated
through the induction of ethylene biosynthesis [42,44,48].

The complementary effect of ethylene on auxin bio-
synthesis has long remained elusive, due to an incom-
plete understanding of the molecular mechanisms involved
in the biosynthesis of IAA. A dependence of ethylene ac-
tion on IAA biosynthesis, perception, signalling and trans-
port has been illustrated in studies using Arabidopsis
mutants and auxin measurements [51,52]. Furthermore,
the induction of genes encoding for anthranilate synthase
and tryptophan synthase subunits as well as a GH3 protein
by ethylene treatments has been reported [53,54]. However,
only the recent elucidation of the main IAA biosynthesis
pathway in Arabidopsis has revealed the full extent of the
regulation of auxin biosynthesis by ethylene and the de-
pendence of ethylene effects on auxin production. Three
independent studies [55-57] have provided evidence that
IAA is synthesised via a simple two-step pathway in which
the family of TRYPTOPHAN AMINOTRANSFERASE
OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANS-
FERASE RELATED (TAA1/TAR) proteins [58,59] con-
verts tryptophan to indole-3-pyruvate which is then
converted to IAA by the YUCCA (YUC) family of
flavin-containing monooxygenases [60]. The existence
of a TAR/YUC pathway has also been confirmed in
maize (Zea mays L.) where it is essential for normal
vegetative and reproductive development [61]. The ex-
pression of TAAI as well as some TARs in roots and
apical hooks of Arabidopsis seedlings can be induced
by ethylene treatments and the restricted expression
of TAAI/TAR genes leading to local IAA production
is thought to be the basis of tissue-specific ethylene
effects [58].

The above introduction shows that auxins and ethyl-
ene are involved in berry ripening and that their applica-
tion can alter the progression of ripening. In this study,
evidence is provided for a functional TAR/YUC pathway
of auxin biosynthesis in developing grape berries which
is at least in part regulated by ethylene. Auxin measure-
ments as well as gene expression studies in Ethrel-
treated fruit suggest that the Ethrel-induced ripening
delay in grapes might be mediated by increased auxin
concentrations in pre-ripening fruit. In developing berries



Bottcher et al. BMC Plant Biology 2013, 13:222
http://www.biomedcentral.com/1471-2229/13/222

an increase in the expression of ethylene biosynthesis
genes precedes elevated transcript levels of auxin biosyn-
thesis and conjugation genes at around the initiation of
ripening, indicative of a role for ethylene/auxin interac-
tions in the control of berry ripening.

Results and discussion

Pre-veraison Ethrel treatment of grape berries leads to
ripening delay and increased auxin concentrations

In grape berries, the initiation of ripening can be delayed
by the pre-veraison application of the ethylene-releasing
compound Ethrel [15-17] and auxins [18-23]. The simi-
lar effects of Ethrel and auxins on the ripening behav-
iour of grapes combined with the increasing evidence
for complex interactions between ethylene and IAA
(reviewed by [62,63]) is suggestive of a link between
these two plant hormones in the control of ripening. In
order to investigate the possibility of an ethylene/auxin
interaction in grape berry ripening, pre-veraison Shiraz
berries were treated with either Ethrel or a Control solu-
tion in two consecutive seasons. In the 2011 trial, the
Ethrel treatment of berries 20 days pre-veraison (verai-
son is defined as the sampling date immediately prior
to a significant increase in total soluble solids (TSS)
measured using a refractometer) delayed the onset of
ripening by 13 days (veraison of Control berries was 3
February 2011). The Ethrel-treated berries had signifi-
cantly lower TSS values between 31 and 54 days post
spray (dps) and at 67 dps when compared with the Con-
trol berries (Figure 1A) and there was also a reduction in
berry weight between 37 and 54 dps (Figure 1B).
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In 2012, veraison of the Control berries (24 January
2012) occurred one week earlier than predicted, which
brought the two successive treatments that were applied
during that season close to the veraison date (eight and
one day prior to veraison). In previous studies, Ethrel-
treatments within a week of veraison had no effect on
sugar accumulation and berry weight [15]. Accordingly,
the ripening-delaying effect of Ethrel in the 2012 trial
was less pronounced than what had been observed in
2011. Veraison of the Ethrel-treated berries was only de-
layed by seven days. However, from 15 days post initial
spray (dpis) onwards the TSS values in the Ethrel-treated
berries were significantly lower when compared with the
Control berries (Figure 1C) and a difference in berry
weight was observed 22 and 29 dpis when the Ethrel-
treated berries were significantly lighter (Figure 1D).

A time course of berry samples from both trials was
used to determine if the Ethrel treatments had caused
changes in the concentrations of IAA and its most abun-
dant amino acid conjugate, IAA-Asp [29]. For the 2011
experiment this was done 3-48 hours post spray (hps),
which was extended for the 2012 trial to test for differ-
ences in auxin concentrations from one hour post initial
spray (hpis) through to the time point of veraison of the
Ethrel-treated berries.

When compared with the Control fruit at each time
point, IAA and IAA-Asp concentrations in the 2011 ex-
periment were only significantly different from the Ethrel-
treated berries at the last time point analysed (48 hps),
where the IAA concentration was increased approximately
ten-fold (Figure 2A) and the IAA-Asp concentration
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Figure 1 Delayed ripening of Shiraz berries after treatment with Ethrel. Changes in TSS, measured as degrees Brix, in field grown Shiraz

berries treated (A) once in 2011 (20 days pre-veraison) or (C) twice in 2012 (8 and 1 days pre-veraison) with 300 pL L Ethrel in 0.1% (v/v) Chemwet
1000 or 0.1% (v/v) Chemwet 1000 (Control). The same berry samples were used to measure changes in berry weight in (B) the 2011 and (D) the 2012
samples. Control, closed circles with solid lines; Ethrel, closed triangles with dashed line. All data represent means + SE (n = 3). Asterisks indicate
significant differences of the mean values of Ethrel-treated samples from the mean values of Control samples as determined with Student’s
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Figure 2 Changes in the concentration of IAA and IAA-Asp in pre-veraison berries in response to Ethrel application. IAA (A, C) and the
IAA-amino acid conjugate, IAA-Asp, (B, D) were quantified by LC-MS/MS in pre-veraison Shiraz berries from the 2011 trial (A, B) and the 2012 trial
(C, D) at the indicated time points after treatment with a Control or Ethrel solution as described in Figure 1. Control, dark grey bars; Ethrel, light
grey bars. FW, fresh weight. CV, veraison of Control fruit; EV, veraison of Ethrel-treated fruit. All data represent means + SE (n = 3). Asterisks indicate
significant differences of the mean values of Ethrel-treated samples from the mean values of Control samples as determined with Student's t-test
(*p < 0.05, ***p < 0.001).

approximately two-fold (Figure 2B) in response to Ethrel.
In the 2012 samples the IAA concentration was signifi-
cantly higher in the Ethrel-treated berries when the Con-
trol berries were going through veraison (~ three-fold)
(Figure 2C) and IAA-Asp concentrations were increased
by Ethrel about two-fold 24 hpis and at veraison of the
Control berries (Figure 2D).

The presented data provide evidence for an Ethrel-
mediated increase in the accumulation of free and con-
jugated IAA in pre-veraison grape berries. The lasting
elevation of auxin concentrations up to the transition
into the ripening phase poses the question whether the
Ethrel-induced ripening delay might be the result of
higher than normal auxin concentrations in pre-veraison
berries.

IAA and IAA-Asp levels and grape homologues of auxin
biosynthesis genes are upregulated in berries by Ethrel
while auxin levels are repressed by
aminoethoxyvinylglycine

Recent studies on Arabidopsis seedlings have provided
evidence that ethylene is involved in the establishment
of local auxin maxima by inducing the expression of
TAAI and related genes (TARs) [58]. Together with YUC
proteins TAA1/TARs are a component of the only
complete pathway of auxin biosynthesis in plants de-
scribed to date [55-57]. In order to investigate if the in-
crease in auxin concentrations in Ethrel-treated grape
berries might be due to a stimulation of the TAR/YUC
pathway, grapevine homologues of the Arabidopsis TAA1

and YUCI proteins were identified through a BLASTP
similarity search on the NCBI database. The resulting nine
TAR and ten YUC grapevine sequences were aligned to
the respective protein families from Arabidopsis and
unrooted phylogenetic trees were constructed from the
alignments (Figure 3A, B). Any further analyses were re-
stricted to those members of the grapevine families that
were verified as being expressed in any tissues by the pres-
ence of ESTs in the NCBI database. These were VVTAR1
(55% identity with AtTAA1L), WTAR2 (59% identity with
AtTAR2), VWTAR3 (53% identity with AtTAR3) and
VVTAR4 (55% identity with AtTAR3) (Figure 3A), as
well as VWWYUCI1 (49% identity with AtYUC10), VvYUC2
(51% identity with AtYUC10) and VvYUC3 (73% identity
with AtYUC4) (Figure 3B). All attempts to amplify
WYUC?2 fragments from a number of different grape-
vine cDNAs (from flowers, berries at different stages,
roots, leaves) for the generation of qRT-PCR standards
failed (data not shown), so this gene could not be in-
cluded in expression analyses.

The expression of the putative auxin biosynthesis
genes from the TAR and YUC families, as well as the
previously described grapevine GH3 genes (GH3-1 and
GH3-2) involved in IAA-Asp formation in berries
[19,29,64], was analysed in the same samples that had
been used for the quantitation of IAA and IAA-Asp
(see above, Figure 2A-D). To verify the activation of an
ethylene response in the Ethrel-treated berries, the ex-
pression of the ethylene biosynthesis genes ACSI and
ACOI1 as well as the expression of the ethylene receptor
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Figure 3 Phylogenetic relationship of TAR and YUC protein sequences from grapevine and Arabidopsis. Unrooted trees of (A) TAR
sequences and (B) YUC sequences were generated with the PHYLIP program [81] using the neighbour-joining method and a bootstrap test with
1000 iterations (bootstrap values are indicated at each node). The scale bar indicates genetic distance based on branch length. The predicted
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Arabidopsis thaliana; Vv, Vitis vinifera. Accession numbers of the Arabidopsis protein sequences used in this analysis are provided in Additional file 3.
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gene ETR2 was also analysed. In a previous study on grape
berries, ACSI expression was not changed by Ethrel treat-
ments three weeks to one week prior to veraison, whereas
the expression of ACOI and ETR2 was Ethrel-inducible
between three and two weeks pre-veraison [15]. ETR2 is
commonly used as a marker for ethylene responses that
has been employed in research on vegetative tissues [65]
as well as fruit [66].

In the 2011 experiment, a strong response to Ethrel was
demonstrated by the induction of ETR2 expression, by up to
20-fold, 3—48 h after the Ethrel spray (Additional file 1A).
The expression of ACSI (9 and 24 hps) and ACO1
(9-48 hps) was also upregulated (two to 13-fold)
(Additional file 1A). The expression of YUC3 was not
detectable in any of the samples analysed. The tran-
scription of TAR2 was increased up to 30-fold in
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Ethrel-treated berries between 3-24 hps (Figure 4).
There was also an induction (two to three-fold) of
TAR4 at 24 hps and 48 hps, whereas the expression
of TARI and TAR3 was not significantly different be-
tween the Control and Ethrel samples at all time
points (Figure 4). As for TARI and TAR3 there was
no significant difference in the expression of YUCI at
any of the tested time points between the Ethrel-
treated and the Control berries (Figure 4). Similar to
TAR4, GH3-1 expression was significantly upregu-
lated by the Ethrel treatment after 24 h and 48 h (up
to 4.5-fold). The transcription of GH3-2 was also in-
duced at 3 hps (five-fold) and at 9-48 hps (up to
four-fold) (Figure 4). The increase in GH3 expression
as well as TAR4 expression correlated with the higher
IAA-Asp and [AA concentrations in Ethrel-treated
berries 48 hps (Figure 2A, B). The highly elevated
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expression of TAR2 preceded the increase in free [AA
and conjugate concentrations after 48 h. This could
be due to a lag between the increase in transcript
levels and the production of active enzyme, but it
might also reflect break down of IAA and/or IAA-
Asp, sequestration of IAA into conjugates other than
IAA-Asp or transport of auxins out of the berry.

In the 2012 experiment, where only a minor delay in
ripening of the Ethrel-treated berries was observed, the
expression analysis of ACSI, ACOIl and ETR2 also
reflected a weak response to Ethrel (Additional file 1B).
All three genes were only found to have a significant in-
crease in transcription at one time point. Accordingly,
the changes in expression of the IAA biosynthesis and
conjugation genes were also less pronounced than in the
previous season. As in 2011, TARI expression was simi-
lar in Control berries and Ethrel-treated fruit. However,
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Figure 4 Transcription of selected auxin biosynthesis and GH3 genes in response to Ethrel in the 2011 trial. The expression of TART-TAR4,
YUCT, GH3-1 and GH3-2 in pre-veraison Shiraz berries from the 2011 trial was analysed by gRT-PCR at the indicated time points after treatment
with a Control or Ethrel solution (see Figure 1). Control, dark grey bars; Ethrel, light grey bars. All data represent means + SE (n = 3). Asterisks
indicate significant differences of the mean values of Ethrel-treated samples from the mean values of Control samples as determined with
Student’s t-test (*p < 0.05, **p < 0.01).




Bottcher et al. BMC Plant Biology 2013, 13:222
http://www.biomedcentral.com/1471-2229/13/222

there was a significant reduction in TARI transcript
abundance in Ethrel-treated berries 6 hpis and at the
time of veraison of the Ethrel-treated fruit (Figure 5).
There was no significant change in expression of TAR2 be-
tween Ethrel-treated berries and Control berries (Figure 5).
There were two-times more TAR3 transcripts in Ethrel-
treated fruit as the berries were going through veraison
and the expression of TAR4 was increased by the Ethrel
treatment 24 hpis and at the time point of veraison of the
Control berries (two-fold) (Figure 5). The elevated expres-
sion of TAR4 coincided with the slight increase in free
IAA concentration at veraison of the Control berries
(Figure 2C). YUCI expression was reduced by the Ethrel
treatment 48 hpis (Figure 5) and YUC3 expression could
not be detected. The expression of both GH3 genes was
increased by about three-fold 1 h after the initial Ethrel
spray. There was also an induction of GH3-1 expression
48 hpis and the transcript accumulation of GH3-2 was
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increased in the Ethrel-treated berries at the time of verai-
son in the Control and the Ethrel-treated fruit (Figure 5).
In a recent study on the effects of ethylene on grape
berry ripening, it was found that aminoethoxyvinylgly-
cine (AVG), an inhibitor of ethylene biosynthesis, had
a ripening-advancing effect on berries when applied
between three to one weeks prior to veraison [15].
AVG has long been known to be a competitive inhibitor
of ACS proteins [67,68], thereby blocking the conversion
of S-adenosyl-methionine to 1l-aminocyclopropane-1-
carboxylic acid [69]. When Capitani et al. [70] solved
the crystal structure of an apple ACS protein, it was
revealed that the active site of this enzyme is highly
similar to that of the related family of aminotransfer-
ases [71]. In accordance with this finding, AVG has re-
cently been described as an inhibitor of auxin biosynthesis
in Arabidopsis with the TAA1/TAR family as its target
[72]. Independent of ethylene, AVG treatments led to a
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Figure 5 Changes in transcript accumulation of selected auxin biosynthesis and GH3 genes in response to Ethrel in the 2012 trial. The
expression of TARI-TAR4, YUCI, GH3-1 and GH3-2 in pre-veraison Shiraz berries from the 2012 trial was analysed by gRT-PCR at the indicated time
points after treatment with a Control or Ethrel solution (see Figure 1). Control, dark grey bars; Ethrel, light grey bars. CV, veraison of Control fruit;
EV, veraison of Ethrel-treated fruit. All data represent means + SE (n = 3). Asterisks indicate significant differences of the mean values of Ethrel-treated
samples from the mean values of Control samples as determined with Student's t-test (*p < 0.05, **p < 0.01).
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rapid reduction in the concentration of free IAA in Arabi-
dopsis seedlings and in leaves of tomato and tobacco
(Nicotiana tabacum L1.) plants in a dose-dependent
manner. The results of this study confirmed earlier re-
ports about a 50-60% reduction in the rate of IAA biosyn-
thesis in Arabidopsis seedlings exposed to AVG [52].
Based on these recent data on AVG action, the effect of
AVG on auxin production in pre-veraison Shiraz berries
was investigated in an ex planta experiment. Berries
were exposed to AVG, Ethrel and a Control treatment
for 0.5-24 h followed by the extraction and quantita-
tion of IAA and IAA-Asp. Already at the first time
point of analysis (0.5 h after the initiation of treatment)
a two-fold increase in the concentration of IAA was
found in the Ethrel-treated berries, whereas a three-
fold reduction in the concentration of IAA was measured
in AVG-treated fruit (Figure 6A). The Ethrel-induced in-
crease in IAA accumulation was transient and only lasted
for 1 h after which the IAA concentration returned to
levels observed in the Control and even slightly decreased
after 24 h of exposure. However, AVG caused a significant
reduction in IAA concentrations after 6-24 h of exposure
(Figure 6A). A similar, but delayed, trend was observed for
changes in the IAA-Asp concentrations (Figure 6B).
Exposure to Ethrel resulted in a significant increase in
IAA-Asp accumulation after 1 h and 3 h, whereas the
treatment with AVG led to a reduced IAA-Asp con-
centration after 6 h (two-fold). The rapid changes in
auxin concentrations in response to Ethrel and AVG in
the ex planta experiment when compared with the
data obtained from berries that were sprayed in the
field (see above, Figure 2) is most likely due to a higher
uptake rate of the compounds under the ex planta
conditions and to continuous exposure to high levels.
It can therefore be inferred that changes in auxin bio-
synthesis and conjugation occurred within the first
30 min of exposure, which explains the unchanged ex-
pression of the TAR, YUC and GH3 genes analysed be-
tween 0.5 and 24 h of exposure (Figure 6C). There was
also no difference in the expression of ACSI and ACOI be-
tween Control, Ethrel-treated and AVG-treated berries
(Additional file 1C). The only significant change in ETR2
expression occurred at 3 h after Ethrel exposure (two-fold
increase) (Additional file 1C). A repression of ACOI and
ETR?2 expression by AVG after 20 h of exposure has been
reported from a similar grape berry ex planta experiment
[15]. Since both these genes are sucrose-responsive [15],
this apparently conflicting result is most likely due to the
different sucrose concentrations used in the previous study
(0% or 12% (w/v)) compared with this study (3% (w/v)).

It can be concluded that the TAR/YUC pathway of
auxin biosynthesis is active in grape berries and can be
stimulated by increased concentrations of ethylene. As a
consequence, ripening-delay by Ethrel may be mediated
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by elevated auxin formation in the berry tissue. More
studies are needed to determine if the advancement of
berry ripening by AVG applications is the result of de-
creased ethylene or auxin concentrations or possibly of
both.

Changes in the expression of auxin and ethylene
biosynthesis genes during development suggest a role
for both hormones in the initiation of grape berry
ripening

Previous studies on grape berries as well as other non-
climacteric fruit have reported low concentrations of free
IAA and ethylene at the time of ripening initiation
(reviewed by [6]). However, a subtle increase in ethylene
concentrations coinciding with the beginning of the rip-
ening phase in L. chinensis and grapes [10-13], as well as
a drastic increase in the accumulation of IAA-Asp in
ripening grapes and tomatoes [29], suggest that both
hormones might be of importance for the transition
from the pre-ripening to the ripening stage. To further
investigate the implications of ethylene and auxin in
grape berry ripening, the expression of TARI-4, YUCI,
YUC3 as well as ACS1 and ACOI was analysed in Shiraz
berries from 3 weeks post flowering (wpf) through to
harvest at 16 wpf. Veraison, defined as the last time
point before a significant increase in TSS levels was ob-
served, was found to be 8 wpf (Figure 7A). It also
marked the start of the second growth phase and the
accumulation of anthocyanins (Figure 7B, C). TARI
was expressed at low levels in pre-veraison berries, but
copy numbers increased rapidly between 10-12 wpf
and remained high through to harvest after 16 weeks
(Figure 7D). TAR3 was expressed in pre-veraison berries,
whereas the expression profiles of TAR2 and TAR4 were
characterized by a significant peak in transcript levels at ver-
aison (TAR4) or one week post-veraison (TAR2) (Figure 7D).
A comparable peak in expression was also observed for
YUCT (8-10 wpf) (Figure 7D), whereas YUC3 was found to
be expressed at very low levels in young berries (one and
two wpf), but YUC3 transcripts could not be reliably
detected in berries 3—-16 wpf (data not shown). An in-
crease in the expression of YUC genes, similar to
YUCI, has recently been reported in strawberries,
where the transcript accumulation of FaYUCI and
FaYUC?2 in achenes peaked at the large green fruit
stage [73]. In grape berries, the increase in expression
of the putative auxin-biosynthesis genes was preceded
by high expression levels of the ethylene biosynthesis
genes ACS1 (3-7 wpf) and ACOI (peaking at 7 wpf)
(Figure 7D) which confirmed previous results for the
expression of ACS/ACO in developing grape berries
[12,14,15]. Similar expression patterns of all eight genes
were recorded from a 3—16 wpf berry series from Cab-
ernet Sauvignon (Additional file 2).
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J

The data suggest that a peak in auxin biosynthesis co-
incides with the initiation of ripening in grape berries
and that this elevated auxin production might be in-
duced by ethylene. The post-veraison expression of
TARI further indicates that IAA is synthesized through-
out the ripening period. An increase in IAA biosynthesis
at and after veraison seems to contradict the low con-
centrations of this auxin in ripening berries as well as

the ripening-delaying effects of high levels of auxins in
pre-veraison berries. However, the sharp increase in
IAA-Asp accumulation just after veraison reported by
Bottcher et al. [29] might indicate that all IAA produced
during a short period around the start of ripening and
possibly throughout ripening is sequestered via the con-
jugation pathway. This proposal is supported by the in-
creased expression of GH3-1 during this time in berry
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development of field-grown Shiraz berries was documented by changes in (A) TSS, (B) berry weight and (C) anthocyanin (A520 nm) accumulation.
(D) Between 3-16 wpf the expression of TART-TAR4, YUCI1, ACST and ACOT was analysed by gRT-PCR. “v" indicates veraison as determined by the last
time point before a significant increase (ANOVA followed by Duncan’s post hoc test) in TSS levels was recorded. All data represent means + SE (n = 3)
and for the gene expression data LSD values were determined at the p < 0.05 significance level.

development. Furthermore, in tomatoes, which also dis-
play increased concentrations of IAA-Asp during ripening
[29], the overexpression of a pepper (Capsicum chinense
L.) GH3 gene stimulated an early transition into the ripen-
ing phase upon an ethylene stimulus [74] and the RNAi
suppression of APETALA2, a negative regulator of ripen-
ing [75], resulted in earlier ripening and an increased ac-
cumulation of GH3 transcripts [76]. The long-held view
that IAA-amino acid conjugates are merely means to store
or degrade the free auxin [77] has been challenged by a
number of studies that provide evidence for an active role
of IAA-Asp and other conjugates in plant development
and disease response (reviewed by [78]). It is therefore
conceivable that the IAA-Asp conjugate might represent a
ripening signal in grapes, and possibly also in other fruit
species, which can be perceived at a certain developmental
stage of the fruit by an as yet unknown mechanism. From

the presented data, a possible role of ethylene in the ripen-
ing of grape berries could be the triggering of IAA synthe-
sis and subsequent IAA-Asp formation at the above
mentioned critical developmental stage. Removal of the
ethylene trigger should consequently lead to ripening in-
hibition. This hypothesis is supported by studies from
Chervin et al. [12,79], where blocking of ethylene percep-
tion close to veraison led to reduced berry size and de-
layed anthocyanin and sugar accumulation.

Conclusions

Despite an increasing knowledge of the involvement of
ethylene and IAA in fruit development, information
about interactions between these two hormones in fruit
is limited. The present study provides evidence of a
functional two-step pathway of auxin biosynthesis in
grape berries and demonstrates its activation by the
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ethylene-releasing compound Ethrel. An observed ripen-
ing delay in Ethrel-treated fruit might therefore be due
to increased auxin concentrations in pre-ripening fruit.
The expression patterns of auxin and ethylene biosyn-
thesis genes during berry development further suggest
that an increase in ethylene production prior to the initi-
ation of ripening stimulates IAA biosynthesis at the
commencement of ripening. This developmentally con-
trolled induction of auxin biosynthesis by ethylene might
be required for the rapid accumulation of the proposed
ripening factor, IAA-Asp.

Methods

Plant material

Ethrel treatments were performed using Vitis vinifera L.
cv Shiraz fruit in two consecutive years at the same site
(Hahndorf, South Australia, -35.018223, 138.838220). In
2011, pre-veraison berries were sprayed to run off once
(14 January 2011, 20 days pre-veraison) with 300 pL L™
Ethrel (144 mg L™ ethephon; Bayer CropScience, East
Hawthorn, Australia) in 0.1% (v/v) Chemwet 1000 (Nufarm,
Laverton, Australia), solution pH 3.1. Control fruit were
sprayed with a 0.1% (v/v) Chemwet 1000 solution. There
was 0.2 mm precipitation during the 48 h period after spray-
ing and the average maximum temperature during this
period was 29.5°C. The trial was of a randomised triplicate
design, the sample size per replicate and treatment was 30
bunches. Samples of 60 randomly harvested berries per rep-
licate were taken 3, 6, 9, 24 and 48 h after the sprays. Berries
were weighed, immediately deseeded, frozen in liquid nitro-
gen and stored at —80°C until used. Throughout develop-
ment weekly samples of 60 randomly harvested berries per
replicate were used to measure berry weight and TSS.

In 2012, pre-veraison berries were sprayed twice (16
January 2012, 8 days pre-veraison and 23 January 2012,
1 day pre-veraison) with Control and Ethrel solutions as
described above. There was no precipitation during the
48 h period after spraying and the average maximum
temperature during this period was 34.5°C. Other changes
to the 2012 trial design and sampling regime were as fol-
lows: the sample size was increased to 400 bunches per
replicate and treatment, samples of 60 berries for deseed-
ing and freezing were taken 1, 6, 24 and 48 h after the
initial spray as well as at the developmental stages cor-
responding to veraison of the Control and veraison of
the Ethrel-treated berries and 80 berries per replicates
were used for weight and TSS measurements.

For the analysis of developmental changes in gene ex-
pression Vitis vinifera L. cv Cabernet Sauvignon and
Shiraz berries from 3-16 wpf were collected at weekly
intervals, (22 November 2010-15 March 2011) from a
commercial vineyard (Willunga, South Australia-35°.26,
138°.55) in the 2010/2011 season. Sampling was com-
pleted between 09:30 and 11:30, berries (60—200 berries
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sampled at each time point) were immediately deseeded
and tissue frozen in liquid nitrogen and stored at —-80°C
until used.

For the ex planta berry experiment 40 bunches from
ten vines (Vitis vinifera L. cv Shiraz) were sampled from
a vineyard in the Adelaide Hills (Hahndorf, South
Australia, -35.018223, 138.838220) 19 days (05 January
2012) before veraison between 09:00 and 10:00 and kept
on ice until used.

Determination of anthocyanin and TSS levels

Individual measurements of TSS (degrees Brix) were
taken for the berries sampled from the Ethrel experi-
ments in 2011 and 2012 with an REM710 digital refract-
ometer (Bellingham Stanley, Tunbridge Wells, UK). TSS
analysis and anthocyanin measurements for the berries
from the developmental series were done as described
by Béttcher et al. [20].

Phylogenetic analysis

TAR- and YUC-related grapevine sequences were identi-
fied by BLASTP searches of the non-redundant NCBI
protein database (E-value < 10™°) using either the Arabi-
dopsis TAA1 or YUCI protein sequence as the query.
NCBI accession numbers for all sequences used in the
phylogenetic analysis are listed either in Figure 3 or in
Additional file 3. The sequences were aligned using the
ClustalW (version 2.0.12) program [80] in the multiple
alignment mode and the neighbour-joining unrooted
tree was generated with PHYLIP 3.67 [81].

RNA extraction, cDNA synthesis and qRT-PCR

Total RNA was extracted from grape berry tissue ac-
cording to Davies and Robinson [82] and further purified
as described by Symons et al. [83]. First-strand cDNA
for qRT-PCR was synthesized with Transcriptor Reverse
Transcriptase (Roche Diagnostics, Mannheim, Germany)
using 1 pg of RNA and the Oligo (dT);g primer in a re-
action volume of 20 uL following the manufacturer’s
instructions. Prior to use cDNA samples were diluted
20-fold. qRT-PCR analyses were performed using the
Roche LightCycler 480 SYBR Green I Master kit with
15 pL reactions and a final primer concentration of
0.5 uM. The amplification was performed using the
Roche LightCycler 480 system with the following pa-
rameters: 5 min at 95°C, 20 s 95°C, 20 s 58°C and 20 s
72°C (45 cycles), 5 min at 72°C, followed by a melt
cycle (15 s at 95°C, 45 s at 50°C, continuous heating to 95°C
at 0.11°C s™). The gene-specific primer pairs and corre-
sponding accession numbers used for GH3-1, GH3-2, ACS],
ACOI, ETR2 as well as ACT2 (reference gene) have been
published previously [15,19]. The primers used for putative
auxin biosynthesis genes were: for TARI [GenBank:
XM_002274511], 5'-CATCTATTCAAGATACTATTGG-3’
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and 5'-ATATTGCAGCTACTCTCAAT-3’, for TAR2 [Gen-
Bank: XM_002281372], 5'-CAGCAATGAAGCATATTGA
AGG-3" and 5'-GAGTGAGAGCACCAGGAAATG-3', for
TAR3 [GenBank: XM_002265837], 5'-CCCAAGATGACT
TTGATATGCTG-3" and 5-TGATCAACTGATTGTTGA
TTCCACT-3’, for TAR4 [GenBank: XM_002266102],
5 -CAGCCTCATCAAGACCCAAGAT-3" and 5'-TGA
CGGTTGATTTCATTCTTCG-3, for YUCI[GenBank:
XM_002269808], 5-CAGGAAACTGTCGCAATAGTGG-3’
and 5'-CAAGAACTATGTTGGGTATTGAGAGG-3’, for
YUC2 [GenBank: XM_002269727], 5 -TACACTTTGG
AAGCATCACAGC-3’ and 5'-GGTTTGTACTGTGCT
GGACTGG-3" and for YUC3 [GenBank: XM_002282321],
5'-ATGCCCAAAACGCCATTTCC-3" and 5'-ATGTCCC
GGGCGATATTGAC-3'. Each PCR was performed in trip-
licate. To calculate the copy number of the genes in each
reaction, the purified gene fragments used for the standard
curves were quantified using PicoGreen (AGRF, Adelaide,
South Australia) and the number of molecules in each
standard dilution was determined according to Whelan
et al. [84]. The specificity of the reactions was confirmed
by melt curve analysis as well as separation on agarose gels
and the identity of each product was verified by sequencing
(AGRE, Adelaide, South Australia).

Ex planta berry induction assay

Randomly picked berries from the sampled bunches
were sterilized in 0.1% (v/v) Chemwet 1000 containing
half of a Milton antibacterial tablet L' (Milton Australia,
Laverton North, Victoria) for 10 min and washed three
times with sterile nanopure water. All the following pro-
cedures were carried out in a laminar flow under sterile
conditions. A thin slice was removed from the base of
each berry by cutting horizontally through the brush
area to facilitate compound absorption and the modified
berries were placed on agar. Twenty berries were placed
on petri dishes filled with 25 mL of Gamborg’s media,
0.025% (w/v) casein hydrosylate, 0.8% (w/v) agar, pH 5.7-
5.8 and one or more of the following additives (final con-
centrations), respectively: ReTain (125 mg L™ AVG, filter
sterilised), Ethrel (72 mg L' ethephon), 3% (w/v) sucrose.
Each plate constituted a replicate and three replicates per
treatment and time point were used.

Berries were placed on the plates with the cut surface
facing the agar, the plates were sealed with Parafilm and
kept in the dark at room temperature. All plates contain-
ing Ethrel were stored separately. After 0.5-24 h the ber-
ries were harvested, deseeded and frozen in liquid
nitrogen.

Chemical synthesis of labelled IAA-Asp

[Indole-Ds] IAA-Asp was synthesized as described previ-
ously [29] using [indole-Ds]-labelled IAA as starting
substrate.
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LC-ESI-MS/MS analysis of IAA and IAA-Asp

For LC-MS/MS quantification, IAA and conjugates were
extracted and quantified from 100 mg of grape berry tis-
sue as described by Bottcher et al. [29].

Statistical data analysis

The significance of any differences between samples was
tested by Student’s t-test (unpaired) or ANOVA with
Duncan’s post hoc test, using IBM SPSS Statistics ver. 20
(IBM Australia, Sydney, NSW, Australia).

Additional files

Additional file 1: Transcription of the ethylene biosynthesis genes,
ACS1 and ACO1, and the ethylene receptor gene ETR2 in response
to Ethrel. (A) The expression of ACST, ACOT and ETR2 in pre-veraison
(Shiraz berries from the 2011 trial was analysed by qRT-PCR at the indicated
time points after treatment with a Control or Ethrel solution (single treatment
(20 days pre-veraison)). Control, dark grey bars; Ethrel, light grey bars. All data
represent means = SE (n = 3). Asterisks indicate significant differences of the
mean values of Ethrel-treated samples from the mean values of Control
samples as determined with Student’s t-test (*p < 0.05, **p < 0.01). (B) The
expression of ACST, ACOT and ETR2 in pre-veraison Shiraz berries from
the 2012 trial was analysed by gRT-PCR at the indicated time points
after treatment with a Control or Ethrel solution (two treatments (8
and 1 day pre-veraison)). Control, dark grey bars; Ethrel, light grey bars.
CV, veraison of Control fruit; EV, veraison of Ethrel-treated fruit. All data represent
means + SE (n = 3). Asterisks indicate significant differences of the
mean values of Ethrel-treated samples from the mean values of
Control samples as

determined with Student’s t-test (**p < 0.01). (C) The expression of
ACSI1, ACOT and ETR2, analysed using qRT-PCR, in ex planta pre-veraison
Shiraz berries exposed to ReTain (125 mg L' AVG, 3% (w/v) sucrose),
Ethrel (72 mg L' ethephon, 3% (w/v) sucrose), or Control (3% (w/v) sucrose)
conditions for the indicated periods of time. Control, dark grey bars; Ethrel,
light grey bars; AVG, white bars. Bars represent means + SE (n = 3) and are
denoted by a different letter if the means differ significantly (p < 0.05)
using one-way ANOVA followed by Duncan’s post hoc test.

Additional file 2: Expression profiles of selected auxin and ethylene
biosynthesis genes throughout Cabernet Sauvignon berry
development. The development of field-grown Cabernet Sauvignon
berries was documented by changes in (A) TSS, (B) berry weight and
(C) anthocyanin (A520 nm) accumulation. All data represent means + SE
(n=3). (D) Between 3-16 wpf the expression of TART-TAR4, YUCI, ACST and
ACOT was analysed by gRT-PCR. The expression data are shown for two
biological replicates. n.d., not detected. “v" indicates veraison as determined
by the last time point before a significant increase (ANOVA followed
by Duncan'’s post hoc test) in TSS levels was recorded.

Additional file 3: GenBank accession numbers of the Arabidopsis
protein sequences used for the phylogenetic analysis.
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