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Abstract

molecular basis of the glossy phenotype.

Background: The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and
gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the
characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus.

Results: Transmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were
altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the
reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed
the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes
but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the
decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL
gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk
segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers
and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene
homologous to ECERIFERUMT (CERT) was located in the mapped region. A cDNA microarray chip assay revealed
coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy
mutant, with BnCERT being one of the most severely suppressed genes.

Conclusions: Our results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to
the suppression of the BnCERT and other wax-related genes. These findings offer novel clues for elucidating the
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Background

The plant cuticle acts as a hydrophobic layer to protect
land plants against biotic and abiotic stresses. The cuticle
layer is primarily composed of polymeric cutin and lipidic
cuticular wax [1,2]; the cutin polymer is the framework,
and waxes are interspersed within the cutin. Cuticular
wax provides a protective barrier to biotic and abiotic
stresses, including drought, pests, pathogens and UV
radiation [3,4], and defects result in perturbed cuticle

* Correspondence: jxshen@mail hzau.edu.cn

'National Key Laboratory of Crop Genetic Improvement, Huazhong
Agricultural University, Wuhan 430070, China

Full list of author information is available at the end of the article

( BioMVed Central

permeability. Cuticular wax biosynthesis is regulated in
response to drought, reducing water loss rates in some
plants [5-7]. Arabidopsis [8-10], rice [11,12] and tomato
[13,14] mutants with wax alterations display sparse
crystals on the surface of aerial organs and enhanced
sensitivity to drought. Deficiency in cuticular wax has
also been correlated with organ fusions and reduced
fertility [8,15,16].

The aliphatic constituents of waxes are derived from
saturated very long chain fatty acid. Fatty acids with
chain length of up to C16 and C18 are synthesized in
the plastids and subsequently exported to the cytoplasm
where they are further elongated to very long-chain fatty
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acids (VLCFAs; C20 to C34) through the sequential
addition of two-carbon units in a reaction catalyzed by
fatty acid elongase complexes in the endoplasmic
reticulum [1,2]. Cuticular waxes contain species-specific
compound classes and carbon chain length patterns
[1,2]. In Arabidopsis, the cuticular wax of stems consists
of VLCFA alkanes, aldehydes, fatty acids, primary alcohols,
wax esters, secondary alcohols and ketones, with 80-90%
alkanes, secondary alcohols and ketones [17,18]. The bio-
synthesis of these compounds involves two pathways: the
acyl-reduction pathway in which primary alcohols and
wax esters are synthesized and the decarbonylation
pathway through which aldehydes, alkanes, ketones and
secondary alcohols are synthesized [18].

In Arabidopsis, the cerl-1 mutant is characterized by a
drastic decrease in the products of the alkane-forming
pathway (alkanes, secondary alcohols and ketones) and a
corresponding increase in aldehydes [19-21]. The product
of the ECERIFERUM (CERI) functions as a putative alde-
hyde decarbonylase [19,20], and it was recently shown that
CERI interacts with the wax-associated gene CER3 and
cytochrome b5 isoforms (CYTBS5s) [22]. CER1 homologs
are present in both dicot and monocot species and are
structurally conserved. Additionally, all CERI proteins
contain iron-binding (histidine-rich) motifs, suggesting
that CERI homologous proteins have a similar function
among organisms [19].

Normally, the waxless character is controlled by reces-
sive genes. To our knowledge, there have been few reports
of dominant mutations. In wheat, the inheritance of glau-
cousness is mainly governed by two sets of dominant
genes, W1 and W2, which promote a glaucous phenotype,
and Iwl and /w2, which inhibit it. W1 and Iw! are located
on the short arm of chromosome 2B (2BS) and W2 and
Iw2 on 2DS [23]. Recently, a genetic approach with the
detailed biochemical characterization of wax compounds
was used to characterize the Iwl locus, which inhibits the
formation of - and hydroxy-p-diketones in the peduncle
and flag leaf blade cuticles. This inhibitory effect was
found to be independent of the genetic background or
tissue and was accompanied by minor but consistent
increases in n-alkanes and C24 primary alcohols [24]. In
banana, the ratio of waxy versus nonwaxy pseudostem
in the cross SH-3362 x Long Tavoy was 1:1 (x> = 0.22),
indicating that the genotypes of SH-3362 and Long
Tavoy should be wxwx and Wxwx, respectively. The F; ob-
tained by crossing FR (slight pseudostem waxiness) x C4
(nonwaxy pseudostem) were glossy, and the F, segregated
for this trait (glossy: wax = 3:1, x> = 1.15) indicating that
the nonwaxy pseudostem may be a single dominant in this
population, and that the genotype of C4 should be WxWk.
But in other segregating populations the situation was
more complex, suggesting that genetic modifiers can
overcome the action of the Wx allele [25].
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Although wax-deficient mutants have been isolated in
a number of plant species [26,27], there are few reports
focused on the study of cuticular wax in Brassica species
[28,29]. Since 1990, breeders have focused on the genetic
analysis of the wax-less phenotype and have suggested
that this feature can be used as a morphological marker in
hybrid breeding. Recently, in Brassica rapa, the BrWaxl
(Brassica Wax) gene was located to a 86.4 kb genomic
DNA fragment on linkage group Al. Bra013809, the ho-
mologous gene of CER2 was speculated to be the candidate
gene [30].

To our knowledge, this is the first report on the
characterization and genetic mapping of a dominant
glossy mutant (BnaA.GL) in B. napus. The GL mutant
exhibited a drastic decrease in wax and enhanced cuticle
permeability. Linkage of SNP markers to the BnaA.GL
gene were achieved using an SNP chip assay combined
with BSA, and the BnaA.GL gene was localized to the
end of the B. napus A9 chromosome. The B. napus GL
mutant was found to share biochemical characteristics of
the cerl-1 mutant in Arabidopsis thaliana. Additionally, a
gene homologous to CERI was found to be located in the
candidate region. A cDNA microarray assay showed that
the expression of a group of genes encoding cuticular wax
biosynthetic enzymes and fatty acid synthesis were down-
regulated in the leaf tissues of the glossy mutant. We
found that the BuCERI gene was dramatically suppressed
in the GL mutant but no mutation affecting the function
of the BuCERI gene was obvious. We conclude that the
BnaA.GL mutation caused down-regulation of cuticular
wax biosynthetic genes, particularly the CERI gene. Since
the BnaA.GL allele behaves in a dominant fashion in regu-
lating wax biosynthesis, this glossy mutant is unique from
other cer mutants reported to date and may prove useful
for future study on the regulation of wax biosynthesis
pathways in plants.

Result
Identification of the GL mutant
The GL mutant (6—1025) was initially discovered from a
large breeding population. In this project line 6-3476 was
used as the wide type to cross with GL mutant 6-1025 to
generate F; seeds. One F; plant derived from this cross
was then used to develop a double haploid (DH) popula-
tion through microspore culture as described in a previous
report [31]. In these DH lines there was clear segregation
in terms of the glossy phenotype. We selected line-7 (DH
line-7) and line-69 (DH line-69) which both exhibited a
distinctive glossy phenotype, and line-2 (DH line-2), and
line-3 (DH line-3) that appeared normal for further study.
The F; (or RF;) plants of reciprocal crosses between
WT and the GL mutant were all glossy, indicating that the
glossy trait was dominant. The BC; progeny developed
from the crosses between the F; plant and WT displayed a
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1:1 ratio of glossy to normal plants. Moreover, the glossy
to normal phenotype ratio in the F, population was
approximately 3:1 (Table 1), indicating that this was a case
in which one Mendelian locus controlled the glossy
trait. The glossy gene was tentatively designated as the
BnaA.GL gene.

Abnormal epidermis formed and water permeability
increased in the GL mutant

The glossy phenotype of the GL mutant’s leaf and stem
surface is shown in Figure 1B, D. Scanning electron mi-
croscopy (SEM) was also used to assess the density of wax
crystals on leaf and stem tissue. This revealed a clear re-
duction of wax crystals in some regions of leaf surface
(Figure 2A-D). Leaf and stem cross sections were further
examined using transmission electron microscopy (TEM),
which indicated that that the cuticle ultrastructure of GL
mutant leaf (Figure 2F) and stem (Figure 2H) were altered
dramatically compared with that of WT leaf (Figure 2E)
and stem (Figure 2G). The cuticle membrane (cuticle
proper plus cuticular layer) of GL leaf and stem were less
osmiophilic, as indicated by the reduced electron density,
but more thick compared with those of wild type, espe-
cially the stem.

A distorted cuticular layer often results in an increased
permeability of leaves [32-34]. To test this, we incubated
4 weeks old leaves with Toluidine Blue (TB) solution
(0.05% w/v) for 2 min, and assessed the staining inten-
sities. As show in (Figure 3C, D left), WT leaves were
barely stained whereas many parts of the mutant leaves
were heavily stained (Figure 3C, D right). Furthermore, the
GL mutant rapidly lost chlorophyll content and showed a
significantly higher water loss rate when compared with
WT (Additional file 1). These results were consistent with
the observation that the cuticular layer of the leaf was ab-
normal, thus suggesting that the mutants were compro-
mised in the strength of water permeability barrier.

Decrease in total cuticular waxes and alteration of wax
composition in the GL mutant

To dissect the changes in chemical components that were
responsible for the glossy phenotype, we used thin-layer
chromatography (TLC) for quantitative and compositional
analyses of leaf wax extracts. TLC analysis revealed a
distinctively different pattern of wax composition in the
mutants (Figure 4). The GL mutant and DH line-7 had
total wax coverage of 3.2 pg/cm” and 6.4 pg/cm?, which

Table 1 Segregation of glossy trait in the BC1 and F2
progenies of two crosses

Combination Population  No. of No. of Expected P
glossy wax ratio
WT X mutant BC1 128 17 1:1 048
F2 278 113 31 0.08
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represented a reduction of 89% and 77%, respectively,
when compared with the wild type and DH line-2
(Table 2).

Looking into different cuticular wax compound classes,
alkanes, secondary alcohols (2° alcohols) and ketones were
not detectable (or below detection limits) in the mutants
(Figure 4; Table 2). We also detected reductions in both
primary alcohols and wax esters. There was also a several
fold reduction in wax esters, which were found at 0.1 pg/
cm® and 0.3 pg/cm? in the GL mutant and DH line-7, re-
spectively, while the WT and the DH line-2 had wax esters
at 0.6 pg/cm® and 0.7 pg/cm? Primary alcohols were
found at 0.3 pug/cm” and 0.5 pg/cm” in the GL mutant and
DH line-7, respectively, while the WT and the DH line-2
had levels of at 0.7 pg/cm® and 0.8 pg/cm?, respectively
(Table 2). Against the backdrop of reduction in all these
compound classes, our analysis revealed clear increases in
the content of the aldehydes, which in both the GL mutant
and DH line-2 were at approximately 3 fold of that of the
WT (Table 2).

Previous studies have shown that mutations in CERI
block the conversion of stem wax C30 aldehydes (triacon-
tanal) to C29 alkanes (nonacosane), and the secondary al-
cohols and ketones were also reduced in the mutants
[19,20]. Because alkanes, secondary alcohols and ketones
are major components of total wax, the lack of these three
components would be expected to negatively impact the
overall wax coverage [17,18]. Furthermore, the accumula-
tion of aldehydes was also consistent with the deficiency
of the CER1 step that converts aldehyde to alkandes in the
GL mutant (Figure 4; Table 1; Figure 5).

Fine mapping of the BnaA.GL gene

Our initial mapping using the glossy leaf phenotype as a
morphological marker (named Y) mapped the genetic le-
sion to linkage group A9 from an F, population derived
from a cross between WT and the glossy mutant. SSR and
AFLP markers were assembled into a genetic linkage map
with JOINMAP 3.0 (Figure 6A). We then developed seven
amplified fragment-length polymorphism (AFLP) markers
linked to the BnaA.GL gene using an AFLP assay in com-
bination with BSA [35]. Only two of the markers were
converted into useful sequence-characterized amplified
region (SCAR) markers, and the SCAR marker 1616-1
was detected in the flanking region of the BnaA.GL
gene (Figure 6B). Additional SSR markers were pursued
based on a bacterial artificial chromosome (BAC) se-
quence close to the end of the B. rapa R9 chromosome
(Figure 6D), resulting in two more SSR markers mapped
to the flanking region of the BnaA.GL gene (Figure 6B)
[36,37]. Since the BAC “KBrB043F18” was located on the
very end of A9 [38] (Figure 6C), we developed markers
based on the BAC sequences, but no molecular markers
with polymorphism were detected based on the sequence
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phenotype of the GL mutant leaf (B) and stem (D).

Figure 1 Morphological characters of WT and the GL mutant. The leaf (A) and stem (C) of WT appear glaucous, as compared to the glossy

of BAC “KBrB043F18” (Figure 6B, C, D). IP markers were
designed based on a previous report [39], and one IP
marker CIP12 was detected in the flanking region of the
BnaA.GL gene (Figure 6B). Based on 300 normal indi-
viduals from a BCsF, population (1200), all markers
were used to survey the population. After genotype testing
of all individuals in the mapping population, 4 individuals
displaying recombination between BnaA.GL and IGF5706e
were identified. The distance between IGF5706e and
BnaA.GL was 1.33 cM. Among the 4 identified recombi-
nants, 3 of the individuals displayed recombination be-
tween the BnaA.GL gene and 1616-1, and the distance
between 1616—1 and BnaA.GL was 1 ¢cM. In addition, 2
recombinants displayed recombination between BnaA.GL
and the other SSR and IP markers, the distance
between these markers and the BnaA.GL gene was
0.67 cM. All markers were on the same side of the
BnaA.GL gene. These markers were mapped to a
region of 0.67-1.33 cM in the flanking region of
the BnaA.GL gene. Unfortunately, we failed to find
any markers on the other side of the BnaA.GL gene.
Compared to B. rapa, there appears to be an inversion
at the end of the B. napus chromosome [38] (Figure 6B,
C, D). All markers linked to the gene were used to
compare the micro-colinearity of the regions flanking
the genes with B. rapa and Arabidopsis (Figure 7).

Transcriptome analysis uncovered different expression
pattern in the mutants

In search of clues underlying the molecular basis of the
glossy phenotype, we then conducted a microarray
analysis using RNA from leaf tissue of similar develop-
mental stages and performed a comparison of the glo-
bal transcript level between WT vs. the GL mutant and
double haploid normal line bulk (DHNB) segregates vs.
DH glossy line bulk (DHGB) segregates. In the wild
type vs. GL mutant analysis, 619 genes were detected
as DEGs (differentially expressed genes): 232 DEGs
showed a higher expression level in wild type, whereas
387 DEGs showed a higher expression level in the GL
mutant (Figure 5A; Additional file 2). A total of 184
genes were determined to be DEGs in the analysis
between the bulked glossy DH lines and the bulked
normal DH lines (DHNB vs. DHGB), with 55 showing
a higher expression level in DHNB and 129 showing a
higher level in DHGB (Figure 5A; Additional file 2).
We could identify 55 shared genes showing differential
expression profiles through both sets of microarray ex-
periments, among which 12 genes were more highly
expressed in normal plants, and 23 genes were more
highly expressed in glossy plants (Figure 5A; Additional
file 2). Despite the fact that the phenotype was distin-
guished based on wax content, the Gene Ontology (GO)
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

Figure 2 Epicuticular wax and cuticle layer of WT and the GL mutant. (A-D) Scanning electron microscopy. (A) Wax crystals on the WT leaf
were dense, with high proportion of tubular-like wax crystals. (B) Wax crystals sparsely distributed on the leaf of the GL mutant. Bar =20 pym.
(C) Wax crystals on the WT stem with a high proportion of plate-like wax crystals. (B) Fewer wax crystals were present on the stem of the GL
mutant. Bar =10 pm. (E-H) Transmission electron microscopy. The leaf and stem cuticle proper is indicated by black arrowheads and the cuticle
layer is indicated by white arrowheads. The cuticle ultrastructure of GL mutant leaf (F) and stem (H) were altered dramatically compared with that of
WT leaf (E) and stem (G). The cuticle membrane (cuticle proper plus cuticular layer) of GL leaf and stems was thicker, and less osmiophilic. Bar =200 nm.

term categorization for both comparisons indicated that
the majority of genes indentified are related to stress
responses and to abiotic or biotic stimuli (Additional
file 2; Additional file 3). For the genes related to lipid
metabolism, only 29 genes were up-regulated and same
number of genes were down-regulated in the wild type
vs. GL mutant analysis; in DHNB vs. DHGB analysis,
the number of up- and down-regulated genes were 11
and 5 (Additional file 3).

Wax biosynthetic genes are down-regulated in the glossy
mutant

A major functional category of the down-regulated genes
emerged from the DHNB vs. DHGB microarray analysis
included those encoding a subset of genes related to the
wax biosynthesis pathway (Figure 5). The aliphatic com-
ponents of cuticular waxes are derived from saturated
very-long-chain fatty acids [4]. The homolog of a gene en-
coding the biotin carboxyl carrier protein (BCCP), a com-
ponent of the acetyl-CoA carboxylase that catalyzes the
first committed step of fatty acid synthesis in the plastids,
was down regulated in the GL mutant (Figure 5B, 5C).
Similarly, the homolog of a gene encoding the 3-oxoacyl-

Figure 3 Defective cuticle in the GL mutant. Toluidine blue
staining pattern of WT and the GL mutant. WT (left), mutant (right).

Before staining (A, B), after staining (C, D).

ACP reductase of the fatty acid synthase was also
expressed at a lower level. The homolog of gene FATB,
the acyl-acyl carrier protein thioesterase primarily re-
sponsible for hydrolyzing saturated acyl-ACPs to release
saturated fatty acids into the cytosolic compartment,
was reduced as well. Collectively, these results suggest
that, at least at the transcript level, enzymes involved in
the production of saturated fatty acids and precursors
of the aliphatic components of waxes were negatively
regulated in the leaf tissues of the GL mutant.

After the production of very long chain fatty acyl-CoAs,
the biosynthesis of cuticular wax proceeds through two
main pathways: an acyl reduction pathway, which pro-
duces primary alcohols and wax esters, and a decarbo-
nylation pathway that generates aldehydes, alkanes,
secondary alcohols and ketones. The putative aldehyde
decarbonylase, CERI, and the midchain alkane hydroxy-
lase, MAH 1, are involved in the decarbonylation branch
of the wax biosynthesis [18-20, 40-42]. Homologs of
both CERI and MAHI were found to be down regu-
lated, suggesting that the decarbonylation pathway was
suppressed. Reduction of transcript levels of the homo-
log of the bifunctional enzyme wax synthase (WSDI)

Alkanes

Wax esters
Ketones

Aldehydes
Secondary alcohols

Primap( alcohols
atty acids

o
I
3
~

juenw Assolo)
Zeull Ha
adA-ap

Figure 4 Thin layer chromatography (TLC) of the leaf wax
mixture. The compound classes are labeled on the left. The
different lanes show the separation of the wax extracts from WT,
mutant and DH line leaves.




Pu et al. BMC Plant Biology 2013, 13:215
http://www.biomedcentral.com/1471-2229/13/215

Page 7 of 14

Table 2 Cuticular wax composition of wild-type, mutant and DH line

Line Total Alkanes Wax esters  Ketones  Aldehydes  Secondary alcohols  Fatty acids Primary alcohols
Wide-type 294+04  162+05 06+0.2 78+02 11405 28+05 03+0.1 07+02
Glossy mutant 32+04 - 0.1£00 - 27+04 - 02+00 03+£00
DH line-2 274+37  139+04 0.7+04 59+23 17+04 41+1.1 02+0.1 08+04
DH line-7 64+20 - 03+0.1 - 49+13 - 0.7£04 05+04

Total wax content and coverage of individual compound classes (ug/cm?) were given as mean values * SE (n = 3).

0.05 pg/cm?,

gene [42] (Figure 5C) indicated that the acyl reduction
pathway of wax biosynthesis was likely affected nega-
tively as well in the GL mutant. The different expres-
sion patterns of these genes in the GL mutants were
verifiable by quantitative real-time PCR (qRT-PCR)
(Figure 5D).

Among the differentially expressed genes found in the
GL mutants, BnCERI1, the homolog of CERI (At1g02205),
was the most severely down-regulated. To investigate
the expression patterns of BnCERI in different tissues

un

and 0.0 denote values that were below

of B. napus plants, RT-PCR (semi quantitative RT-PCR)
was performed using RNA prepared from 4-week-old
stems, leaves and buds. BnCERI was present at much
higher levels in all the WT tissues examined (Figure 8),
in accordance with a previously published report [20].

BnCER1 gene sequence analysis

Based on the available genome information [37,43], there
was approximately 250 kb between the closest marker
SNP6 and Bra032670 at the end of chromosome R9 in

Up regulated genes

synthase complex
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Figure 5 Downregulation of cuticular wax biosynthetic genes in the glossy mutant. (A) Venn diagrams showing the overlapping and
specific DEGs in the WT vs. mutant and DHNB vs. DHGB analyses. (B) Simplified cuticular wax biosynthetic pathway, as adapted from previous
reports [2,7,27]. The numbers indicate the mean fold change of the genes belonging to individual gene groups (I to VIII), as marked in (B). The
question marks and dotted lines indicate unidentified enzymes and processes, respectively. (C) List of the wax biosynthetic genes and fatty acid
synthesis genes down-regulated in both the glossy mutant and glossy DH line 69. The P values were corrected for multiple testing using FDR
methodology. The group of genes was classified based on their biochemical function. FC, fold change. (D) gRT-PCR of wax biosynthetic gene
expression. Total RNA was extracted from 6-week-old leaves. The transcript levels were examined using gRT-PCR. The bars indicate SE of the mean.
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B. rapa. Although we failed to detect markers on the
other side of the gene, the results suggested that this
chromosome region could be a candidate for fine map-
ping and cloning of the gene. In light of the fact that
Bra032670 at the end of the chromosome was homolo-
gous to CERI (AT1G02205), the genetic lesion responsible
for the glossy phenotype in Arabidopsis, we designed
primers and amplified this gene sequence. It was found
that the Bra032670 gene has a length of 4.41 kb, with ten
exons and nine introns. At least four copies of the CERI
otholog gene were identified from the allotetraploid oil
crop species B. napus. However, there was no apparent
sequence alteration between WT and the GL mutant ex-
cept in the fifth intron where three SNPs were identified
(Figure 9; Additional file 4). Our results thus suggested
that the BnaA.GL mutation directly resulted in the
down-regulation of cuticular wax biosynthetic genes,
particularly the CERI gene, leading to a deficiency of

wax decarbonylation and, consequently, reduced wax
deposition. Unlike previous reports in wax biosynthesis
regulation, the BnaA.GL allele behaves in a dominant
fashion.

Discussion

The decarbonylation pathway of wax biosynthesis was
compromised in the GL mutant

The GL mutant features a glossy phenotype similar to
the Arabidopsis cerl-1 mutant. CERI was speculated to
be an aldehyde decarbonylase, which catalyzes alkane
biosynthesis through the decarboxylation pathway [19,20].
Data of wax composition analysis of the GL mutant also
revealed biochemical characteristics resembling that of the
Arabidopsis cerl-1 [20]. Indeed, the wax compositional
alterations were accentuated by decreases in the meta-
bolites of the decarbonylation pathway, alkanes, secon-
dary alcohols and ketones. There was also a conspicuous
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increase in proportions of aldehydes, the precursors of the
metabolic step mediated by CERI. In comparison to the
Arabidopsis cerl mutant, the deficiency of alkanes, secon-
dary alcohols and ketones in the GL mutant was more ex-
treme, consequently resulting in a dramatic reduction of
total wax [17,18]. Thus, results of our biochemical analysis
as a whole clearly indicate that the decarbonylation
pathway of wax biosynthesis was compromised in the
GL mutant, evidenced by the fact that alkanes, and the
primary candidate gene for alkane synthesis CERI, were
affected most.

Mapping in B. napus

Our genetic analysis conclusively show that the glossy
phenotype of the GL mutant is determined by a single
Mendelian locus, BnaA.GL. But unlike the cerl mutant
and all other wax biosynthesis mutants reported to date,
the BnaA.GL locus acts in a dominant manner since recip-
rocal crosses between WT and the GL mutant were all
glossy. We were able to map the genetic lesion to a linkage
group close to the end of chromosome A9. Unfortunately,
we failed to identify markers on the other side of the
BnaA.GL gene, possibly due to the high level of related-
ness of the parents. We are attempting to construct a lar-
ger population using a different line as the WT parent.
This may allow us to reduce the interval covering the
BnaA.GL gene, enabling us to predict the candidate genes
within the region.

Bncer1
18S
Do M B B, B %,
%. ) ) &) ) ),
) % ) % (7 2
e \/@ /& 8 (4 %
e ) {’o«

Figure 8 Expression of the BnCER1 gene in WT and the GL
mutant. Semi-quantitative RT-PCR. RNA prepared from 4-week-old
stems, leaves and buds. 18S rRNA was applied as a constitutively
expressed control.

We found that the difference in the genetic linkage
maps shown between Figure 6C to D was the location of
BAC “KBrB043F18”. Compared to B. rapa, there appears
to be an inversion at the end of the B. napus chromosome.
We did not get polymorphic markers based on the se-
quence of the BAC “KBrB043F18”, possibly due to the
genomic rearrangements on the corresponding region
of A9.

All linked markers we detected were on one side of
the BnaA.GL gene in B. napus, likely because the gene is
located near the end of chromosome. The genome in-
formation of B. rapa has recently become available, and
we made use of information on chromosome synteny
between Arabidopsis and B. rapa to conduct genetic
and physical comparative mapping of the BnaA.GL locus
[37,43-49]. By comparative mapping with B. rapa, the
distance from the closest marker and the last annotated
gene on R9 is calculated as only 250 kb [43]. Markers
linked to BnaA.GL were used to dissect the micro-
colinearity of these regions in Arabidopsis and B. rapa.
Moreover, SNP markers were developed using an SNP
chip assay combined with BSA. This led to the detection
of 36 SNPs (Additional file 5), 75% of which were located
in the mapping region. In light of the finding that a homo-
log of Arabidopsis CERI, Bra032670, was located in the
mapped region of the BnaA.GL, we then amplified and se-
quenced the Bra032670 from the GL mutant. Bra032670
shares 89% sequence identity in the coding DNA sequence
(CDS) and 99% at the protein level with the Arabidopsis
CER1. However, no apparent sequence alteration was
found between WT and the GL mutant, except three SNPs
in the fifth intron (Figure 9; Additional file 4).

Wax biosynthetic genes are down-regulated in the glossy
mutant

The reduced expression of multiple wax-related genes un-
covered through microarray analysis, beginning from satu-
rated fatty acid biosynthsis to the two branches of the wax
biosynthesis pathway, provided a biochemical basis for the
phenotype of reduced cuticular wax content. Furthermore,
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in accordance with the wax compositional changes of the
GL mutants, BuCERI of the decarbonylation pathway of
wax biosynthesis was singularly the most severely sup-
pressed gene. Thus, our results show that although the
gene Bra032670 encoding BnCERI was not the genetic
lesion in GL mutant, it nonetheless is the primary cause
of compromised cuticular wax biosynthesis in the GL
mutant. We suggest that the BnaA.GL gene acts as a
regulatory factor that targets BnCERI and likely the
wax biosynthesis pathway as a whole. This supposition
is supported by the finding that the midchain alkane hy-
droxylase (MAHI) and a bifunctional enzyme (WSDI)
were also down-regulated [41,42] in the GL mutant.
MAHI is involved in the decarbonylation pathway,
catalyzing the hydroxylation of alkanes to secondary
alcohols [41]. Some steps of the fatty acid biosynthesis
pathway, which is further upstream of the wax
decarnylation pathway, were also impacted in the mu-
tant leaf tissues [4]. It must be noted, however, that it
is unclear whether the suppression of CERI resulted in
the overall decrease in wax pathway genes or whether
CERI is suppressed as a part of the overall down-
regulation of the wax pathway, ultimately leading to a defi-
ciency in wax decarbonylation and, consequently, reduced
wax deposition.

Conclusions

The IW1, IW2 genes in wheat, and the WxWx gene in
banana are dominant waxless character genes [23-25].
Except for these genes, however, no dominant glossy
mutant has been reported to date. As distinguished
from the Arabidopsis cer mutants reported thus far, the
BnaA.GL allele behaves in a dominant fashion in regu-
lating wax biosynthesis, although many details remain to
be resolved. The glossy phenotype is a classic genetic
marker trait in Brassica and could be used as a morpho-
logical marker in hybrid breeding. Molecular mapping and
cloning of the BnaA.GL genes will also allow novel ap-
proaches for manipulating cuticle permeability to increase
drought tolerance.

Methods

Plant materials and growth conditions

The B. napus glossy mutant 6-1025 (BnaA.GL, from
Chengdu Academy of Agriculture and forestry Science)
and WT 6-3476 were used in this study. The F, popula-
tion of 187 plants was derived from the WT x GL mutant
cross. The F; plants were backcrossed with WT for three
generations to generate a BC3F; population; the glossy in-
dividuals were selfed and the BC3F, seeds were harvested.
More than 1200 BC3F, individuals were planted, and 300
individuals without a glossy phenotype were used for map-
ping purposes. The mapping populations were grown in
the research field of Huazhong Agricultural University,
Wuhan, People’ s Republic of China.

The plants used for the wax analysis, water permeability
analysis and RNA extraction were grown in a soil-based
compost under standard greenhouse conditions with a
16-h light/8-h dark cycle. The day/night temperature
was 22/17°C (NRC Saskatoon, SK, Canada).

SEM and TEM analyses

SEM was used to study the surface of leaves and stems
of the mutant and WT plants. Fresh leaves and stems were
collected after 4 weeks of growth and fixed overnight
in 2% glutaraldehyde. The ensuing procedures were
performed as previously reported [50].

For TEM analysis, fresh leaves and stems were collected
from plants after 4 weeks of growth, and the tissue was
fixed overnight in 2.5% (w/v) glutaraldehyde in 0.1 M
phosphate buffer (pH 7.4). The ensuing procedures were
performed according to a published report [50].

Wax extraction and chemical characterization

Leaves were collected plants after 4 weeks of growth.
Total cuticular wax mixtures were extracted by immers-
ing the leaves in chloroform (CHCl3) twice for 30 s at
room temperature. Equal-area round leaf disks were
cut using a hole-puncher and used in the wax analysis.
For the TLC analysis, the wax mixtures were separated
on silica gel 60 using hexane-diethylether-acetic acid
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(90:7.5:1 [v/v/v]) and visualized by staining with primu-
line and UV light [41,42]. Each component was ex-
tracted from the silica gel, and n-tetracosane (C24
alkane) was added as an internal standard [41]. The
solvent was subsequently evaporated under a gentle
stream of nitrogen and treated with a mixture of 20 pL
of bis-N, N-(trimethylsilyl) trifluoroacetamide (Sigma)
in pyridine for 1 h at 70°C to convert all the waxes into
trimethylsilyl derivatives. The wax composition was de-
termined by capillary GC (6890 N; Agilent) and a mass
spectrometric detector (5973 N; Agilent). The initial
temperature of 50°C was held for 2 min, increased at
40°C/min to 200°C, held for 2 min at 200°C, increased
again at 3°C/min to 320°C and held for 30 min at 320°C.
Quantification was based on the flame ionization de-
tector peak areas and the internal standard (C24). The
total amount of cuticular wax was expressed per unit of
leaf surface area, and the areas were determined by .
The molecular identities were determined using a GC
Agilent 6890 and an Agilent 5973 mass spectrometric
detector. The GC program used was according to previ-
ous reports [41].

Mapping

DNA was extracted using a modified CTAB (cetyltri-
methylammonium bromide) method [51]. For con-
structing a rough flanking map linked to the BnaA.GL
gene, an F, population consisting of 187 individuals was
used. The glossy phenotype as a genetic marker (Y) was
used, and a linkage map was constructed as previously
reported [52]. A bulk segregant analysis (BSA) com-
bined with the AFLP technique was used to identify
molecular markers linked to the Glossy gene (BnaA.GL)
[31]. Three plants of each phenotypic class (normal and
glossy plants) from the BC3; mapping population were
randomly selected for constructing the normal bulk
(NB) and glossy bulk (GB). The AFLP analysis and
conversion of AFLP markers into SCAR markers were
performed as previously described by Zeng et al. [53].
The IP and SSR marker development was performed as
previously described by Xia et al. [39]. For primers used
in mapping see Additional file 6.

A SNP polymorphism analysis was performed using
SNP chip assay combined with BSA. WT, mutant, normal
bulk (NB) and glossy bulk (GB) individuals were geno-
typed using the Illumina Brassica 60 K Beadchip devel-
oped by an international Brassica SNP array Consortium,
which was led by AAFC (Agriculture and Agri-Food,
Canada). Genotyping was performed according to the
manufacturer’s recommendations using the Illumina iScan
System (Illumina Inc., San Diego, CA).

Subsequently, a BC3F, population consisting of more
than 1200 individuals was generated, and 300 indivi-
duals with wax from this population were used. The data
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of these markers and individual phenotypes were analyzed
with the MAP-MAKER/EXP 3.0 program [54]. All the
markers linked to genes were used to compare the micro-
colinearity of the regions flanking the genes with B. rapa
and Arabidopsis, as indicated in previous reports [39].

cDNA microarray assay

WT, GL mutant and DH line bulks based on phenotype
were used. Three independent RNA samples for each were
assayed and analyzed. Total RNA of 4-week-old leaves was
extracted using the RNeasy Plant Mini Kit (Qiagen).

Approximately 500 ng total RNA was reverse transcribed
using Message™ II aRNA Amplification Kit (Ambion)
according to the manufacturer's protocol. A single dye
(Cy5) was used for labeling (Kreatch diagnostics).

A total of 12 independent hybridizations were per-
formed using the Combimatrix Brassica 90 K microarray
produced at the NRC-PBI (National Research Council
Plant Biotechnology Institute) (The Hybridization Custom
Array™ 90 K Microarray: Protocol PTL020). Over 94,000
unique DNA probes were synthesized in situ using
the patented Combimatrix virtual-flask technology.
The semiconductor-based arrays consist of 29 row x 34
column spots. Data collection was performed as previously
described by Zhu et al. [55].

R software was used to statistically analyze the micro-
array data. Data preprocessing and DEG detection were
conducted with the bioconductor [56] packages limma
[57] and RankProd [58], respectively. DEGs were se-
lected with FDR <0.05 as a threshold. The GO term
classification of the DEGs was completed according to
ATH_GO_GOSLIM from TAIR [59].

Analysis of transcription levels by quantitative RT-PCR
and semiquantitative RT-PCR

The primer pairs for the quantitative real-time RT-PCR
and semiquantitative RT-PCR were specific for the genes
and designed to cover an 80-200-bp region (Additional
file 6). First-strand cDNAs were synthesized in a 20-puL
reaction volume containing approximately 1 pg RNA
using the PrimeScript™ 1st Strand ¢cDNA Synthesis Kit
(Takara) with oligo dT primers. BnACTIN was applied
as an endogenous control for standardization for the
real-time PCR templates, and total RNA was extracted
from 6-week-old leaves. Quantitative RT-PCR was per-
formed using SYBR Green Real-time PCR Master Mix
(TOYOBO) with 0.8 pL of each primer (10 pM) and
1 pL of 1:100 diluted cDNA template in a 20-ul reac-
tion mixture. The results from three biological repli-
cates are shown.

For semiquantitative real-time PCR templates, 18S
rRNA was applied as an endogenous control. Amplified
PCR products (10 pL) were resolved on a 1% (w/v) agarose
gel with 1x TBE running buffer.
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Toluidine blue (TB) test

Toluidine blue is a metachromatic dye that can bind to
free anionic groups, such as carboxylate and phosphate.
The TB test is able to evaluate water permeability due to
surface deficiency, as described previously [33,60,61].
Leaves and stems from four-week-old plants were incu-
bated in an aqueous solution of 0.05% (w/v) Toluidine
blue for 2 min and then rinsed with water to remove
excess TB from the leaf surface.

Chlorophyll measurements

The leaves of 4-week-old plants were used for chloro-
phyll measurement. Approximately 2 g of each leaf
sample was incubated on ice for 20 min and immersed
in 40 mL of 80% ethanol in 50-mL aluminum foil-
wrapped conical tubes at room temperature. Aliquots
of 500 pl were removed from the solution every 20 min
after the initial immersion. The amount of extracted
chlorophyll was quantified by measuring the absorb-
ance at 647 and 664 nm using a spectrophotometer, as
described previously [62]. We calculated the concen-
tration of total chlorophyll in the fresh leaf tissue using
the following equation: total micromoles chlorophyll =
7.93(A664) + 19.53(A647). Chlorophyll efflux during
each interval was expressed as a percentage of the
chlorophyll over the total chlorophyll extracted after
24 h [62].

Measurement of water loss

For the water loss rate analysis, 4-week-old leaves were
excised and soaked in water for 60 min in the dark. The
leaves were dried and weighed at the indicated time
points at room temperature and dried in a 70°C oven
overnight until the dry weight was constant. Total water
was calculated as the fresh weight minus the dry weight
after the heat treatment. The water loss at each interval
was expressed as a percentage of the water loss over the
total water [7,10].

Availability of supporting data

Results for the ¢cDNA microarray assays are available
through ArrayExpress http://www.ebi.ac.uk/arrayexpress/
website under the accession number E-MEXP-3989.

The sequences of BnCERI in WT (BnCERI.I) and in
GL mutant (BnCERI.2) are available in the NCBI GenBank
under the accession numbers KF724897, KF72488,
respectively.

Additional files

Additional file 1: Comparison of water permeability of leaf
between WT and GL mutant. Chlorophyll leaching assays (expressed as
a percentage of total chlorophyll extracted after 24 h). The data represent
means of mean values + SE (n = 3). After 100 min of incubation with
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alcohol (80% w/v), mutant leaves had lost about 88% of their chlorophyll,
while the WT only lost about 54%. Water loss assays (expressed as a
percentage of total water loss after 24 h). The data represent means of
mean values + SE (n = 3). The leaf at 4 weeks post emergency excised
and soaked in water for 60 min in the dark. They were dried and
weighed per 60 min.

Additional file 2: Explanations to microarray data.

Additional file 3: Functional classification of genes. The number
follows the term indicate the number of DEGs in this class. Functional
classification of up-regulated genes in WT VS mutant. A. Functional
classification of up-regulated genes in DHNB VS DHGB. B. Functional
classification of up-regulated genes in both comparation. C. Functional
classification of down-regulated genes in WT VS mutant. D. Functional
classification of down-regulated genes in DHNB VS DHGB. Functional
classification of down-regulated genes in both comparation.

Additional file 4: The major sequence differences between the WT
and GL mutant.

Additional file 5: Most of the detected SNPs were located on
chromosome N9.

Additional file 6: Primers used in this study.
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CER: ECERIFERUM; VLCFA: Very long-chain fatty acid; DH: Double haploid;
SEM: Scanning electron microscopy; TEM: transmission electron microscopy;
TB: Toluidine Blue; TLC: Thin-layer chromatography; AFLP: Amplified
fragment-length polymorphism; SCAR: Sequence-characterized amplified
region; SNP: Single-nucleotide polymorphism; BSA: With bulk segregant
analysis; IP: Intron polymorphism; SSR: Two single sequence repeat;

BAC: Bacterial artificial chromosome; BCCP: Biotin carboxyl carrier protein;
FATB: Fatty acyl-ACP thioesterases B; MAH1: Midchain alkane hydroxylase;
WSD1: Bifunctional enzyme wax synthase.
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