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Abstract

Background: MicroRNAs (miRNAs) are a class of regulatory small RNAs (sRNAs) that down-regulate target genes by
mRNA degradation or translational repression. Numerous plant miRNAs have been identified. Evidence is increasing
for their crucial roles during plant development. In the globally important crop of wheat (Triticum aestivum L.), the
process by which grains are formed determines yield and end-use quality. However, little is known about miRNA-
mediated developmental regulation of grain production. Here, we applied high-throughput sRNA sequencing and
genome-wide mining to identify miRNAs potentially involved in the developmental regulation of wheat grains.

Results: Four sRNA libraries were generated and sequenced from developing grains sampled at 5, 15, 25, and
30 days after pollination (DAP). Through integrative analysis, we identified 605 miRNAs (representing 540 families)
and found that 86 are possibly involved in the control of grain-filling. Additionally, 268 novel miRNAs (182 families)
were identified, with 18 of them also potentially related to that maturation process. Our target predictions indicated
that the 104 grain filling-associated miRNAs might target a set of wheat genes involved in various biological
processes, including the metabolism of carbohydrates and proteins, transcription, cellular transport, cell organization
and biogenesis, stress responses, signal transduction, and phytohormone signaling. Together, these results
demonstrate that the developmental steps by which wheat grains are filled is correlated with miRNA-mediated
gene regulatory networks.

Conclusions: We identified 605 conserved and 268 novel miRNAs from wheat grains. Of these, 104 are potentially
involved in the regulation of grain-filling. Our dataset provides a useful resource for investigating miRNA-mediated
regulatory mechanisms in cereal grains, and our results suggest that miRNAs contribute to this regulation during a
crucial phase in determining grain yield and flour quality.
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Background
Endogenous small RNAs (sRNAs) in plants, such as
microRNAs (miRNAs) and short-interfering RNAs
(siRNAs), were first reported in 2002 [1,2]. Since then,
our knowledge about these regulatory molecules has
been vastly improved [3]. Plant miRNAs are a class of
short (~21-nt) sRNAs produced from non-coding, im-
perfectly complementary (stem-loop) RNA precursors
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[4], which can be transcribed by RNA polymerase II [5].
The majority of currently known plant miRNAs was
identified via size-selected cloning and sequencing [5-7].
Recently developed high-throughput sequencing stra-
tegies have greatly expanded the depth of miRNA clo-
ning coverage [8,9]. In addition to model species, more
sRNAs have been identified from crop plants such as
rice [10-12], maize [13,14], and wheat [15,16]. Studies of
plant miRNAs have indicated that this group of regula-
tory molecules plays crucial roles in numerous bio-
logical processes, e.g., general plant development [17,18]
and responses to environmental signals [10,19-21]. More-
over, plant miRNAs and their roles in plant develop-
ment have been extensively reviewed [3,22].
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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Figure 1 Weight and appearance of developing wheat grains.
A: patterns of dry matter accumulation; B: representative grains at
each sampled stage. Scale bars represent 1 mm.
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Seed production is a unique transitional process during
the life cycle of higher plants, providing a physical link be-
tween parental and progeny sporophytic generations [23].
It is likely that the roles of miRNAs in gene regulation are
as critical in maturing seeds as they are in other tissues
[24-26]. The millions of short sequence reads that have
resulted from next-generation sequencing technologies
make that technique explicitly suitable for the profiling
of miRNAs. Because of high-throughput sequencing, re-
searchers have been able to identify conserved and novel
miRNAs in the seeds of rice [7,11], maize [27], barley [28],
and Brassica napus [29]. Their presence in those species
suggests that miRNA-mediated negative regulation has a
crucial role during seed development.
Hexaploid wheat is one of the most valuable cereal

crops, occupying 17% of all cultivated land and provi-
ding approximately 55% of the carbohydrates consumed
by humans worldwide [30]. In addition to being a food
source, these grains are used as livestock feed and indus-
trial raw materials, which mainly exploits the endosperm
reserves of starch and proteins that account for approxi-
mately 80% of a mature seed [31]. Hence, the process by
which wheat grains develop directly determines yields
and quality of the end product. To improve those traits,
researchers must have a keen molecular understanding
of the mechanisms that modulate those steps in plant
growth. Because little is known about miRNA-mediated
regulation in developing wheat grains, our study em-
ployed high-throughput sequencing to characterize the
miRNAs that potentially participate.

Results
Dry matter accumulation and appearance of maturing grain
To evaluate the developmental process for wheat grains,
we monitored the pattern by which dry matter was accu-
mulated in those tissues. Here, seed weights increased
sharply between 12 and 18 days after pollination (DAP)
and continued to rise until 30 DAP (Figure 1A). Based
on the pattern we observed, we continued our focus
mainly on activities between 15 and 25 DAP, the key
period for grain-filling, as well as on grains sampled at
both 5 DAP and 30 DAP so that we could compare the
expression profiles of miRNAs near the beginning and
end of that stage of formation. The size and appearance
of developing caryopses at those time points are shown
in Figure 1B.

Deep-sequencing of sRNAs in developing grains
To investigate the enrichment of miRNAs, we generated
four libraries from developing wheat grains sampled on
four dates. After sequencing via the Illumina Genome
Analyzer, we removed low-quality reads and corrupted
adapter sequences (reads <18 nt or >30 nt long). In all, we
obtained 13,525,513 reads (3,492,987 unique) representing
5 DAP, 14,460,398 reads (6,015,357 unique) for 15 DAP,
15,310,251 reads (9,243,757 unique) for 25 DAP, and
13,282,907 reads (6,200,456 unique) for 30 DAP. Our as-
sessment of the size distributions demonstrated that ap-
proximately 98% of the detected sRNAs were 18 to 25 nt
long, and that 24-nt sRNAs were prevailing in all stages
whereas those that were 21 nt long were less abundant
(Figure 2A). Further analysis revealed that the distribution
of redundant sRNAs in various size classes was quite simi-
lar among the libraries from 5, 15, and 25 DAP grains. We
found it interesting that the abundance of 24-nt redundant
sRNAs was significantly decreased in 30 DAP grains while
the proportion of those that were 18 nt to 22 nt were obvi-
ously increased (Figure 2A). The distribution patterns
for unique sRNAs were similar among all four libraries
(Figure 2B). The patterns of distribution between redun-
dant and unique sRNAs indicated that the abundance of
sRNAs fluctuated during the period of seed development.
Therefore, we evaluated their relative abundance from 18
to 25 nt based on the ratio of redundant/unique and found
that expression was generally altered over time (Figure 2C).
Transcript levels for most sRNA sizes were obviously de-
creased in the 25 DAP samples. This was especially true
for 24-nt sRNAs, which were gradually repressed. The ca-
nonical heterochromatic siRNAs are 24 nt long and these
results suggested that siRNA-mediated gene regulation
might be involved in the control of grain formation.
For annotation, we used the sRNA datasets to query

the non-coding RNAs deposited in the NCBI GenBank
(http://www.ncbi.nlm.nih.gov), Rfam database [32], and

http://www.ncbi.nlm.nih.gov
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Figure 2 Distribution of sRNAs detected in developing grains.
A: redundant sRNAs; B: unique sRNAs; C: ratio of redundant/unique.
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miRBase (http://www.mirbase.org/). They were then classi-
fied into seven categories: miRNA, rRNA, siRNA, snRNA,
snoRNA, tRNA, and those detected but without annota-
tion (Additional file 1). The number of unique miRNAs in-
creased gradually as the process of grain-filling continued
(Figure 3A), implying that miRNA-mediated gene silencing
is involved in developmental regulation. Moreover, the
total read of miRNAs was relatively lower at 25 DAP
(Figure 3B), leading to a lower ratio (redundant/unique) of
miRNAs at that time point (Figure 3C). Small RNAs were
more abundant in the 25 DAP library than in any other
(Figure 3D), suggesting that miRNA expression was gene-
rally down-regulated at that later stage of maturation.

Conserved miRNAs differentially expressed in developing
grains
To identify the conserved miRNAs in developing grains,
we aligned the sRNA sequences with known mature
miRNAs from plants in the miRBase. In all, 605 miRNAs
representing 540 families were identified (Additional file 2).
In general, we found that 424 conserved miRNAs (382
families) were differentially expressed (p-values <0.05) over
time (Additional file 3). Their scatter plots illustrated the
similarities during the stages of grain formation, as well as
the broad relationships among miRNA expression profiles
from 5 DAP through 30 DAP (Figure 4). However, some
differences in profiles were apparent from this exami-
nation. When compared with values at 5 DAP, 231, 266,
and 309 miRNAs were significantly up- or down-regulated
(p <0.05) at 15 DAP, 25 DAP, and 30 DAP, respectively. It is
likely that the number of up-regulated miRNAs was gra-
dually increased (114, 147, and 211 at 15 DAP, 25 DAP,
and 30 DAP, respectively) over time, demonstrating that
mechanisms for miRNA-mediated repression are involved
in this developmental regulation.

Conserved miRNAs associated with grain-filling
Among those 424 differentially expressed miRNAs, ex-
pression was lower for 284 miRNAs, i.e., those with fewer
than 20 TPMs (transcripts per million). For our investi-
gation, we selected 140 miRNAs (125 families) highly
expressed (at least has a TPM ≥20 in the four stages
detected) in developing grains (Additional file 3). To find
common expression patterns, we performed hierarchical
clustering based on fold-changes in expression from a base
line of 5 DAP. In all, 86 miRNAs could be sorted into
eight clusters (Figure 5, Additional file 4) that we consi-
dered to be potentially involved in the regulation of grain-
filling.
The first four clusters (I-IV) of conserved miRNAs

generally included those that were up-regulated in the
process of grain-filling. Clusters I and II comprised 16
miRNAs with expression that was very low at 5 DAP,
but which greatly increased at 15 DAP, and remained
high for most miRNAs through 30 DAP. Considering
that 15 DAP and 25 DAP are crucial stages during which
a complex gene regulatory network is involved in endo-
sperm development, we concluded that those signifi-
cantly induced miRNA candidates in Clusters I and II
might have important regulatory roles. Expression of
the miRNAs in Cluster III was gradually increased over
time. For example, miR167a, miR156a, and miR156c,
were quite abundant, with expression levels at 5 DAP of

http://www.mirbase.org
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Figure 3 Enrichment of miRNAs in developing grains. A: unique miRNAs; B: redundant miRNAs; C: ratio of redundant/unique; D: total sRNAs.
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1825.73, 845.74, and 212.12 TPM, respectively (Additional
file 4). Although they were up-regulated by only a few fold
at 15 DAP, they could have a greater regulatory effect be-
cause of their more abundant basis. Cluster IV had 11
miRNAs that were only slightly up-regulated. Of these,
eight were more highly expressed, with TPM values of
>100 at 15 DAP and 25 DAP. For example, the TPMs for
miR168a were 7509.36 at 5 DAP and 21776.72 at 15 DAP.
Four clusters of miRNAs showed repression, including

six members that were rapidly down-regulated in Cluster
V. For example, although miR473 was highly expressed
at 5 DAP (TPM= 150.97), its level decreased to 0.13
TPM at 25 DAP and was undetectable in 30 DAP grains
(Additional file 4). Clusters VI and VII contained 3 and
9 miRNAs, respectively, all of which were significantly
repressed at 15 DAP and/or 25 DAP. Finally, Cluster
VIII had 20 members, including miR2628 and miR1146,
were gradually repressed over time.

Novel miRNAs identified in wheat grains
Novel miRNAs were predicted according to the characte-
ristic hairpin structures of their precursors, which distin-
guishes them from other endogenous sRNAs [33,34]. A
total of 268 putative novel miRNAs (182 families) were
identified (Additional file 5, Additional file 6). Among
them, 24 showed at least a relatively higher expression
(TPM ≥10) in developing grains (Table 1). We were inter-
ested to learn that Ta-miR034-3p and Ta-miR034-5p are
homologous to complementary sequences in the same
stem-loop (Figure 6). Moreover, Ta-miR007-5p and Ta-
miR007-3p were also located in the same stem-loop
generated from a wheat EST (GB#: CJ832040).
Further analysis revealed that these 24 highly expressed

novel miRNAs could be sorted into Clusters I through
VI (Figure 7, Table 1). Cluster I contained four miRNAs
for which expression rose sharply at 15 DAP and was
maintained at a high level throughout the process of
grain-filling. For example, Ta-miR021-1-5p was strongly
up-regulated over time, peaking at 30 DAP (TPM =
7480.74). Expression of the five miRNAs within Cluster II
was obviously increased at 15, 25, and 30 DAP when com-
pared with levels detected at 5 DAP.
In Cluster III, Ta-miR042-3p, Ta-miR107-2-3p, and Ta-

miR106-5p were highly expressed at 15 DAP, but not at
any other developmental stages. By contrast, Ta-miR051-
3p and especially Ta-miR154-5p, both in Cluster IV,
were significantly up-regulated at 25 and 30 DAP. In
Cluster V, four novel miRNAs were down-regulated over
time. Ta-miR068-5p and Ta-miR057-1-3p were gradually
repressed in developing grains whereas Ta-miR007-5p
and Ta-miR007-3p were highly expressed at 5 and 15
DAP, but undetectable at 25 and 30 DAP. This contrast
in up- and down-regulation among these 18 novel
miRNAs from Clusters I through V demonstrated their
important regulatory roles.
Finally, the novel miRNAs included in Cluster VI were

either expressed only at 30 DAP (near the completion
of the filling stage) or else their transcript abundance
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fluctuated over time. Therefore, their activity did not
seem to be associated with this type of developmental
regulation. The exception to this was Ta-miR034-5p, also
in Cluster VI, which showed strong expression at all
sampled time points.

Validation of miRNAs in developing grains
We conducted quantitative real time PCR (qRT-PCR) to
validate the expression patterns of miRNAs identified via
high-throughput sequencing. Based on their patterns of
development-regulated expression, as determined by deep-
sequencing, we selected eight miRNAs for examination.
Seven of them -- miR167a, miR397, miR156a, Ta-miR021-
1-5p, Ta-miR004-1-5p, Ta-miR044-1-3p, and miR827a --
were predicted to be induced while miR1852 was expected
to be repressed. In fact, miR167a, miR397, miR156a, Ta-
miR004-1-5p, Ta-miR044-1-3p,and miR827a were signifi-
cantly up-regulated by 15 DAP and 25 DAP, with expression
then peaking at 30 DAP (Figure 8). Their expression profiles
were quite similar to those determined by high-throughput
sequencing (Figures 5, 7). Although Ta-miR021-1-5p was
up- regulated over time while miR1852 was down-
regulated, the degree to which their expression was altered
was not as dramatic as had been demonstrated with high-
throughput sequencing (Additional file 4, Table 1). Those
responses may have been affected by the relative abun-
dance of the other sRNAs. Nevertheless, our qRT-PCR
results were generally consistent with the data obtained
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from our high-throughput sequencing, thereby indicating
that it is possible to create a set of grain filling-associated
miRNAs through deep-sequencing of wheat.

Targets of grain filling-associated miRNAs
The potential targets of 86 grain filling-associated conserved
miRNAs (Additional file 4), as well as 24 highly expressed
novel miRNAs (Table 1), were computationally predicted
using the Triticum aestivum (wheat) unigene library, DFCI
Gene Index (TAGI; version 12), and the psRNATarget
program (http://plantgrn.noble.org/psRNATarget/) [35]. All
of the targets predicted for those conserved and novel
miRNAs are shown in Additional file 7 and Additional
file 8. Functional annotations of those target genes were
performed by BLAST analysis with NCBI and it is found
that these grain filling-associated miRNAs potentially tar-
get to multiple wheat genes, which including transcription
factors, proteins involved in the membrane transporting,
ubiquitin-mediated proteolysis, carbohydrate metabolism,
responding to stress, signal transduction and phytohor-
mone signaling.
To validate the expression patterns of potential targets

for grain filling-associated miRNAs, we selected six tar-
get genes (TC383723, TC384445, TC370322, TC400547,
DR734203 and TC370450) of candidate miRNAs, which
were significantly up-regulated with the development of

http://plantgrn.noble.org/psRNATarget/


Table 1 Novel miRNAs highly expressed in developing wheat grains

miRNA Sequence 5′ to 3′ Length (nt) Abundance (TPM) Target description (Accession No.)

5DAP 15DAP 25DAP 30DAP

Cluster I

Ta-miR023b-5p UCGCAAAUAAUGGUGGCCCUCG 22 – 6.09 9.21 12.05 Uncharacterized protein (GW667699;
TC402735)

Ta-miR128-5p GUGGAUGAUGAGAUCACAAGUAA 23 – 21.58 29.78 23.56 DRG1 (TC386119); Glycolipid transfer protein
(CA648678); Polyol transporter 5 (CA681870).

Ta-miR113-5p UGGCUACUUCCUUUCCCUUGCC 22 – 22.68 13.52 14.08 bZIP transcription factor (TC448705);
Phytosulfokine receptor 1 (TC443080).

Ta-miR021-1-5p UCUGGCGAGGGACAUACACUGU 22 1.26 61.89 1771.23 7480.74 Protein Rf1 (DR736808); F-box protein PP2-
A13-like (TC381152).

Cluster II

Ta-miR018-5p UCUGUAAACAAAUGUAGGACG 21 2.22 24.55 8.69 59.25 CBL-interacting protein kinase (TC376281);
P450 reductase (CK211052); Putative protein
kinase (TC404251).

Ta-miR004-1-5p UCACAAAUAUAAGAUGUUCU 20 2.96 12.72 6.73 16.64 Sucrose-phosphate synthase (TC410332);
Nectarin-3 (CA728499); CTD-phosphatase
(TC373796); TIF3 (TC398757); receptor-like
kinase (TC369729); Lipoyl synthase
(TC458824).

Ta-miR034-3p AGGGGGCAAUCUCACCUCAAC 21 6.21 14.31 8.16 27.18 Serpin-Z2B (BQ243327)

Ta-miR036-3p UUCCGAAAGGCUUGAAGCAAAU 22 8.87 55.60 21.03 24.99 Light-induced protein (TC387010); SH3
domain protein (DR732608); Aquaporin
TIP3-2 (TC390755).

Ta-miR044-1-3p UGAGAAGGUAGAUCAUAAUAGC 22 3174.59 5490.93 3890.60 9689.90 Mla-like protein (TC368609); NBS-LRR
resistance protein (GH723128).

Cluster III

Ta-miR042-3p UGAUUGAGCCGUGCCAAUAUC 21 – 11.20 – – WD and FYVE containing protein 3
(TC418522); Papain-like cysteine proteinase
(TC448847).

Ta-miR107-2-3p AAAAUACUUGUCGGAGAAAUG 21 – 12.66 – – Uncharacterized protein (CA664743;
DR734972; CK215832)

Ta-miR106-5p CGGUGGAGCUGGUUGAUGGAC 21 – 141.21 – – MYB39 (BE497135); HD-ZIP ROC8
(TC459241); SRG1 (CD454006); alpha-
glucosidase (TC393877).

Cluster IV

Ta-miR154-5p GGCGAGGGACAUACACUGUACA 22 – – 1772.21 7485.33 Nucleoredoxin (CA605146)

Ta-miR051-3p AAUAAGUGUGUGAUUGCUACU 21 1.18 – 10.19 15.73 Serine/threonine-protein phosphatase PP2A-
4 (TC437472); BONZAI 3 (TC398798).

Cluster V

Ta-miR068-5p CUCUCUCGGGAGGGCUGAUC 20 14.64 8.58 1.50 1.36

Ta-miR057-1-3p UGGCCGUUGGUAGAGUAGGAGA 22 67.80 13.28 2.74 2.63 hypothetical protein (TC415409); ribosomal
protein S14 (TC421110).

Ta-miR007-5p CUUAAUUUUGUAAUCUUCUGG 21 109.64 149.93 – – NBS-LRR protein (TC426546); superkiller
viralicidic activity 2-like 2 (TC441282).

Ta-miR007-3p AGAAGAUUAGAAGAUUAAGCA 21 666.30 1234.41 – – V-type proton ATPase (TC454891); 2-hydroxy-
6-oxo-6-phenylhexa-2,4-dienoate hydrolase
(CV759216).

Cluster VI

Ta-miR158-3p AAGACAACUAAUUUGGGACGG 21 – – – 12.72 pre-mRNA-splicing factor (TC435842);
receptor protein kinase (TC390384).

Ta-miR159-3p UGUAGAAAUAGGCACCGGUGC 21 – – – 14.83 ATP sulfurylase (TC415167); DCN1 protein
(TC382978); acetylglucosaminyltransferase
(TC385422).

Ta-miR033-3p UCAAAGGAUGAGCAAAUACU 20 1.77 3.94 – 10.09 Adenosylhomocysteinase (TC437024);
met-10+ protein (TC423089); chaperonin
(TC384436).
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Table 1 Novel miRNAs highly expressed in developing wheat grains (Continued)

Ta-miR053-3p AGGUGGUUAGGAUACUCGGCU 21 1.85 4.15 1.83 10.62 Acetyl-CoA carboxylase (CK153030)

Ta-miR039-5p CAGAACCAGAAUGAGUAGCUC 21 18.93 – 21.23 – NAC (TC389150); Elongation factor 1
(TC380217); Ubiquitin-protein ligase
(GH729553).

Ta-miR034-5p UGAGAUGAGAUUACCCCAUAC 21 85.17 75.79 56.76 163.67 F-box domain containing protein
(TC411563); hypothetical protein (CJ660567).
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grains, and gene specific qRT-PCR was performed. The
expression analysis demonstrated that all detected target
genes were strongly down-regulated during grain-filling
(Figure 9), which were negatively correlated to the expres-
sion profiles of their corresponding miRNAs (Additional
file 4). These results suggested that miRNAs play a crucial
regulatory role during the developmental processes of
grain-filling in wheat.

Discussion
For most eukaryotic cells, miRNAs are a class of regula-
tory sRNAs involved in gene regulation. In plants, some
miRNAs play crucial roles in various developmental pro-
cesses, such as the control of root and shoot architecture,
transitions from the vegetative to reproductive phase,
and leaf and flower morphogenesis [22,28]. In wheat, 43
miRNAs have been detected in pooled tissue samples
(leaves, roots, and spikes) as well as stressed leaves [15,36].
Here, we identified 540 conserved miRNA families and
182 novel miRNA families, with many being differentially
expressed during grain-filling in wheat. Despite the grow-
ing knowledge about miRNA functions in plants, only
those of highly conserved miRNAs, such as miR156 and
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miR172, have been investigated in crop species. For ex-
ample, miR156 in rice regulates SPL (Squamosa Promoter-
binding protein-Like), which promotes panicle branching
and higher grain productivity [37]. Likewise, miR172 regu-
lates AP2-like genes that are involved in controlling floral
organ identity in rice, maize, and barley [38-40]. Both of
these miRNAs were significantly up-regulated and ex-
pressed at high levels in our wheat grains during the filling
process. We also predicted several new potential targets
for miR156 and miR172, such as MYB-related protein
(TC#: TC370322) and the starch negative regulator RSR1
(GB#: CA486144).
The processes by which cereal grains mature strongly

influence their yield and flour quality. Formation of the
starchy endosperm, which is the greatest contributor to
human nutrition, occurs in several stages [40]. In wheat,
a major transition point occurs at about 14 d after pol-
lination, essentially marking the end of endosperm cell
division and the start of grain-filling (i.e., deposition of
starch and gluten proteins) in those cells [31,40]. After
approximately 28 d, that deposition of storage reserves
decreases and the grains begin to desiccate. To investigate
the regulatory mechanisms mediated by miRNAs in wheat,
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especially those involved in grain-filling, we used high-
throughout sequencing for profiling at 5, 15, 25, and 30
DAP, and identified a number of grain filling-associated
miRNAs (Additional file 5 and Table 1), which were signi-
ficantly up- or down- regulated during grain formation.
Several grain filling –associated miRNAs identified in this
study have also been previously detected in other cereal
seeds. For example, miR156a, miR167d, miR168a, and
miR172a are significantly up-regulated in barley grains
[28]. Additionally, these miRNAs (except miR172a) were
also highly expressed in developing seeds of maize [41]
and rice [7,11]. Therefore, all of these data suggest that
miRNAs play crucial regulatory roles during grain develop-
ment in cereal crops.
Target prediction indicated that grain filling-associated

miRNAs identified in this study potentially target to a set
of wheat genes, which are involved in various biological
processes including carbohydrate metabolism, protein me-
tabolism, developmental processes, transcription, transport,
cell organization and biogenesis, response to stress, signal
transduction and phytohormone signaling (Additional file 4
and Table 1). Of those predicted targets, some may be
involved in regulating starch accumulation or grain forma-
tion. For example, the triose phosphate translocator (TPT),
a potential target of miR1855, is an integral membrane pro-
tein found in the inner membrane of Arabidopsis chloro-
plasts [42]. There, it is responsible for exporting all of the
carbohydrates produced during photosynthesis. Repression
of the TPT leads to an increase in starch synthesis in that
species. Furthermore, phosphoglycerate kinase (a potential
target of miR1037) might participate in regulating carbon-
partitioning between starch and sucrose through a series of
reactions [43]. In addition, miR172 potentially targets AP2
domain transcription factors CA486144 and CA626451,
with the former being a negative regulator of starch pro-
duction, which is repressed during the middle stages of
grain-filling [44]. The expansin gene TC418521, a potential
target of miR1137, was highly abundant during early grain
expansion but later repressed, implying that levels of ex-
pansin are a possible factor in determining grain size [45].
Notably, miR1042 potentially targets a PLAC8 family pro-
tein (TC383018), which functions in regulating cell num-
bers and affects organ size in maize [46]. SNF1-related
protein kinase regulatory subunit beta-1 (TC371426), a
potential target of miR1211, has vital roles in a signal trans-
duction cascade that controls gene expression and carbohy-
drate metabolism in higher plants [47]. Its counterpart in
barley is thought to modulate the accumulation of storage
products during grain-filling [48]. DRG1 (TC386119),
a potential target of Ta-miR128-5p, may be crucial to
the regulation of either vesicle transport or the activity
of enzymes for processing storage proteins [49]. Finally, Ta-
miR004-1-5p potentially represses sucrose-phosphate syn-
thase, which is negatively correlated with the accumulation
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of starch [50]. Overall, our results demonstrate that
miRNA-mediated mechanisms operate in the regulation
of wheat grain development.
Conclusions
We identified 104 miRNAs (86 conserved and 18 novel
ones) associated with grain-filling from wheat and their
potential targets are involved in various biological
processes, e.g., carbohydrate and protein metabolism,
general plant development, transcription, cellular trans-
port, cell organization and biogenesis, stress responses,
signal transduction, and phytohormone signaling.
These miRNA-mediated networks play crucial roles
during the maturation of wheat grains, and our miRNA
data are a valuable resource for future molecular stud-
ies that focus on the control of grain development in
cereal crops.
Methods
Plant materials
Seeds of wheat (Triticum aestivum L. cv. Yumai 18) im-
bibed water for 24 h and were then transferred to a
cold chamber (4°C in the dark). After 4 weeks of
vernalization, they were planted in pots and cultured in
a naturally lit phytotron glasshouse (25°C/20°C day/
night). Developing grains were harvested from the mid-
dle four rows of a head at 3 to 33 DAP. Each experi-
ment comprised 100 grains, with three replicates.
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Samples were immediately frozen in liquid nitrogen
and stored at −80°C.

Total RNA isolation
Total RNA was extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s in-
structions. Prior to nucleic precipitation, two extra chloro-
form washes were performed. A 1% agarose gel, stained by
ethidium bromide, was run to determine the preliminary
integrity of the RNA. All RNA samples were quantified
and examined with an ND 1000 spectrophotometer
(Nanodrop) for contamination with either protein (A260
nm/A280 nm ratios) or reagent (A260 nm/A230 nm
ratios). The RNA integrity number (RIN) was >8 for all
samples, as determined with a 2100 Bioanalyzer (Agilent
Technologies).

Construction of sRNA libraries and deep-sequencing
Total RNAs, extracted from developing wheat grains at 5,
15, 25, and 30 DAP, were purified by electrophoretic sepa-
rations on a 15% TBE-Urea denaturing PAGE gel. The
sRNA regions corresponding to 18- to 30-nucleotide bands
were excised and recovered. Those sRNAs were then 5′
and 3′ RNA adapter-ligated by T4 RNA ligase. At each
step, their lengths were verified before they were purified.
The adapter-ligated sRNAs were transcribed into cDNA by
Super-Script II Reverse Transcriptase (Invitrogen). We
performed PCR-amplifications with primers that annealed
to the ends of the adapters. Amplified cDNA constructs
were also purified and recovered. The final quality of the
cDNA library was ensured by examining its size, purity,
and concentration with the 2100 Bioanalyzer. Four lib-
raries, one for each sampling time point, were used for
sequencing with the Illumina Genome Analyzer at the
Beijing Genomics Institute, Shenzhen, China.

Analysis of sequencing data
Automated base calling of the raw sequence and vector re-
moval were performed with PHRED and CROSS MATCH
programs [51,52]. Any low-quality reads as well as reads
with adaptor contamination that were not ligated to any
other sequences were discarded. The remaining, high-
quality, sequences were trimmed of their adapter se-
quences; only sequences between 18 nt and 30 nt were
analyzed further. The clean reads were mapped to all of
the wheat EST sequences obtained from NCBI by SOAP2
(http://soap.genomics.org.cn/). They were aligned to known
miRNA precursors (http://www.mirbase.org/) to determine
how many identified miRNAs were present. The re-
maining sequences were used in a BLASTN search of the

http://soap.genomics.org.cn/
http://www.mirbase.org/
http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=wheat
http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=wheat
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Rfam database (http://rfam.sanger.ac.uk/) to remove most
of the non-siRNA and non-miRNA sequences. Putative
origins for the remaining sequences were identified by a
BLASTN search against the wheat EST database from
NCBI. The protein-coding EST sequences were removed
and the remaining non-coding candidate ESTs, with per-
fect matches to sRNA sequences, were used for fold-back
via Mireap (http://sourceforge.net/projects/mireap) based
on critical criteria described by Meyers et al. [33]. The sec-
ondary structure of precursors were predicted by the
Mfold web server (http://mfold.rna.albany.edu/?q=mfold/
RNA-Folding-Form) [53].

Expression analysis of miRNAs based on deep-sequencing
data
The frequency of miRNAs was normalized according to
the expression of transcripts per million (TPM). For
each sample, TPM= (Actual miRNA count/Total count
of clean reads) × 106. The fold-change in miRNA expres-
sion at 15, 25, and 30 DAP versus 5 DAP was calculated
as Fold-change = log base 2 (treatment ⁄ control), where
5 DAP served as the control. All p-values were deter-
mined according to the following formula:

pðxjyÞ ¼ N2

N1

� �y xþ yð Þ!
x!y! 1þ N2

N1

� � xþyþ1ð Þ

Cðy≤yminjxÞ ¼
Xy≤ymin

y¼0

pðy xj Þ

D y≥ymaxjxð Þ ¼
X∞

y≥ymax

p yjxð Þ

Prediction and annotation of potential miRNA targets
Predictions of putative targets were performed by using
the most abundant miRNA variants as queries against
the TAGI database at psRNATarget (http://plantgrn.noble.
org/psRNATarget/) [35]. The following default parameters
were applied: maximum expectation value, 3; target acces-
sibility – allowed maximum energy to unpair the target
site (UPE), 25; flanking length around the target site for
target accessibility analysis, 17 bp upstream and 13 bp
downstream; and the range of central mismatch leading to
translational inhibition, 9 to 11 nt. To acquire a better an-
notation of the potential targets, we performed BLAST
searches for their sequences against the NCBI database.

Expressing validation of miRNAs and their targets
We verified the patterns of expression by five conserved
wheat miRNAs -- miR167a, miR397, miR156a, miR1852,
and miR827a – plus three novel miRNAs -- Ta-miR021-
2-5p, Ta-miR004-1-5p, and Ta-miR044-1-3p. A One Step
PrimeScript® miRNA cDNA Synthesis Kit (Perfect Real
Time; TaKaRa) was used for the RT reactions. The
temperature program was adjusted to run for 60 min at
37°C, 5 s at 85°C, and then 4°C. For each miRNA, three
biological replicates were performed. qRT-PCR was
conducted on a Bio-Rad IQ5 Real-Time PCR Detection
System. Each reaction included 2 μL of product from
the diluted RT reactions, 1.0 μL of each primer (forward
and reverse), 12.5 μL of SYBR® Premix Ex Taq™ (Perfect
Real Time; TaKaRa), and 8.5 μL of nuclease-free water.
The reactions were incubated in a 96-well plate at 95°C
for 30 s, followed by 40 cycles of 95°C for 5 s, 60°C for
30 s, and 72°C for 30 s. All reactions were run in three rep-
licates for each sample. The actin gene (GB#: AB181991)
served as the endogenous control. We also selected six tar-
get genes -- TC383723, TC384445, TC370322, TC400547,
TC370450, and DR734203 -- for grain filling-induced
miR1037, miR156a, miR172a, miR1855, and miR2093 in
order to validate their expression profiles in developing
grains via qRT-PCR. All primers are listed in additional
file 9.

Additional files

Additional file 1: Annotation and distribution of sRNAs. The
classifications are listed for all sRNAs detected in the four libraries from
developing wheat grains at 5, 15, 25, and 30 DAP.

Additional file 2: Conserved miRNAs identified in developing wheat
grains. Listed sequences and abundances for all conserved miRNAs
detected.

Additional file 3: Conserved miRNAs differentially expressed during
grain development. Listed sequences, abundances, as well as ratios of
change in expression for differentially expressed miRNAs.

Additional file 4: Conserved miRNAs potentially associated with
grain-filling. Listed sequences, abundances and target descriptions for
86 conserved miRNAs potentially involved in the control of grain-filling.

Additional file 5: Novel miRNAs identified in developing grains.
Listed sequences, abundances and precursors for novel miRNAs
identified.

Additional file 6: Secondary structures of 24 highly expressed
novel miRNAs. Secondary structures of 24 highly expressed novel
miRNAs. Demonstrated stem-loop structures for novel miRNAs presented
in Table 1.

Additional file 7: Predicted targets and annotation for grain filling-
regulated conserved miRNAs. Listed the targets and annotations for
conserved miRNAs from Clusters I through VIII, as shown in Figure 5.

Additional file 8: Predicted targets for novel miRNAs. Listed the
targets and annotations for 24 miRNAs highly expressed in developing
grains and presented in Table 1.

Additional file 9: Primers used in this study.
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