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Discovery, distribution and diversity of
Puroindoline-D1 genes in bread wheat from five
countries (Triticum aestivum L.)
Feng Chen1,2,3*†, Huanhuan Li1† and Dangqun Cui1,2,3*
Abstract

Background: Grain texture is one of the most important characteristics in bread wheat (Triticum aestivum L.).
Puroindoline-D1 genes play the main role in controlling grain texture and are intimately associated with the milling
and processing qualities in bread wheat.

Results: A series of diagnostic molecular markers and dCAPS markers were used to characterize Pina-D1 and Pinb-D1
in 493 wheat cultivars from diverse geographic locations. A primer walking strategy was used to characterize PINA-null
alleles at the DNA level. Results indicated that Chinese landraces encompassing 12 different Puroindoline-D1 allelic
combinations showed the highest diversity, while CIMMYT wheat cultivars containing 3 different Puroindoline-D1 allelic
combinations showed the lowest diversity amongst wheat cultivars from the five countries surveyed. Two novel Pina-
D1 alleles, designated Pina-D1s with a 4,422-bp deletion and Pina-D1u with a 6,460-bp deletion in the Ha (Hardness)
locus, were characterized at the DNA level by a primer walking strategy, and corresponding molecular markers Pina-N3
and Pina-N4 were developed for straightforward identification of the Pina-D1s and Pina-D1u alleles. Analysis of the
association of Puroindoline-D1 alleles with grain texture indicated that wheat cultivars with Pina-null/Pinb-null allele,
possessing an approximate 33-kb deletion in the Ha locus, have the highest SKCS hardness index amongst the
different genotypes used in this study. Moreover, wheat cultivars with the PINA-null allele have significantly higher
SKCS hardness index than those of Pinb-D1b and Pinb-D1p alleles.

Conclusions: Molecular characterization of the Puroindoline-D1 allele was investigated in bread wheat cultivars from
five geographic regions, resulting in the discovery of two new alleles - Pina-D1s and Pina-D1u. Molecular markers were
developed for both alleles. Analysis of the association of the Puroindoline-D1 alleles with grain texture showed that
cultivars with PINA-null allele possessed relatively high SKCS hardness index. This study can provide useful information
for the improvement of wheat quality, as well as give a deeper understanding of the molecular and genetic processes
controlling grain texture in bread wheat.
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Background
Grain texture is one of the most important characteristics
determining the end-use properties of bread wheat
(Triticum aestivum L.). It is well known that grain texture
is mainly controlled by the Ha (Hardness) locus on the
short arm of the 5D chromosome, even though the Ha
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loci were identified on homologous group 5 chromosome
in bread wheat [1]. Compared with the Ha loci on the
5AS and 5BS chromosome, the Ha locus on the 5DS
chromosome possesses three special genes - Puroindoline
a (Pina-D1), Puroindoline b (Pinb-D1) and Grain Softness
Protein (Gsp-1). Puroindoline genes have been proven
to play a key role in modulating the grain texture
in bread wheat [2-4]. However, the mechanism by
which Puroindoline genes soften endosperm remains
unknown. Moreover, the Gsp-1 gene does not perform a
significant function in determining grain texture [5,6].
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The Pina-D1 and Pinb-D1 genes were shown
to encode wheat endosperm-specific lipid binding
proteins with a unique tryptophan-rich domain which
was considered as being responsible for the strong affin-
ity of the Puroindoline-D1 protein to polar lipids. The
Puroindoline-D1 genes were identified in almost all of
wheat and its diploid ancestors as well as related species,
except the tetraploid Triticum species [7]. Both wild-
type Pina-D1 and Pinb-D1 alleles produce a soft endo-
sperm, whereas mutations in either Pina-D1 or Pinb-D1
results in endosperm hardening in bread wheat [8-10].
Since the first reported mutation in Puroindoline-D1
genes was reported in bread wheat [2], many natural
mutations in the Pina-D1 and Pinb-D1 genes have been
found (i.e. Pina-D1b ~ t and Pinb-D1b ~ ac allele (see
reviewed in [11-13])). All these mutations produce
hard endosperm in bread wheat, and variations in
Puroindoline-D1 alleles have also been associated with
differences in wheat quality [14-16]. In most geographic
regions, bread wheat cultivars with the Pinb-D1b allele
are predominant in bread wheat but there are some ex-
ceptions, e.g. the PINA null is the most popular allele in
the CIMMYT (International Maize and Wheat Improve-
ment Center) bread wheat cultivars [17] and Pinb-D1p is
prevalent in the Chinese landrace cultivars [18,19].
Moreover, cultivars with the PINA-null allele tend to
give harder endosperm than those with the Pinb-D1b
[14,18,20-22], and the former may be less preferable
from a milling standpoint. Recently, a novel group of
Pinb-2 variants described as Pinb-like genes [23-25]
demonstrated to an inability to significantly contribute
to grain softening when compared to the Puroindoline-
D1 genes [26,27] and also do not have intimate associ-
ation with some quality characterizations surveyed by
Mohler et al. [28].
Hexaploid wheat has a 29 kb smaller Ha locus in the

D genome than its diploid donator Ae. tauschii, mainly
due to transposable element insertions and two large de-
letions caused by illegitimate recombination (Chantret
et al. [1]). It is possible, a large deletion in the Pina-D1b
allele occurred after the DD genome of Ae. tauschii
evolved into the AABBDD genomes of bread wheat.
Compared with wild type, the Pina-D1b allele possesses
a 15,380-bp deletion containing most of the Pina-D1
coding region [29]. The Pina-D1r has a 10,415-bp
deletion containing the entire Pina coding region and
was identified in both Chinese and Japanese landraces
[30,31]. Two corresponding molecular markers (Pina-N1
and Pina-N2), which span the deletions, were developed
for straightforward identification of the Pina-D1b and
Pina-D1r alleles.
As the largest producer and consumer of bread wheat

in the entire world, China is also a secondary origin
center of bread wheat, holding a highly diverse stock of
wheat germplasm. Of ten Chinese agro-ecological zones,
the Yellow and Huai wheat production region covering
eight provinces including all Henan is the largest and
most important wheat production region, and accounts
for 45% of the country’s total harvested area and 48% of
the total wheat production [32]. Meanwhile, the Yellow
and Huai valley is one of the secondary origin centers of
bread wheat in China, and a large number of landraces
have been collected or developed in this region, some of
which have played an important role in improving wheat
productivity. Moreover, in order to improve the genetic
diversity and avoid germeplasm homogenization, a wide
variety of international germplasms from abroad (e.g.
CIMMYT, Australia, USA, and Europe) have been intro-
duced or exchanged to this region for wheat breeding
programs. The main purpose of this study was to inves-
tigate the distribution of Puroindoline-D1 alleles in land-
races and introduced cultivars of the Yellow and Huai
Valley of China, in order to further characterize the mo-
lecular mechanism of PINA-null alleles, and to develop
a robustly PCR-based molecular marker approach for
wheat breeding.

Methods
Plant materials
In this study, a total of 493 bread wheat cultivars and
advanced lines, including 204 Chinese landrace culti-
vars, 104 CIMMYT cultivars, 88 Australian cultivars,
53 Chilean cultivars and 44 cultivars from the
Netherlands, were used to identify SKCS (Single Kernel
Characterization System) hardness and Puroindoline-D1
genes. Those cultivars or advanced lines, exchanged or
introduced from different countries or regions by Seed
Bank of Henan Agricultural University, possessed certain
or multiple superior agronomic traits and are being
popularly used as parents in wheat breeding programs in
the Yellow and Huai Valleys of China. All the accessions
surveyed in this study were planted at the Zhengzhou
Scientific Research and Education Center of Henan Agri-
cultural University during the 2009–10 and 2010–11
cropping seasons, and grew well under the local manage-
ment practices which involved the use of a supporting
net for Chinese landraces. We harvested them at the dif-
ferent stages according to the maturity of each accession
to make sure each cultivar was fully mature.
Seven near-isogenic lines (NILs) with different

Puroindoline-D1 alleles (Pina-D1b, Pinb-D1b, Pinb-D1c,
Pinb-D1d, Pinb-D1e, Pinb-D1f and Pinb-D1g), kindly
provided by Prof. Xia Xianchun from Chinese Academy
of Agricultural Sciences, were planted in Zhengzhou and
Zhoukou in 2011–2012 cropping seasons, and were used
to further examine the influence of Puroindoline-D1
alleles on grain texture. These lines were developed at
the USDA-ARS Western Wheat Quality Laboratory,
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Pullman, Washington. The NILs were developed by
crossing donor parents possessing unique Puroindoline
a and Puroindoline b gene haplotypes as male to the soft
white spring wheat cultivar Alpowa. Seven backcrosses
were conducted such that the general pedigree of each
NIL is: Alpowa/donor parent//7*Alpowa [33].
The kernel hardness index of all wheat cultivars and

advanced lines were measured by the Perten Single Ker-
nel Characterization System (SKCS) 4100, following the
manufacturer’s operation procedure (Perten Instruments
North America Inc., Springfield, IL). The mean, standard
deviation (SD), and distribution of SKCS hardness data,
were used to classify the cultivars into ‘soft’, ‘mixed’, and
‘hard’ types.

DNA extraction and PCR parameters
Genomic DNA of each hard wheat cultivar surveyed was
separately extracted from three pulverized kernels fol-
lowing the method of Chen et al. [24]. Genomic DNA
from seedlings was used for either marker development
or primer walking strategy [18]. PCR amplifications were
performed in a PTC-200 Peltier Thermocycler or an ABI
9700 and were conducted in 25 μl reactions using
100 ng of genomic DNA, 10 pmol of each primer,
200 μM of each dNTP mix, 1× Taq DNA polymerase re-
action buffer with 1.5 μM of MgCl2, and 0.5 units of Taq
DNA polymerase. The cycling conditions were 94°C for
5 min following 35 cycles of 94°C for 50 s, 50°C to 65°C
for 50 s (primer-specific annealing temperatures, see
Table 1), 72°C for 1 min, following a 10-min final exten-
sion time at 72°C. All PCR products were separated via
gel-electrophoresis on a 1.5% agarose gel stained with
ethidium bromide and visualized by UV light.

Genotyping of Puroindoline-D1 alleles in bread wheat
Five soft wheat cultivars were randomly selected for dir-
ectly sequencing their Pina and Pinb genes with primer
sets Pina-D and Pinb-D (Table 1) because they all should
be wild-type Puroindoline-D1 genes, i.e. Pina-D1a/Pinb-
D1a. We removed all mixed wheat cultivars from this
study as they possibly contained more than one geno-
type for each cultivar [17,34].
For the hard wheat cultivars based on SKCS classifica-

tion, we first divided them into three groups by amplifi-
cations with primer sets Pina-D (containing the whole
Pina-D1 coding region) and Pinb-D (containing whole
Pinb-D1 coding region) (Table 1), i.e. Group I with both
expected fragments of Pina-D1 and Pinb-D1, Group II
with only expected Pinb-D1 fragment and Group III
without any expected fragment of Pina-D1 and Pinb-D1
genes. In Group I, the Pinb-D1b allele was initially iden-
tified by a reciprocal pair of primer sets Pinb-D1b1 and
Pinb-D1b2 [3]. PCR products amplified with the Pinb-D
primer set were digested by restriction enzymes PvuII
and Pf1MI for identification of the Pinb-D1c and Pinb-
D1p alleles, respectively, following the methods of
Lillemo and Morris [9] and Li et al. [19]. For the other
remaining cultivars in this group, the PCR products amp-
lified with the Pina-D and Pinb-D primer sets were dir-
ectly sequenced from both strands by SinoGenoMax Co.,
Ltd (http://www.sinogenomax.com/) and genotypes were
confirmed by alignment with either known Puroindoline-
D1 alleles or the NCBI blast website (http://blast.ncbi.nlm.
nih.gov/).
In Groups II and III, the Pina-N1 and Pina-N2

markers we previously developed [29,30] were firstly
used to identify Pina-D1b and Pina-D1r alleles, respect-
ively, and other remaining cultivars were used for the
primer walking strategy illustrated below.
Development of dCAPS marker
Although the Pina-D1l and Pina-D1n alleles were dis-
covered in previous studies [8,18,30], no valid detection
marker existed. This promoted us to establish a dCAPS
(derived Cleaved Amplified Polymorphic Sequences)
technique as a detection method. Two sets of primers
for amplifying fragments containing SNPs in cultivars
with the Pina-D1l or Pina-D1n allele were designed
using the dCAPS Finder 2.0 (http://helix.wustl.edu/
dcaps/dcaps.html) software along with the appropriate
restriction enzymes [35]. The restriction enzymes BalI
and BsrDI were used to directly digest the PCR products
amplified with primer sets of BalI_Pina-D1l and
BsrDI_Pina-D1n (Table 1), respectively, for the detection
of Pina-D1l and Pina-D1n alleles. Cultivars with 176-bp
and 124-bp digested fragments belong to Pina-D1n and
Pina-D1l alleles, respectively.
Primer walking strategy
Sequences of the Ha-5D loci (CT009735) from NCBI
were used to design genome-specific primers around the
Pina and Pinb coding regions again Ha-5A (CT009586)
and Ha-5B (CT009585) loci. A total of 38 pairs of
primer sets spanning an approximately 40-kb region
(Table 1) were designed between −10,386 bp (reference
to the ATG of the Pina gene) and +11,447 bp (reference
to the ATG of the Pinb gene) for the primer walking
strategy in order to illustrate the molecular mechanism
of cultivars with the absence of the Pina gene or both
Pina and Pinb genes (Figure 1). Based on the failure or
success of PCR amplification, the size and position of
each deletion fragment was deduced and new primers
spanning estimated deletion fragment were designed for
straightforward amplification of pending test samples
(see schematic diagram in Figure 2). PCR products with
successful amplification were sequenced to obtain the
exact size and position of deletions.

http://www.sinogenomax.com/
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://helix.wustl.edu/dcaps/dcaps.html
http://helix.wustl.edu/dcaps/dcaps.html


Table 1 PCR primers used for generating Puroindoline-D1 alleles and primer walking

Primer name Forward primer Reverse primer Tma Expected PCR size

Pinb-D1b1 ATGAAGGCCCTCTTCCTCA CTCATGCTCACAGCCGCT 58°С 250 bp

Pinb-D1b2 ATGAAGGCCCTCTTCCTCA CTCATGCTCACAGCCGCC 58°С 250 bp

Pina-D1 CATCTATTCATCTCCACCTGC GTGACAGTTTATTAGCTAGTC 58°С 524 bp

Pinb-D1 GAGCCTCAACCCATCTATTCATC CAAGGGTGATTTTATTCATAG 58°С 597 bp

Pina-N1 AATACCACATGGTTCTAGATACTG GCAATACAAAGGACCTCTAGATT 60°С 776 bp

Pina-N2 TCAACATTCGTGCATCATCA CTTCATTCGTCAGAGTTCCAT 60°С 436 bp

Pina-N3 CATCTATTCATCTCCACCTGC CACTATATTGCCGGGATTTT 58°С 440 bp

Pina-N4 AGTGGTCTGATGGAAGCGT TGGAAAAAACTAGGTTGGGA 54°С 546

BsrDI_Pina-D1n TCACCTGGCGTTGGTGGCAAT CGGCAGGTTCTTGGCTTCTTGTAT 66°С 197

BalI_Pina-D1l GAGTGTTGCAGTCGGCTTGG GGCAGGTTCTTGGCTTCTTGT 61°С 143

Pina-1 TACCTGTAGCCCCCAAGTTT GAGTCGCTGCAGGCTTACG 58°С 677 bp

Pina-2 AATGCCCAACCTATAACCCG CCATAGCCATGCCTCTTGAT 57°С 647 bp

Pina-3 AACCAGACCGGGCTGATAGT CCAAGACGATGGAGGGAAAG 62°С 889 bp

Pina-4 GATAACCCTAATCCGGAGTAA CAAATCTTGCCAGTTTCAGC 54°С 1036 bp

Pina-5 ATGGCAACAGGTCCTCTTCG ATAGCTCAATGGGCAGGCAC 60°С 579 bp

Pina-6 TGGAAGGTTGAGGTGACTGC TTTTTATTGGCGTTCGACTG 57°С 512 bp

Pina-7 GCAGACGGCGGTTGATAGTA GTGAGAAGAGGGCGAGGGAA 62°С 720 bp

Pina-8 GGTGGGCGTCAACTGTCGTG ATGCTACCTTGCTTTGTCCTCC 62°С 606 bp

Pina-9 TGACCAGGGAGCGAATACG TGACGAGTTTCACGCTTCCA 59°С 1143 bp

Pina-10 ATAATAGCACCGGAACGCA AGTCTTTCTCTCAGCATACACG 54°С 1022 bp

Pina-11 GACCCGCATATAAGAAAACCGAT TCCCACATGTTAGTGTCTGCAAAG 61°С 760 bp

Pina-12 CTTTTATGGCATTGTACATGGGGAG TGTCAGTGTGTTTTGGTGCAGGTGG 65°С 950 bp

Pina-13 AGAAACATTTGACATGAACGAC AGATGAGATGAGGCCACACC 54°С 751 bp

Pina-14 GTATGTTCTTGGTGGTGGTTT TGGTCTGGGAGGATGAATAG 54°С 687 bp

Pina-15 CAGGACGAAATACGTTGAAA TGGAAAAAACTAGGTTGGGA 54°С 1004 bp

Pina-16 AGAGAGTGCCCCAAAAGGTA GGAAATCCCTTTGGTCAATG 56°С 623 bp

Pina-17 TGACCAAAGGGATTTCCGTA AAGATGGAGATGATGATGCC 54°С 511 bp

Pina-18 CTTCAAGTTCCTCCAGACCT CACTATATTGCCGGGATTTT 54°С 484 bp

Pina-19 TGTTGTCTGAGTCTTCCTGTTT GCTCTGGTGGTTCGACTTCT 54°С 624 bp

Pina-20 TGAGAGGCCTTGACATTTCC AACGATGTGTGTCAGGCGGT 57°С 962 bp

Pina-21 CTCGCCTTCTTCTTTTGTCTCG CCAACGGACTCATCGGCTCA 61°С 890 bp

Pina-22 CGATGAGTCCGTTGGAGGTA GAAGATGGCCTTTTCGATGC 58°С 906 bp

Pina-23 GGGTTTTTCTCTCAACTGGG GAACAGTTTTTCACAATGGG 54°С 1114 bp

Pina-24 AGTAAACAGGCACTCTCGCT CTGGTTTTTCCCTGTTTCAT 54°С 985 bp

Pina-25 CAGGGAAAAACCAGCAAAAC GCAGGAAGTATGTCAAGCGT 55°С 1041 bp

Pinb-1 AGCGGGGTACTAGACAACAG GATAAATACATACACCTGTCGTTC 53°С 950 bp

Pinb-2 CAAAAGCGACGGGCACAGAG CTCTACTTTCCGGATGTTGCGA 62°С 757 bp

Pinb-3 ATCCTCTCCTTGTCACCCTG GCTCACGCTTTAAGCTTTTG 56°С 527 bp

Pinb-4 CAGAAAACCACGGCTAGAAG GGACATTGTTGAGAACCACCT 55 529

Pinb-5 CTGCGGAAAAAAAAATCTGG CTAACATCTAAAGCCGGAGG 55 1531

Pinb-6 AGTGCGTCAGACCGGTTTGT GGTGGTGGTGATTGGTGAAG 58 1129

Pinb-7 GGAAATTGTGTCGCCTCATC AAAGCCGCATCTTCTTGTAG 55 942

Pinb-8 CAGAGACGTGTTTATGGGAG GCCCTTGTTGTCTTCTTTTA 52 925

Pinb-9 TTACTCGAAGGACTCGGAAG AGAGATAGTGTTGGCATGGA 52 1201
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Table 1 PCR primers used for generating Puroindoline-D1 alleles and primer walking (Continued)

Pinb-10 TGCCAACACTATCTCTGCCTC ATGATCCCGTGACTAACTCCT 55 1115

Pinb-11 ACGGGTATCTCTGAAAGTGTC TAAGCGTACGTGTAAGGTCG 53 1458

Pinb-12 AGTCTTATCTTGTTTCGGCG CTCATATGCTCCATGTTTCTC 52 1501

Pinb-13 TGTTCGAGGAGCTGAAAATG TGGTTCGCACGTGTCAAAT 56 1126
a Tm = PCR annealing temperature.
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Sequencing and alignments of sequences
The targeted fragments were purified from the gels using
Quick DNA Extraction Kit™ (Takara, http://www.takara.
com.cn/). The products were then ligated into the
pGEM-T Easy vector and transformed into Escherchia
coli DH-5α strain. Plasmids with targeted fragments
detected by Colony PCR were extracted by the Plasmid
Rapid Isolation Kit™ (Biodev-tech Company, http://
biodevtech.tech-food.com/). Five clones for each sample
were sequenced from both strands by SinoGenoMax
Co., Ltd.
Analysis and multiple alignments of sequences were

performed with DNAMAN Version 6.0 and graphic data
were analyzed to check sequencing results reliability
with Chromas Version 1.4.5 and FinchTV version 1.4.0.

Statistical analysis
SPSS (Statistical Product and Service Solutions) 19 soft-
ware and LSR (least significant ranges) multiple com-
parison as well as Excel 2003 software were used to
calculate the average and standard deviation of the SKCS
hardness index, and to examine statistical significance
among various Puroindoline-Dl alleles.
Pina primers

1 2 3

4 5 6 7 8

9 10 11
13

12 14 15 16

17
18 19 20

Pina coding region

Pina--N3
Pina-N4

6,460 bp deletion 4,421 bp deletion

Figure 1 Schematic diagram of the primer walking strategy for illustr
DNA level.
Results
Distribution of Puroindoline-D1 alleles in bread wheat
cultivars of five countries
Based on SKCS hardness index and distribution, 139
and 354 of the surveyed 493 wheat cultivars and ad-
vanced lines were classified as soft and hard genotypes,
respectively. The 139 soft wheat cultivars were assumed
to possess the wild type Puroindoline-D1 haplotype
(Pina-D1a/Pinb-D1a) [4,11-13]. This suggests that hard
wheat is predominant in surveyed Chinese landraces and
cultivars of Mexico, Australia, Chile and Netherlands
even though soft wheat also possesses high distribution,
with a percentage of 39%, in Chinese landraces surveyed.
All 354 hard wheat in this study were genotyped for

Puroindoline-D1 alleles. The results from PCR amplifica-
tion of allele-specific primers, digestions with restriction
enzymes PvuII and Pf1MI and sequencing indicated that
105, 4 and 47 of 354 hard wheat cultivars possessed the
Pinb-D1b, Pinb-D1c and Pinb-D1p alleles (Figure 2A,
2B), respectively. Based on detection of molecular
markers we developed previously [29,30], 129 and 21
cultivars belong to Pina-D1b and Pina-D1r alleles, re-
spectively. For the remaining 48 cultivars, we tried to
21 22
23 24

25 12 3 54 6 7

8 9 10 1112
13

Pinb primers

Pinb coding region

33 kb deletion

ating the molecular characterization of PINA-null allele on the
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A                   B

C                     D

E           F

Figure 2 Identification of six Puroindoline-D1 alleles by molecular markers. A: Digestion of restriction enzyme PvuII for detection of Pinb-
D1c; B: Digestion of restriction enzyme Pf1MI for detection of Pina-D1p; C: A dCAPS marker BsrDI_Pina-D1n for detection of Pina-D1n; D: A dCAPS
marker BalI_Pina-D1l for detection of Pina-D1l; E: A new marker Pina-N3 for detection of Pina-D1s; F: A new marker Pina-N4 for detection of
Pina-D1u.
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amplify the coding regions of Pina and Pinb genes with
Primer set Pina-D and Pinb-D (Table 1). Then we se-
quenced all the Pina and Pinb genes of the 15 cultivars
with entire amplifying fragments. Results of alignment
with reported sequences of Puroindoline-Dl alleles
showed that 3, 4, 6, 1 and 1 cultivars possessed Pina-
D1l, Pina-D1n, Pinb-D1d, Pinb-D1q and Pinb-D1t
alleles, respectively. Two new dCAPS markers were
developed for identifying Pina-D1l and Pina-D1n alleles
(Figure 2C, 2D), respectively, in order to efficiently
detect them in the future because they are frequently
present in Chinese landraces. Restriction enzymes BalI
and BsrDI were used to digest the PCR products ampli-
fied with primer sets BalI-Pina-D1l and BsrDI-Pina-D1n
(Table 1) for detection of Pina-D1l and Pinb-D1n alleles,
respectively.

Discovery of novel Puroindoline-D1 alleles
In order to further illustrate the molecular mechanism
of the remaining 33 cultivars with an absence of either
Pina or Pina & Pinb, a series of primers (Table 1) were
designed around the coding region of Pina and Pinb
genes. Based on the primer walking strategy, we found
that amplicons could be obtained with primer sets
through Pina-1 to Pina-13 and Pina-19 to Pina-25
whereas no expected fragment was amplified with pri-
mer sets through Pina-14 to Pina-18 in two Chinese
landrace cultivars Dahongmang and Hulutou (Table 2).
A new molecular marker Pina-N3 spanning deletion
fragment was developed for identifying this new allele
and then a 440-bp fragment was successfully amplified
in those two cultivars (Figure 2E). The sequencing re-
sults of the 440-bp fragment indicated that there is a
4,422-bp deletion from +371 to 4792 bp (reference to
ATG of Pina) in landraces Dahongmang and Hulutou
compared with Ha sequence on the chromosome of 5DS
in Chinese Spring (NCBI No: CT009735). This mutation
with a single 4,422 bp deletion of Pina gene could be
designated as Pina-D1s (Table 3) according to the no-
menclature of 2007 Supplement of the Wheat Gene
Catalogue [36,37], Morris and Behave [13] and Behave
and Morris [11,12]. Furthermore, the new marker Pina-
N3 was used to identify the Pina-D1s allele in other cul-
tivars and the results revealed that 28 Chinese landrace
cultivars possess the Pina-D1s allele, suggesting that the
Pina-D1s is prevalent in hard wheat of the Chinese land-
race cultivars surveyed.
However, there were still four cultivars remaining after

the screening with the new marker Pina-N3, i.e.
one landrace cultivar Zuantoubaike with the absence
of a Pina gene and three landrace cultivars Yumai,
Changyaomai and Yangqingke with an absence of Pina
and Pinb genes. Results from the primer walking
strategy showed that amplicons could be obtained with
primer sets through Pina-1 to Pina-9 and Pina-16 to
Pina-25 whereas no targeted fragment was amplified



Table 2 Locations and amplifications of primers in different cultivars with PINA-null allele

Primer

Position (Reference to ATG of
Pina or Pinb)

Expected PCR product amplified

Forward
primer

Reverse
primer

Chinese
Spring

Yunong
202

Dahongmang/
Hulutou

Zuantoubaike Yumai/Changyaomai/
Yangqingke

Pina-1 −10386a −9170 Yesc Yes Yes Yes Yes

Pina-2 −9189 −8543 Yes Yes Yes Yes Yes

Pina-3 −8951 −8062 Yes Yes Yes Yes Yes

Pina-4 −9065 −8030 Yes Yes Yes Yes Yes

Pina-5 −8332 −7754 Yes Yes Yes Yes No

Pina-6 −7896 −7385 Yes Yes Yes Yes No

Pina-7 −7748 −7028 Yes Yes Yes Yes No

Pina-8 −6044 −5438 Yes Yes Yes Yes No

Pina-9 −5850 −4707 Yes Yes Yes Yes No

Pina-
10

−4168 −3146 Yes Yes Yes No No

Pina-
11

−2225 −1625 Yes Yes Yes No No

Pina-
12

−950 0 Yes Yes Yes No No

Pina-
13

−781 −30 Yes Yes Yes No No

Pina-D −40 +474 Yes Yes No No No

Pina-
14

+654 +1340 Yes Yes No No No

Pina-
15

+1116 +2118 Yes Yes No No No

Pina-
16

+3229 +3851 Yes Yes No Yes No

Pina-
17

+3835 +4346 Yes Yes No Yes No

Pina-
18

4283 +4821 Yes Yes No Yes No

Pina-
19

+5116 +5740 Yes Yes Yes Yes No

Pina-
20

+8439 +9400 Yes Yes Yes Yes No

Pina-
21

+10695 +11585 Yes Yes Yes Yes No

Pina-
22

+11560 +12466 Yes Yes Yes Yes No

Pina-
23

+12260 +13373 Yes Yes Yes Yes No

Pina-
24

+13464 +14448 Yes Yes Yes Yes No

Pina-
25

+14435 +15475 Yes Yes Yes Yes No

Pinb-1 +15380 (−2766b) +16330 (−1816) Yes Yes Yes Yes No

Pinb-2 +16630 (−1516) +17387 (−759) Yes Yes Yes Yes No

Pinb-3 (−779) (−253) Yes Yes -d - No

Pinb-4 (−407) (+121) Yes Yes - - No

Pinb-D (−52) (+542) Yes Yes - - No

Pinb-5 (+1024) (+2554) No No - - No
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Table 2 Locations and amplifications of primers in different cultivars with PINA-null allele (Continued)

Pinb-6 (+2484) (+3612) Yes Yes - - No

Pinb-7 (+3539) (+4480) Yes Yes - - No

Pinb-8 (+4425) (+5353) Yes Yes - - No

Pinb-9 (+5275) (+6475) Yes Yes - - No

Pinb-
10

(+6460) (+7574) Yes Yes - - Yes

Pinb-
11

(+7427) (+8884) Yes Yes - - Yes

Pinb-
12

(+8819) (+10319) Yes Yes - - Yes

Pinb-
13

(+10321) (+11447) Yes Yes - - Yes

a and b indicate relative positions of primers referenced to ATG in the Pina and Pinb genes, respectively.
c “Yes” and “No” indicate failure and success of amplification.
d “-” indicates PCR amplification was not performed.
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with primer sets Pina-10 through Pina-15 in the Chinese
landrace cultivar Zuantoubaike (Table 2). A new mo-
lecular marker Pina-N4 spanning deletion fragment was
developed for identifying this new allele, and then a 524-
bp fragment was successfully obtained in Zuantoubaike
while it could not amplify a targeted band in other
cultivars (Figure 2F). Sequencing results of the 524-bp
fragment indicated a 6,460-bp deletion from −4435 bp
to 2024 (reference to ATG of the Pina) in Zuantoubaike
when compared with the Ha sequence on the chromo-
some of 5DS in Chinese Spring (NCBI No: CT009735).
This mutation with a single 6,460 bp deletion of
Pina gene could be designated as Pina-D1u (Table 3)
according to the above-mentioned nomenclature.
For four cultivars without Pina and Pinb genes, in-

cluding one Netherlands wheat cultivar Pcatan and three
Chinese landraces Yumai, Changyaomai and Yangqingke,
expected fragment sizes could only be gained in primer
sets through Pina-1 to 3 and Pinb-9 to Pinb-13. There-
fore, an approximate 33-kb deletion fragment containing
Pina and Pinb coding regions could be deduced to occur
in those three landraces when compared with the Ha se-
quence on the chromosome of 5DS in Chinese Spring
(Table 3, Figure 1). However, a valid marker spanning
this big deletion for specifying the location of this new
allele was not obtained due to high similarity with the
Ha loci of A and B genome in this region, even though
several primer sets spanning this deletion were designed.
This mutation with a single ≈ 33-kb deletion containing
Pina and Pinb coding regions was temporarily desig-
nated as Pina-null/Pinb-null due to the large deletion
simultaneously related to Pina and Pinb genes. In previ-
ous reports [6,45], some cultivars had been found to lack
the Pina and Pinb coding regions, designated Pina-D1k
by Morris and Bhave [13]. However, Pina-null/Pinb-null
is still used for describing this allele in this study be-
cause it is not known if the above four cultivars have the
same molecular characterization on the DNA level with
Pina-D1k allele.

Distribution of Puroindoline-D1 alleles and their
association with grain texture
Amongst hard cultivars from different countries,
Chinese landraces showed the highest diversity on
Puroindoline-D1 genes and possessed 11 types of
Puroindoline-D1 alleles in hard wheat landraces (Table 4).
CIMMYT hard wheat, only composed of two kinds of
Puroindoline-D1 alleles, showed the lowest diversity
among the four countries surveyed and Pina-D1b was
predominant with the high percentage of 94.6%, which is
consistent with previous studies [14,17]. In wheat culti-
vars from Australia and Netherlands, Pinb-D1b was pre-
dominant with the high percentage of 73.6% and 56.7%,
respectively. In Chile, Pina-D1b and Pinb-D1b are al-
most equally distributed in hard wheat cultivars. Surpris-
ingly, 4 out of 6 cultivars with scarce allele Pinb-D1d
showing relative superior processing quality [15] was
found in Netherlands. Pinb-D1p was only found, and
prevalent, in Chinese landraces (Table 4). Notably, based
on five kernels’ results, one Chinese landrace cultivar,
Bailaolaibian, possesses a double mutation genotype
Pina-D1r/Pinb-D1p and its SKCS hardness index is 73.2.
In this study, we divided all cultivars surveyed into

two groups of Chinese landraces and introduced culti-
vars for analyzing the association of Puroindoline-D1 al-
leles with grain texture due to the obvious difference on
agronomic traits between them. A two-year average of
SKCS hardness index was compared by significant differ-
ences of variance analysis among different genotypes in
Chinese landraces and introduced cultivars even though
grain texture possessed a high heritability of more than
80% based on previous reports. In Chinese landraces,
the cultivars with Pina-null/Pinb-null allele possess the
highest SKCS hardness index among several genotypes



Table 3 Known Puroindoline-D1 alleles in bread wheat

Pina-D1 Pinb-D1 Phenotype NCBI No. Molecular characterization References

Pina-D1a Pinb-D1a Soft DQ363911 Wild type [2]

Pina-D1b Pinb-D1a Hard AB262660 15,380-bp deletion [29]

Pina-D1k - Hard - ≈ 33-kb deletion In this paper; [6]

Pina-D1l Pinb-D1a Hard - ORF shift: C deletion at position 265 of Pinb [8,18]

Pina-D1m Pinb-D1a Hard EF620907 Pro-35→ Ser [18]

Pina-D1n Pinb-D1a Hard EF620908 Trp-43→ Stop codon [18]

Pina-D1p Pinb-D1a Hard AY599893 Val13→ Glu [20]

Pina-D1q Pinb-D1a Hard AB181238 Asn-139→ Lys; Ile-140→ -Leu [20]

Pina-D1r Pinb-D1a Hard HM572327 10,415-bp deletion [30]

Pina-D1s Pinb-D1a Hard - 4,422-bp deletion In this paper

Pina-D1t Pinb-D1a Hard JN680739 Trp41→ Stop codon [38]

Pina-D1u Pinb-D1a Hard - 6,460-bp deletion In this paper

Pina-D1a Pinb-D1b Hard DQ363914 Gly-46→ Ser [3]

Pina-D1a Pinb-D1c Hard - Leu-60→ Pro [9]

Pina-D1a Pinb-D1d Hard - Trp-44→ Arg [9]

Pina-D1a Pinb-D1e Hard - Trp-39→ Stop codon [10]

Pina-D1a Pinb-D1f Hard - Trp-44→ Stop codon [10]

Pina-D1a Pinb-D1g Hard - Cys-56→ Stop codon [10]

Pina-D1a Pinb-D1p Hard AY581889 ORF shift: A deletion at position 210 of Pinb [39]

Pina-D1a Pinb-D1q Hard EF620909 Ser-44→ Leu [34]

Pina-D1a Pinb-D1r Hard AJ619022 ORF shift: G insertion at position 127 [40]

Pina-D1a Pinb-D1s Hard AJ619021 ORF shift: G insertion and C→ A at positions 127 and 205, respectively [40]

Pina-D1a Pinb-D1t Hard EF620910 Gly-47→ Arg [18]

Pina-D1a Pinb-D1u Hard EF620911 ORF shift: G deletion at position 126 [41]

Pina-D1a Pinb-D1v Hard AY598029 Leu-9→ Ile [20]

Pina-D1a Pinb-D1w Hard AY640304 Pro-114→ Ile [20]

Pina-D1a Pinb-D1x Hard AM909618 C to A at position 257 and Gln-99→ stop codon [42]

Pina-D1a Pinb-D1aa Hard EF620912 ORF shift: C to A at position 96 and A deletion at position 210 [19]

Pina-D1a Pinb-D1ab Hard AB302894 Gln-99→ Stop codon [43]

Pina-D1a Pinb-D1ac Hard - G to T at position 257 and Gln-99→ stop codon [44]
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(Table 5). Due to the absence of both Pina-D1 and Pinb-
D1 genes, those cultivars have a similar grain texture to
durum wheat which also has an extremely high SKCS
hardness index. Three types of Pina-D1 mutations
resulting in PINA protein null do not show significant
difference of SKCS hardness but they all have signifi-
cantly higher SKCS hardness than Pinb-D1b genotype
(Table 5). Of the introduced cultivars, PINA-null and
PINB-D1c genotypes show significantly higher SKCS
hardness than PINB-D1b and PINB-D1d genotypes,
which are consistent with the results of Morris et al.
[10], that PINB-D1c genotype possesses significantly
higher SKCS hardness than PINB-D1b genotype.
In order to further investigate the influence of

Puroindoline-D1 alleles on grain texture and obtain a
clean association of Puroindoline-D1 alleles with SKCS
hardness without impact of other loci in the genome,
seven near-isogenic lines with different Puroindoline-D1
alleles were used to compare their SKCS hardness index
(Table 5). Results indicate that PINA-null genotype pos-
sesses the significantly highest SKCS hardness, whereas
PINB-D1b and PINB-D1d genotypes possess the signifi-
cantly lowest SKCS hardness amongst seven different
hard genotypes (Table 5). These results are consistent
with above-mentioned results derived from Chinese
landrace cultivar and introduced wheat cultivars.

Discussion
Grain texture, which is mainly controlled by the
Puroindoline-D1 genes on the 5DS chromosome, has an



Table 4 Distribution of Puroindoline-D1 alleles in bread wheat from China, Mexico, Australia, Chile and Netherlands

Phenotype China Mexico Australia Chile Netherlands Total

Sample No. - 204 104 88 51 44 493

Pina-D1a/Pinb-D1a Soft 80 10 19 16 14 139

Pina-D1b/Pinb-D1a Hard 0 89 17 19 4 129

Pina-D1l/Pinb-D1a Hard 3 0 0 0 0 3

Pina-D1n/Pinb-D1a Hard 4 0 0 0 0 4

Pina-D1r/Pinb-D1a Hard 21 0 0 0 0 21

Pina-D1s/Pinb-D1a Hard 28 0 0 0 0 28

Pina-D1u/Pinb-D1a Hard 1 0 0 0 0 1

Pina-D1a/Pinb-D1b Hard 15 5 51 17 17 105

Pina-D1a/Pinb-D1c Hard 0 0 0 0 4 4

Pina-D1a/Pinb-D1d Hard 0 0 1 1 4 6

Pina-D1a/Pinb-D1p Hard 46 0 0 0 0 46

Pina-D1a/Pinb-D1q Hard 1 0 0 0 0 1

Pina-D1a/Pinb-D1t Hard 1 0 0 0 0 1

Pina-D1r/Pinb-D1p Hard 1 0 0 0 0 1

Pina-null/Pinb-null Hard 3 0 0 0 1 4
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important impact on the milling and processing qualities
of bread wheat (Triticum aestivum L.). It has shown mu-
tations in either Pina-D1 or Pinb-D1 allele result in a
hard endosperm in bread wheat based on discoveries of
many Puroindoline-D1 alleles. However, most of the mu-
tations identified previously in bread wheat resulted
from a single nucleotide polymorphism (SNP) in Pinb-
D1 or Pina-D1 genes. In this study, we found that di-
verse mutations occurred in the Ha loci of bread wheat,
Table 5 Association of Puroindoline-D1 alleles with SKCS hard

Chinese landraces

Protein Genotype Sample No. SKCS ±

PINA-D1a/PINB-D1a Pina-D1a/Pinb-D1a 80 38.8c ±

PINA-null/PINB-D1a

Pina-D1b/Pinb-D1a

Pina-D1l/Pinb-D1a 3

81.9a ±

Pina-D1n/Pinb-D1a 4

Pina-null/Pinb-null 3

Pina-D1r/Pinb-D1a 21

Pina-D1s/Pinb-D1a 28

PINA-D1a/PINB-D1b Pina-D1a/Pinb-D1b 15 73.6b ±

PINA-D1a/PINB-D1c Pina-D1a/Pinb-D1c

PINA-D1a/PINB-D1d Pina-D1a/Pinb-D1d

PINA-D1a/PINB-D1e Pina-D1a/Pinb-D1e

PINA-D1a/PINB-D1f Pina-D1a/Pinb-D1f

PINA-D1a/PINB-D1g Pina-D1a/Pinb-D1g

PINA-D1a/PINB-D1p Pina-D1a/Pinb-D1p 46 77.2b ±

Total 200 63.

Different letters indicated a significant difference at the 5% level.
in the form of large deletions including entire or partial
Pina-D1 coding region, and caused the PINA-null allele.
In the long term, the lack of a straightforward marker
for identifying the PINA-null allele leads us to develop a
Pina-N1 marker for detection of Pina-D1b allele [29].
The previous most common approach for detecting

Pina-D1b allele was to examine the presence or absence
of the PINA protein, however this approach fails to
identify the status of PINA-null allele at the DNA level.
ness in bread wheat

Introduced cultivars NILs

SD Sample No. SKCS ± SD Sample No. SKCS

7.06 59 34.8d ± 8.25

129 85.2a ± 8.20 1 86.8a

7.4

12.51 90 78.4c ± 7.41 1 69.4c

4 88.1a ± 5.63 1 77.3b

6 80.0bc ± 5.78 1 69.8c

1 74.3b

1 77.8b

1 76.8b

7.26

7 288 72.6
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Therefore, almost all of PINA-null allele was taken into
account as Pina-D1b allele [17,18,39,46]. However, the
findings from our study show the PINA-null allele to
possess a completely different molecular characterization
at the DNA level. The PINA-null (Pina-D1b previously
called) allele is known to be the most prevalent genotype
in the CIMMYT bread wheat cultivars [14,17]. In this
study, all of PINA-null allele in CIMMYT wheat sur-
veyed was shown to have the Pina-D1b allele. The four
molecular markers (Pina-N1 and Pina-N2 we previously
developed; Pina-N3 and Pina-N4 in this study) will be
useful for straightforward and efficient identification of
PINA-null alleles in bread wheat cultivars.
Up to now, many Pina-D1 and Pinb-D1 alleles have

been identified in different geographic bread wheat culti-
vars from around the world. Amongst different countries
or regions, that China seems to possess a relatively more
diverse germplasm of bread wheat on the genotype of
grain texture, based on several investigations of
Puroindoline-D1 alleles [10,17,18,47] because almost all
of the Puroindoline-D1 alleles previously reported in
other countries or regions, outside of China, have been
aslo found in Chinese wheat cultivars whereas a number
of Puroindoline-D1 alleles appear to be exclusive to
Chinese wheat cultivars so far, e.g. Pinb-D1p, Pinb-D1q,
Pinb-D1t, Pinb-D1u, Pinb-D1v, Pinb-D1w, Pinb-D1x,
Pinb-D1aa, Pinb-D1ac, Pina-D1m, Pina-D1n, Pina-
D1p, Pina-D1q, Pina-D1r etc. [18,20,34,41,42,44]. In this
study, Chinese landraces also showed the highest diver-
sity of Puroindoline-D1 alleles among wheat cultivars
from five different countries. Due to the PINA-null al-
lele, which possibly result from an evolution of hexa-
ploid wheats from Ae. tauschii [30,31], the molecular
mechanism of each cultivar with PINA-null allele has
been illustrated by either known molecular markers or
the primer walking strategy. The discovery of Pina-D1v
and Pina-D1u showed that five types of PINA-null alleles
(Pina-D1b, Pina-D1s, Pina-D1r, Pina-D1v and Pina-D1u)
have different deletion sites from each other, suggesting
that the deletions could have occurred independently.
According to previous reports [1,7,10,22] and recent
work on Puroindoline-D1 genes in Ae. tauschii (Personal
communicate with Craig F. Morris in Washington State
University), all five of the above-mentioned Pina-D1
alleles are not found in Ae. tauschii so far, suggesting that
the big deletions of the above Pina-D1 allele possibly
occurred during the formation of hexaploid wheat.
Interestingly, all wheat cultivars with the PINA-null allele
from CIMMYT, Australia, Netherlands and Chile are
further identified as Pina-D1b allele in this study, whereas
Chinese landraces with PINA-null allele are shown to
possess four different alleles of Pina-D1s, Pina-D1r, Pina-
D1v and Pina-D1u, which is possibly because China is the
secondary origin center of hexaploid wheat in the word.
The Yellow and Huai valley is the largest and the most
important Chinese wheat production region and is
greatly responsible for the national food security guaran-
tee. However, wheat production and quality have not sig-
nificantly improved during the past decade in this
region. A potential reason for this is mainly because the
narrow genetic basis of modern wheat cultivars is a ser-
ious obstacle against sustaining and improving wheat
productivity due to rapid vulnerability of genetically uni-
form cultivars by potentially new biotic and abiotic
stresses. In an attempt to improve the status quo, a large
number of alien wheat germplasms were introduced to
the Yellow and Huai wheat production region of China.
Even though we have previously reported the wheat cul-
tivars of the Yellow and Huai wheat production region
regarding Puroindoline-D1 alleles [30], investigation in
this study primarily focused on landraces and introduced
cultivars that are or were being core parents during the
breeding process in the Yellow and Huai wheat produc-
tion region. The cultivars previously used in Chen et al.
[30] were mainly historical cultivars and modern culti-
vars, and all accessions we used previously were ex-
cluded in this study. Therefore, the work carried out in
current and previous [30] studies could provide a more
comprehensive understanding of wheat germplasms,
particularly as potential parents for wheat breeding pro-
grams in view of grain texture in the Yellow and Huai
wheat production region.
Conclusion
In the present study, molecular characterization of the
Puroindoline-D1 allele was investigated in bread wheat
cultivars from five geographic regions. Two novel alleles
Pina-D1s and Pina-D1u at the Pina-D1 locus were char-
acterized at the DNA level by a primer walking strategy,
and corresponding molecular markers were developed
for straightforward identification of these two alleles.
Analysis of the association of Puroindoline-D1 alleles
with grain texture indicated that wheat cultivars with
Pina-null/Pinb-null allele have the highest SKCS hard-
ness index amongst the different genotypes, and wheat
cultivars with the PINA-null allele have significantly
higher SKCS hardness index than those of Pinb-D1b and
Pinb-D1p alleles.
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