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Abstract

a shared strategy, largely involving cell wall architecture.

Background: Spaceflight presents a novel environment that is outside the evolutionary experience of terrestrial
organisms. Full activation of the International Space Station as a science platform complete with sophisticated plant
growth chambers, laboratory benches, and procedures for effective sample return, has enabled a new level of research
capability and hypothesis testing in this unique environment. The opportunity to examine the strategies of
environmental sensing in spaceflight, which includes the absence of unit gravity, provides a unique insight into the
balance of influence among abiotic cues directing plant growth and development: including gravity, light, and touch.
The data presented here correlate morphological and transcriptome data from replicated spaceflight experiments.

Results: The transcriptome of Arabidopsis thaliana demonstrated organ-specific changes in response to spaceflight,
with 480 genes showing significant changes in expression in spaceflight plants compared with ground controls by at
least 1.9-fold, and 58 by more than 7-fold. Leaves, hypocotyls, and roots each displayed unique patterns of response,
yet many gene functions within the responses are related. Particularly represented across the dataset were genes
associated with cell architecture and growth hormone signaling; processes that would not be anticipated to be altered
in microgravity yet may correlate with morphological changes observed in spaceflight plants. As examples, differential
expression of genes involved with touch, cell wall remodeling, root hairs, and cell expansion may correlate with
spaceflight-associated root skewing, while differential expression of auxin-related and other gravity-signaling genes
seemingly correlates with the microgravity of spaceflight. Although functionally related genes were differentially
represented in leaves, hypocotyls, and roots, the expression of individual genes varied substantially across organ types,
indicating that there is no single response to spaceflight. Rather, each organ employed its own response tactics within

Conclusions: Spaceflight appears to initiate cellular remodeling throughout the plant, yet specific strategies of the
response are distinct among specific organs of the plant. Further, these data illustrate that in the absence of gravity plants
rely on other environmental cues to initiate the morphological responses essential to successful growth and development,
and that the basis for that engagement lies in the differential expression of genes in an organ-specific manner that
maximizes the utilization of these signals — such as the up-regulation of genes associated with light-sensing in roots.

Background

The completion of the International Space Station (ISS),
including the installation of experiment hardware and
the presence of a regular crew complement, presents
enormous opportunity to examine the longer term ef-
fects of spaceflight and microgravity on living systems.
ISS capabilities now include stable orbital environment,
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flexible-environment growth chambers, on orbit im-
aging, functional laboratory-bench areas, crew time for
harvest, and a facile, reliable sample storage and return
strategy [1-3]. Given these capabilities, the 2010 NRC
Decadal Survey, Recapturing a Future for Space Explor-
ation: Life and Physical Sciences Research for a New Era
[4] strongly encouraged the application of molecular
biology technologies to ISS studies to address fundamen-
tal questions of plant growth and development in space-
flight, in the absence of unit gravity, which is considered
a major environmental force shaping plant evolution.
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Plants have a long and international history in space-
flight research (recent reviews include: [5-10]), and be-
cause of the relationship between gravity and plant
architecture [11], plants are considered important tools
for discovery of gravity-related biological phenomena
[7]. Yet the cultivation of plants within spaceflight vehi-
cles presented numerous physical and engineering chal-
lenges that complicated interpretation of fundamental
plant responses. For example, the management of root-
zone water and aeration is affected by the lack of con-
vection and related boundary layer issues, along with the
unique behavior of water and capillary action in micro-
gravity, and the attendant engineering designed to ameli-
orate the impact of these issues is an important feature
of spaceflight experiments [10,12]. Early experiments
with plants highlighted the need for understanding and
overcoming these technical limitations, while nonethe-
less establishing that near typical plant growth can occur
in space. Many studies indicated that as engineering
challenges were overcome, plant growth and develop-
ment approached terrestrial norms [6,9,13].

Even as engineering challenges have been overcome,
investigations have shown that plants in various growth
systems do respond to spaceflight with modified gene
expression patterns. Arabidopsis seedlings in completely
sealed canisters showed changes in gene expression con-
sistent with cell wall modifications, while Arabidopsis
cell cultures demonstrated a very different gene expres-
sion response from that of seedlings [14-16]. Plants in a
single-celled stage, such as the gravity-sensitive spores of
fern Ceratopteris richardii also respond to spaceflight
with changes in gene expression patterns [17,18]. Con-
versely, wheat leaves, using limited arrays, showed few
significant changes in transcriptional profiles between
spaceflight and ground environments [19].
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The work reported here is a biologically replicated molecu-
lar analysis of 12-day-old Arabidopsis plants grown on
phytagel plates within the Advanced Biological Research Sys-
tem (ABRS). The designation of this flight experiment was
TAGES, which is an acronym for Transgenic Arabidopsis
Gene Expression System. The use of plates within the ABRS
created a benign culture environment that minimized
hardware-induced stress factors. With the roots coursing
along the surface of the media, problems with root-zone aer-
ation and water and nutrient delivery were eliminated while
the ABRS provided controlled lighting, temperature, and air
quality. Leaves, hypocotyls and roots all differ in their gene
expression responses to spaceflight, and spaceflight appears
to primarily affect several hormone signaling pathways,
which may drive extensive cell wall remodeling especially in
roots.

Results

Access to facilities on the ISS allowed facile spaceflight
growth, imaging, and harvest of Arabidopsis

Growth of Arabidopsis on standard laboratory Petri
plates was conducted within the ABRS using the GFP
Imaging System (GIS) (Figure 1A, B - see Methods),
which provided straightforward crew access for
harvesting (Figure 1C). The plants exhibited robust
growth (Figure 2A), and after 12 days were harvested
to RNAlater in KSC Fixation Tubes (KFTs, Figure 2B).
The loaded KFTs were frozen for storage on orbit and
eventual return to earth. After return, the spaceflight
plants (FLT), together with ground control plants
(GC) (Figure 2C), were recovered from RNAlater and
dissected into roots, leaves, and hypocotyls for ana-
lysis (Figure 2D). Ground control experiments were
conducted using identical ABRS hardware and an envir-
onmental chamber programmed to ISS environmental

Figure 1 The GFP Imaging System (GIS). (A) A photograph of the GIS hardware with the 6 slots for plates. Each slot is assigned a number
(shown in red) to identify plate position: positions 1, 3, and 5 are on the bottom tier, and positions 2, 4, and 6 are in the top tier. The plate in
position 1 is situated opposite the camera, which can collect both fluorescent- and white-light images of plate 1. (B) A side view of the GIS
shows the configuration of plates 3 and 5. (C) On orbit, plates can be easily removed for harvest at the Maintenance Work Area (MWA), which is
a surface in the US Lab of the ISS that is equipped for biological science, including a docking station for the GIS and a photogrid for the plates.
The image shows an astronaut removing a plate from the GIS as well as a plate attached to the photo grid to the right of the GIS.
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were separated into leaf, hypocotyl, and root fractions.

Figure 2 In flight harvests for transcriptome analyses. (A) A representative upper-tier plate (plate 6 from run 1B). (B) A Kennedy Space Center
Fixation Tube (KFT) photographed after it had been returned to authors. Plant material can be seen in the central chamber. (C) Representative
individual flight (left) and ground control (right) plants after they have been removed from the KFT. (D) An example of how individual plants

1cm

Ground Control

conditions. Both flight and ground control plants were
harvested after 12 days of growth to KFTs, and ground
control samples were collected parallel to every spaceflight
sample.

The transcriptome of Arabidopsis demonstrated
organ-specific changes in response to spaceflight

There were 480 genes that showed significant (p < 0.01)
differential expression by at least 1.9-fold (Figure 3A,
Additional file 1) and 58 by more than 7-fold (Additional
file 2) in any organ; yet leaves, hypocotyls, and roots
each displayed unique patterns of gene expression in re-
sponse to spaceflight. Figure 3B provides a pair of Venn
diagrams that illustrates the distribution patterns of dif-
ferentially expressed genes among leaves (green circle),
hypocotyls (blue circle), and roots (tan circle).

There were 26 genes that were coordinately expressed
in roots, hypocotyls, and leaves by at least 1.9-fold in all
organs; 17 of these genes up-regulated and 9 down-
regulated (Figure 3C). All but one of the coordinately
up-regulated genes with known functions are associated
with plant cell wall remodeling and defense response.
Only 6 of the 9 coordinately down-regulated genes have
a known function; three are also associated with cell wall
remodeling and defense response, and the other three
are generally associated with signal transduction that im-
pacts growth.

Most of the genes differentially expressed in response
to spaceflight are not coordinately expressed among or-
gans (Figure 3A, B and D); however, in each organ there
remains a strong tendency for the involvement of
defense and cell remodeling genes. Figure 3D shows a sub-
set of 158 genes chosen from the 480 shown in Figure 3A,
which are genes that have been associated with various as-
pects of cell wall remodeling and cell expansion, pathogen
and wounding responses, or growth hormone signal trans-
duction. Each cluster is annotated with a few representative
genes; a fully annotated version can be found in Additional
file 3. As in the set of coordinately expressed genes, the

down-regulated genes were largely associated with a num-
ber of factors regulating cell elongation and hormone sig-
nal transduction. The up-regulated genes were closely
associated with cell wall remodeling and touch, wounding,
and pathogen responses. Most of the highly up-regulated
genes were represented in roots, including 20 of the 31
genes induced by more than 7-fold (Additional file 2).

Selected transcriptional responses to spaceflight were
shown to be consistent among distinct flight experiments
RT-qPCR data for five selected target genes were
obtained from two additional, comparable flight experi-
ments. The genes DDF1, DREB2A, TCH4, JAZ7 and
ELIP1 were initially chosen to provide quantitative sup-
port for the Run 2B array data, being selected on the
basis of their high differential expression in those arrays
and functional interest. This same set of genes was later
used to evaluate transcriptional trends displayed by the
roots of plants in the 1A and 2A flight experiments.
DDF1, DREB2A, TCH4, and JAZ7 were all similarly in-
duced in the three spaceflight growth time frames, while
ELIP1 was similarly repressed (Figure 4). These data il-
lustrated the repeatability of the spaceflight response
across two separate launches and three distinct ISS
growth experiments conducted months apart.

Changes in auxin-mediated signaling occurred over the
course of plant development with the GFP reporters

A DR5r:GFP reporter gene line was imaged in Run 3A
over time to evaluate potential changes in auxin-related
gene expression patterns through development on orbit.
The three reporter gene lines shown in Figure 5A and
5B are delineated by white lines: positive control 35s:
GFP plants at left, Adh:GFP plants in the center, and
DR5r:GFP plants at right. The constitutive expression of
GFP in the 35s:GFP plants was apparent. No apparent
differential GFP expression between flight and ground
control was induced in the Adh:GFP plants. However, the
DR5r:GFP plants showed differential GFP expression in
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PublicID  Gene / notes leaf hyp root
At3g43500 / hyp prot 043 031 0.16
At1g09350 AtGolS3 032 049 035
At5g22430 / put galactinol synthase 028 031 040
At3g49450 / F-box domains 047 019 042
At4g33390 / put myosin Il heavy chain 0.14 044 047
At2g14510 /[ put receptorlike kinase 040 019 051
At5g43480 /unk 034 031 051
At2g23500 /unk- mutator-like 034 016 052
| At3g09930 /put lipase acylhydrolase 021 028 052
At4g10910 / hyp prot 268 228 191
At2g16820 /unk 236 499 196
At5g67310 CYP81G1 / wound response 353 466 213
At1g25400 /unk assocw JA /SAR 236 197 235
At2g16720 MYB7 [ assoc w SA 295 236 245
At2g34600 JAZ7 / wounding, cell wall 332 611 251
At5g27420 ATL6 / ABA, defense 200 219 255
At5g04340 ZAT6 [ root dev, defense 220 334 291
At2g35930 PUB23 / PAMP-trig. immunity 228 193 318
At1g60190 PUB19 / ABA signaling 204 236 325
At1g20520 /unk 293 273 361
At1g15010 /[ unk assoc w fungal defense 239 343 403
At2g41640 / Glycosyltransferase, chitinresp 214 233 4.59
At3g23250 MYB15 / assoc w wounding 277 193 586
At5g42380 CML37/ assoc w defense 238 216 687
At1g33760 /TINY-like protein, wounding 220 238 1027
At1g12610 DDF1 / cold, drought, defense 394 482 2425

-3 -2 -1 0 1 2 3foldchange
Heat Map legend: green denotes down regulated, red denotes up regulated; p<0.01

Figure 3 Differentially expressed genes in response to the spaceflight environment. (A) The hierarchical clustering of all 480 genes with
statistically significant (p < 0.01) differential expression in the spaceflight environment by at least 1.9-fold in at least one of the three organs

(LVS - Leaves; HYP — Hypocotyls; RTS — Roots). (B) A pair of Venn diagrams that illustrates the organ-specific gene expression patterns of up
(red box, left) and down (green box, right) among leaves (green), hypocotyls (blue), and roots (tan). (C) A list of the 26 genes coordinately up or
down regulated in all organs. The Public ID number is annotated with a brief description, and the corresponding fold-change values are shown
in the columns designated for each organ. (D) A hierarchical clustering of 158 genes from (A), which have an association with cell wall
remodeling and cell expansion, pathogen or wounding responses, and growth hormone signal transduction. A partial annotation of genes
representative of each cluster is given to the right of the graphic. A fully annotated version of (D) is presented in Additional file 3: Figure S1.
Green indicates down-regulated genes and red indicates up-regulated genes. Heat-map legend values are in logp,;. Hierarchical clustering
methods used on the graphics were after [20].

LVS HYP RTS

Cell wall components, and regualtors; e.g.
At3g28390-PGP18 | At3g55090-an ABC transporter |
At1g34170-ARF13| At1g20480-4CL-like4 |
At1g16530-ASL9| At2g43600-an endochitinase |
At4g13760-a polygalacturonase | At1g78440-
GA20X1 |At1g60980-GA200X4 |At2g24450-FLA37 |

Auxin and elongation-associated factors; e.g.
At4g12550-AIR1 | At5g22430-an extensin

At3g24650-ABI3 | At2g42430-LBD16 | At2g46990-
1AA20 | At1g02950-ATGSTF4 |At2g35700-ERF38|

Root cell remodeling and growth factors; e.qg.
At2g44810-DAD1 | At5g20340-BG5S | At4g23496-SP1LS
| At3g03840-a SAUR | Atd4g34580-COW1 | At5g26070-
an extensin | Atlg05650-Pectin lyase |AtSg64770-RGF |

Pathogen associated and cell wall; e.qg.
At3g17230-pectin methylesterase inhibitor| At1g14930-
MLH-type2 | At5g20150-SPX1 | At4g37990 ELI3-2 |
At1g72890-DRRP | At5g26080-an extensin | At4g00680-
ADF8| At3g04100-AGL57 | At1g72890-a TIR NBS |

Cell wall, root touch-wounding responses; e.g.
At1969730-a Cell Wall-associated kinase | At2937030-
SAUR-like |At2g40740-WRKY5S | At1g35140-PHI-1/
EXL1| At3g28340-GATL10 |At3g50060-MYB77 |
At5g24590 TIP | At3g44260-CAF1, a CCR4-asso factor
| t1973540-NUDT21 |At3g62720-XT1 | At5g57560 -
TCH4 | AtSg37770-TCH2 |At1g24330-an ARM repeat |
At5958680-another ARM repeat | At3g09530- EXO70 |
At3g28340-GATL10 | At2g40740-WRKYS5 |

Cell wall, root touch-wounding responses; e.g.
At4g31800-WRKY18 | At5g05410-DREB2A |At5904340-ZAT6
| At1g60190-PUB19 |At1g28480-GRX480 | At1g21910-TINY-
like |At3g61190-BAP1 | At5954490-PBP1 | At2g15880-LRR
family | At2935930-PUB23 | At1g80840-WRKY40 |
At5922250-CAF1B | At5g59820-RHL41 | At2g05940-RIPK |
At4g25810-XTR6 | At2g30020-PP2C-like | At1g32640-
MYC2/ZBF1 | At4g25810-XTR6 | At1g17380-JAZS |
At5g49520-WRKY48| At1g33760-TINY-lik| At1g12610-DDF1
|At5g47220-ERF2 | At5g42380-CML37 | At3g23250-MYB15
|At2g44080-ARL| At2g34600-)AZ7 | At2g16720-MYB7 |

At1g54470-RPP27 | At1g59725-DNAJ heat shock family |
At1g06160-ORA59 | At4g09460-ATMYB6 |

the hypocotyls in spaceflight compared with those of
ground controls over the duration of the flight. In the first
few days after germination on orbit, the DR5r:GFP levels
were similar for flight plants and the comparable ground
controls. As development progressed through day 5, the
relative expression of GFP in the ground controls exceeded
that of the flight plants. Later, beginning at day10, the flight
plants showed an increase of expression and exceeded ex-
pression levels of the ground controls, which remained
static after day 6. Examples of images from these time
frames, along with graphical representation of the green in-
tensity values are shown in Figure 5b and 5C.

Discussion

Completion of the ISS, together with operational hard-
ware, effective experimentation strategies, and sample
return protocols, has allowed for the first time a
complete, replicated, organ-specific transcriptome ana-
lysis for physiological adaptation of Arabidopsis to
spaceflight in laboratory-typical plant growth conditions.
The present experiments compare spaceflight plants to
plants grown on the ground in robustly replicated condi-
tions, using ground hardware and procedures identical to
those of the ISS. These experiments do not separate grav-
ity out as single factor, but rather consider spaceflight in
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Figure 4 Quantitative analyses across three separate
spaceflight experiments. Quantitative RT-qPCR analyses were used
to check the consistency of gene expression in root RNA across
three separate TAGES flight experiments: Run 1B, Run 2A, and Run
2B. Runs 1B, 2A, and 2B were composed of identical Arabidopsis lines
and grown under identical conditions, although in three distinct
windows of time on the ISS (see Methods). The fold-change
between flight and ground control is presented for five genes
showing statistically significant (p < 0.01) differential expression in
the microarrays conducted for the Run 2B plants (black). The RT-
gPCR fold-change values (in logpy) for each gene are presented
below the array values in gradients of gray bars: Run 2B (dark gray),
Run 1B (medium gray), Run 2A (light gray). Error bars for each RT-
gPCR set indicate Standard Deviation with an n =3 of biological
replicates. The asterisks (***) associated with array data bars indicate
p <0.005; otherwise, p <0.01. The public ID numbers for the genes
presented are: DDF1 (At1g12610), DREB2A (At5g05410), TCH4
(At5g57560), JAZ7 (At2g34600), ELIPT (At3g22840).

all of its collective inputs. A 1g centrifuge on orbit would
allow experiments to begin to separate gravity from the
other environmental factors of spaceflight (e.g. [21-23]),
provided that the orbital centrifuge was large enough to
eliminate gravity gradients within the plants. It is unlikely,
however, that artificial gravity will be possible on any likely
orbital or transit vehicles, so there is scientific and oper-
ational value in examining the collective effects of space-
flight on terrestrial biology, and especially plants if they
are to be used for supplementing life support in extended
orbital and long distance transit vehicles such as those
envisioned for trips to Mars [24-26].

There were 480 genes observed to be differentially
expressed in spaceflight versus ground control plants. The
observation that only 480 genes were affected is remark-
able, given that spaceflight plants and ground controls were
operationally separated by 230 miles of altitude, 17,000
mph of velocity, and the other attendant potential impacts
of orbital spaceflight, indicating that spaceflight environ-
ments have become extremely well controlled. Yet those
480 genes reveal a specific, rather robust, and in some ways
unexpected physiological adaptation to spaceflight.
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Leaves, roots, and hypocotyls engage different genes
but adopt similar strategies to adapt to the spaceflight
environment. Although unexpected, the major thread
that connects the responses in these organs is that many
of the differentially expressed genes are associated with
touch, wound response, and cell wall remodeling, as well
as the hormone signaling pathways that govern these
processes.

In leaves, genes involved with hormone signaling,
such as ABC transporters and auxin response factors
[27,28], are highly repressed, as are several genes en-
coding cell wall associated proteins, including an
endochitinase, polygalacturonase, xylan glucuronosyl-
transferase, an arabinogalactan precursor, and a lateral
organ boundary-domain containing protein [29,30].
The highly up-regulated genes unique to leaves are pri-
marily associated with defense typical of leaf herbivory
and pathogen response [31,32], and some calcium and
phosphate metabolism signaling that may be associated
with wounding and gravity sensing [33,34]. At least
one gene, PGP18, has been associated with both light
signal perception and cell wall remodeling [35]. While
this gene is highly up-regulated in leaves, the same
PGP18 is highly repressed in roots.

In hypocotyls, genes associated with cell expansion are
strongly represented, which is consonant with the fact
that hypocotyl growth is primarily dictated by cell ex-
pansion [30,36]. A large component of cell expansion is
the remodeling of the cell wall to accommodate the
change in cell shape and volume [36,37]. Auxin-
regulated genes are the most abundant, with dozens of
highly differentially expressed genes similarly repre-
sented in an auxin-treated hypocotyl transcriptome [30]
and other auxin- and BL-induced transcriptomes [38]. A
morphometric feature of these spaceflight Arabidopsis
hypocotyls is that they are shorter than the comparable
ground control plants [39]. Only a few of the induced
representatives are regulated through the AuxRE elem-
ent, with four SAUR-like genes containing AuxRE motifs
in their promoters up-regulated by 1.5- and 4-fold in hy-
pocotyls. DR5r:GFP shows a differential expression pro-
file in the spaceflight hypocotyls compared with ground
controls, being repressed early but induced later in
hypocotyl development, indicating a potentially complex
auxin-related response in spaceflight.

In roots, cell wall remodeling dominates the tactical re-
sponse to spaceflight, reflecting morphological differences
that have been observed [39]. The roots of flight plants
are smaller than their ground control cohorts, and in the
case of the Col-0 ecotype, there are fewer lateral roots
[39]. One gene family that contributes to both root length
and the distribution and abundance of lateral roots con-
tains the armadillo (ARM) repeat proteins [40]. In space-
flight, three members of this family are up-regulated, and
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Figure 5 GFP reporter gene images from Run 3A, Plate 1. (A) Three GFP reporter gene lines were planted on each plate: 35s:GFP (left), Adh:
GFP (center) and DR5r:GFP (right). The ground control plate (GC) is shown on the left and the corresponding flight plate (FLT) on right. Both

were 14.5-days old at the end of the experiment. The constitutive expression of the GFP reporter in the 35s:GFP plants is visible in both images.
There was no apparent GFP expression induced by the Adh promoter (Adh:GFP), although the DR5r:GFP plants show differential GFP expression
in hypocotyls. (B) Enlarged views of Adh:GFP and DR5r:GFP hypocotyls are shown for three developmental time points: 3.5, 7.5, and 14 days.

These time points correspond to the arrows along the x-axis in the graphs of (C). (C) Quantification of green fluorescence in Adh:GFP and DR5r:
GFP hypocotyls for ground control and flight plants over time. The graphs plot the average GFP value in the Adh:GFP and DR5r:GFP hypocotyls

images and those presented in the graph.

at each time point. Ground control (GC) values are presented in diamonds (Adh-green, DR5r:GFP-blue) and flight (FLT) values as squares (Adh-
purple, DR5r:GFP-red). The y-axis provides green channel intensity in arbitrary units, and the x-axis shows the elapsed hours since germination
was initiated. Images were collected every 6 hours. Missing FLT values on the graph are due to missing orbital images. Each value is the average
of the scan of the same set of hypocotyls captured at each time point; error bars reflect standard error of the mean: n=5 for GC; n=7 for FLT.
These images were identically treated with respect to background noise subtraction and adjustments of brightness and contrast to enhance
visibility of hypocotyls. Visibility adjustments of these images do not affect the quantitative data collected through ImageJ from the original

one of them is up-regulated in all three organs and highly
induced in roots. The flight roots also show clear signs of
negative phototropism and strong skewing [39]. There is
likely a strong connection between this size and skewing
phenomenon and the large collection of genes involved in
pathways that remodel cell walls, including the highly dif-
ferentially expressed DDF1, CAF1, TCH4, COW1, EXT-
like, and SP1L5 [41-46] genes. Several of the highly induced
genes in roots were also identified as binding targets for
HYS5, a transcription factor associated with numerous pho-
toreceptors [47,48]. The gene RHL41 (Responsive To High
Light 41), which is up-regulated three-fold in roots, is a
well-known HY5 target. However, the up-regulated genes
EXO, XT1, NUDT21 and WRKY48, which are typically as-
sociated with touch and wounding, have also been identi-
fied as HY5 targets genes [48]. It is possible that the
induction of HY5 partners, and other light responsive genes
in roots, is part of a strategy to maximize utilization of the
primary tropic signals available to plants in the absence of
gravity: light and touch.

Conclusions

There are four major abiotic cues involved in directing
terrestrial plant growth and development: gravity, light,
water, and touch (recent reviews: [7,34,49-52]). The op-
portunity to examine the strategies of environmental
sensing in spaceflight provides a unique insight into the
balance among these cues during the course of plant de-
velopment. Some features of root growth thought to be
gravity-dependent are not [39,53], and some features of
phototropism [21,54] and signal transduction [17,18,55]
would not have been revealed had it not been for the
ability to remove the influence of gravity from the ana-
lyses. And while spaceflight may be more complex than
simply the removal of gravity, gravity is certainly largely
absent during the growth of these orbital plants.

Plant growth and development are governed by a vast
and complex network of genes. The correlations in mor-
phological and molecular data from spaceflight offer a
unique insight into growth and development, particu-
larly in regard to processes presumed to be affected by
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gravity. There is a rich history of plant biology using the
spaceflight environment that may lead to a greater un-
derstanding of the role of gravity [9]. Additionally, the
contemporary access to the ISS, along with new orbital
habitats and hardware for plant experiments, will enable
researchers to design a new generation of replicated ex-
periments with which to explore these phenomena. It is
likely that an understanding of responses to spaceflight
will be refined as specific cell types are examined, and it
is likely that the specific roles of gravity in spaceflight re-
sponses will be elaborated with facile access to orbital
centrifuges. The result will be a much deeper under-
standing of plant growth in support of human space-
flight missions, as well as a deeper appreciation of the
physiological adaptations of life forms to extra-terrestrial
environments.

Methods

Independent spaceflight launches and replicate
experiments

The data presented here are taken from several inde-
pendent experiments launched to the ISS: STS-129,
November 16, 2009 (Run 1B: 12/3/2009-12/15/2009);
STS-130, February 8, 2010 (Run 3A: 2/21/2010-3/7/
2010); and STS-131, April 5, 2010 (Runs 2A: 4/9/
2010-4/21/2010, and 2B: conducted from 4/21/2010-
5/3/2010, and returned on STS-132). Runs 1B, 2A, and
2B provided material for the gene expression analyses;
each of these independent experiments was composed
of three identical biological replicates composed of 12
day old plants. Run 3A was an imaging experiment
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that ran for 14 days; those plants were not included in
the transcriptome analyses.

Each flight experiment (1B, 2A, 2B, 3A) had its own
comparable, high fidelity ground control. Each ground
control was housed in the Orbital Environmental Simu-
lator (OES) at the Kennedy Space Center (KSC) and
conducted in ABRS hardware units identical to the one
installed on the ISS. The ground controls were run with
a time-delay offset to facilitate the programming of the
OES with the actual environmental parameters (lighting,
temperature, CO,, RH) recorded on the ISS and seen by
the plants in the orbital hardware, and volatile compo-
nents of the atmosphere (e.g. ethylene and out-gassing
from plastics) were equally scrubbed in both sets of
hardware. The treatment of the dormant plates before
launch and during the transition to the ISS and instilla-
tion into the ABRS unit was also carefully replicated in
the ground controls. The conditions of the harvests (in-
cluding the harvest hardware), storage of samples and
the transport from the ISS to the researchers, were care-
fully replicated for each individual ground control.

The basic scenario for the treatment of the biological
material is provided in Table 1.

Plant lines and seed dormancy

Arabidopsis seeds (12 to 18 seeds per plate) were planted
aseptically on the surface of 10 cm? solid media plates [56].
The three GFP (Green fluorescent Protein [57]) reporter
gene lines were Adh:GFP (alcohol dehydrogenase pro-
moter [58]); DR5r:GFP (synthetic auxin response element
composed of five AuxRE elements; gift of T. Guilfoyle

Table 1 The operations outline both the flight and ground control experiments

Operation

Flight environment/duration

Ground control environment/duration

Dormant plates prepared for Turn Over to
Shuttle operations

Plates stowed in Nomex transport bag

Launch to ISS and loiter on station before
integration into ABRS and germination

Active growth period each plate
Photography and harvest of each plate to KFT
RNAlater soak in KFT

KFT Stowage on ISS

Return to KSC laboratory
Storage at KSC

Transition to PIs' laboratory
freezer (—80)

KSC laboratory (22 - 25 Q)

KSC laboratory (22 - 25 Q)/2 days
Shuttle middeck locker then ISS EXPRESS
Rack (22 - 25 C)/3-25 days

ISS ABRS unit 22-24 C/12-14 days

ISS work areas (22-24 C)/1-2 hrs

ISS work areas (22-24 C)/12-24 hrs

MELFI (between =35 and —95 (C)/8-32 days

Double Cold Bag (—32 C)/2-3 days
cryo freezer at KSC (=80)/2-7 days

Transport on dry ice then to cryo

KSC laboratory (22 - 25 Q)

KSC laboratory (22 - 25 Q)/2 days

OES Shuttle middeck locker/3-25 days on at
least 24 hour delay from flight

OES ABRS unit 22-24 C/12-14 days on at
least 24 hour delay from flight

OES work areas (22-24 C)/1-2 hrs on at least
24 hour delay from flight

OES work areas (22-24 C)/12-24 hrs on at
least 24 hour delay from flight

cryo freezer at KSC (=80 €)/8-32 days on at
least 24 hour delay from flight

cryo freezer at KSC (-80)/2-3 days
cryo freezer at KSC (—-80)/2-7 days

Transport on dry ice then to cryo freezer (—80)

Each flight experiment was paired with a ground control that was run in parallel, on the ground, having been informed by environmental and operations data
from the ISS on at least a 24 hour delay. In this manner, each flight operation was precisely replicated in the ground controls. Although there was variability in the
durations of the dormancy period and the cold storage periods among the runs, for each individual experiment, the conditions were precisely replicated between

each flight and ground control experiment pair.
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[59]); and 35s:GFP (driven by the CaMV35s promoter
[58]). Seeds and seeded plates were prepared in such a way
as to maintain dormancy in light-tight coverings until the
initiation of the experiment on orbit [39]. The plated seeds
remained dormant until activated by exposure to light in
the ABRS growth hardware, which initiated germination.

Experiment unique equipment and environmental
conditions

Both the flight and ground control plates were grown in
the ABRS [60]. The ABRS provided temperature control,
light control, and circulation of air that was scrubbed to re-
move volatile organic compounds (VOCs). On orbit, the
dormant seeded plates were unwrapped from their cover-
ings and installed in the GFP Imaging System (GIS), which
was then inserted into an ABRS (Figure 1A, 1B). The GIS
held the plates within the ABRS, facilitated access by the
astronaut on orbit (1C), and provided regular imaging
[39,61]. After growth, all plates were harvested on orbit to
RNAlater-filled KSC Fixation Tubes (KFTs) (Figure 2A, 2B)
and then stowed below -40°C on the ISS [1] before return.
The ground control was housed in an ABRS in the Orbital
Environmental Simulator (OES) chamber in the Spaceflight
Life Sciences Laboratory at Kennedy Space Center.

Imaging

The plate in position 1 of Run 3A was imaged every 6
hours. Each imaging session consisted of a white light
image to evaluate general morphology [39] and three
fluorescent images that were stacked into a single image
for GFP analysis with Maxim-DL [62]. Quantification of
the relative intensities of GFP expression in the imaged
plants was conducted with Image]J [63].

Sample preparation for transcriptome analyses

Three separate plates of plants from Run 2B, from three
different positions in the ABRS growth chamber, were
used to evaluate the transcriptome of plants grown on
the ISS (Flight) versus those grown in the comparable
growth chamber within the Orbital Environment Simu-
lator (Ground Control). Total RNA was isolated from
plates grown in the upper tier of the GIS (plate positions
2, 4, 6; Figure 1). A representative upper-tier plate is
shown in Figure 2A [images of lower tier plates can be
found in [39]. RNAlater-preserved plants returned from
orbit were separated into three organ types: leaves (cut
from the plant at base of each petiole), hypocotyls (the
region between the root/shoot junction and the start of
the leaf rosette), and roots (Figure 2C and 2D). RNA
from runs 2B and 1B was extracted using RNAeasy™
mini kits (QIAGEN Sciences, MD, USA) according to
the manufacturer’s protocol. Residual DNA was removed
by performing an on-column digestion using an RNase
Free DNase (QIAGEN GmbH, Hilden, Germany). RNA
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from run 2A was extracted using a mirVana miRNA Iso-
lation Kit with Acid-Phenol:Chloroform (5:1 Solution
pH 4.5+/-0.2) extraction (Ambion Life Technologies).
Integrity of the RNA was evaluated using the Agilent
2100 BioAnalyzer (Agilent Technologies, Santa Clara,
CA, USA).

Microarrays

RNA from five biological replicates leaves, hypocotyls, and
roots from spaceflight (FLT) and ground control (GC)
samples were analyzed using ten Affymetrix GeneChip®
Arabidopsis ATH1 Genome Arrays (A-AFFY-2). The bio-
logical replicates were collected as follows (plate number-
ing and configuration described in Figure 1): one from
Plate 2, two from Plate 4 and two from Plate 6. Each bio-
logical replicate is comprised of six to nine individual
plants. All plates were upper deck plates, and received the
same light levels. Flight and ground control samples were
grown, harvested and extracted with identical protocols.
Details of Microarray data analyses and MAS5 Statistical
algorithm and Robust Multichip Analysis (RMA) applica-
tions can be found in [14,16], and in the following section.
The data have been deposited in ArrayExpress under ex-
periment accession number E-MTAB-1264.

Statistical methods associated with the microarray
analyses

The primary statistical algorithm utilized in the array
analyses was MAS5.0 (Affymetrix Expression Console™
Software). MAS5.0 was first used in pre-processing to
detect present and absent probe signals; probe sets scored
as absent on all arrays were removed. Next MAS5.0 was
used to perform additional pre-processing for background
adjustment, normalization and summarization. Compara-
tive analyses were conducted with the normalized signal
intensity values. The Student’s t-test was performed con-
sidering a probe-by-probe comparison between each
spaceflight (FLT) probe group and each ground control
(GC) probe group. Three comparative analyses were
performed between FLT Leaves and GC Leaves, FLT Hy-
pocotyls and GC Hypocotyls, FLT Roots and GC Roots,
respectively. The fold change (FC) was computed based
on the normalized log transformed signal intensity data
for each gene locus in the FLT and GC groups. P-value
corrections (q-value) were generated to measure false
positive rate.

Quantitative RT-qPCR

Applied Biosystems kits and reagents (TagMan™) were
used for the quantitative RT-qPCR [64]. Ubiquitin
UBQI11 (At4g05050) served as an internal control in du-
plex RT-qPCR reactions. Primers and probes were
designed with Primer Express and supplied by Applied
Biosystems. Three biological replicates were used to
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generate the graph provided in Figure 5. The three repli-
cate RNA samples used for the RT-qPCR analysis of
Run 2B roots were taken from the three of the five RNA
samples used for the Run 2B microarrays (both flight
and ground control. The quantitative analyses from the
other two TAGES flight experiments (Runs 1B and 2A)
were also conducted with three biological replicates of
roots from each of those experiments and their respect-
ive, corresponding ground controls. The Mean dCt (Ct
target — Ct UBQ11) of 3 spaceflight replicas was calcu-
lated relative to Mean dCt (Ct target- Ct UBQ11) of 3
ground control biological replicas (ddCt) (dCt FLT- dCt
GC) and the fold change was calculated as 2"(-ddCt).
Additional details of RT-qPCR protocol and analysis can
be found in [14,16]. The list of RT-qPCR probes and pri-
mer sets is shown in Additional file 4.

Additional files

Additional file 1: Statistically significant differential expression in
response to spaceflight among the three organ types. There are 480
genes that show statistically significant (p < 0.01) differential expression
by at least 1.9-fold in at least one organ in response to spaceflight. The
genes are sorted by AtG number.

Additional file 2: Differential expression of 7-fold or greater in
response to spaceflight among organs. Genes that show statistically
significant (p < 0.01) differential expression of 7-fold or greater in
response to spaceflight among organs are highlighted as bold text in the
organ column in which that level of expression is displayed.

Additional file 3: Cellular remodelling and hormone signaling
associated genes differentially expressed genes in response to
spaceflight. The hierarchical clustering of 158 genes with statistically
significant (p < 0.01) differential expression in the spaceflight
environment by at least 1.9-fold in at least one of the three organs, and
which have an association with cell wall remodeling and cell expansion,
pathogen or wounding responses, and growth hormone signal
transduction. The graphic representation of gene expression patterns is
annotated with the corresponding AtG number, gene name, and notes
associated with that gene’s functional association.

Additional file 4: RT-qPCR primers and probes. The forward and
reverse primers used for RT-qPCR anaylse of DDF1, DREB2A, TCH4, JAZ7,
ELIP1, and the UBQ11 control. Primers and probes were designed with
Primer Express software and supplied by Applied Biosystems.
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