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Development of genomic SSR markers for
fingerprinting lettuce (Lactuca sativa L.) cultivars
and mapping genes
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Abstract

Background: Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of
molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only
a very limited number of microsattelite-based markers are publicly available. We have employed the method of
enriched microsatellite libraries to develop 97 genomic SSR markers.

Results: Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L.
serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number
of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based
SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of
lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on
linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions.
Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance
gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions
showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among
horticultural types.

Conclusions: The newly developed genomic SSR markers were added to the pool of previously developed
EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting,
development of integrated molecular linkage maps, and mapping of genes.
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Background
Cultivated lettuce (Lactuca sativa L.) is a self-fertilizing
diploid species from the family of Compositae (Astera-
ceae) with 2n = 2x = 18 chromosomes. Several horticul-
tural types of lettuce are cultivated worldwide for
human consumption. Classification of lettuce cultivars
into horticultural types is generally based on head and
leaf shape, size, and structure and stem length. The
seven types include crisphead (combined iceberg and
Batavia-type lettuces), romaine, butterhead, Latin, leaf,
stem, and oil lettuces.
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Several types of biochemical and molecular markers
have been applied for lettuce genotyping, such as iso-
zymes [1], restriction fragment length polymorphism -
RFLP [2], random amplified polymorphic DNA - RAPD
[3], amplified fragment length polymorphism - AFLP [4],
simple sequence repeats - SSR [5], target region amplifica-
tion polymorphism - TRAP [6,7], expressed sequence
tag based SSR - EST-SSR [8], single nucleotide poly-
morphism – SNP [9], and single position polymorphism –
SPP [10]. Genotyping with molecular markers is used for
cultivar fingerprinting, detection of genetic diversity,
assessment of population structure, mapping genes of
interest, and for selection of desirable genotypes in breed-
ing programs. Fingerprinting of plant cultivars is fre-
quently carried out with SSR markers (microsatellites)
because they are co-dominant, multi-allelic and thus
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Table 1 PCR conditions

PCR purpose PCR conditions (initial denaturation,
number of cycles, denaturation,
annealing, elongation, and a final
extension step)

Enrichment for
microsatellite-containing
fragments

94°C for 2 min, followed by 12 cycles of
94°C for 15 sec, 55°C for 35 sec, 72°C for
90 sec

Recovery of microsatellite-
containing fragments

35 cycles of 94°C for 15 sec, 55°C for 35
sec, 72°C for 30 sec, and a final extension
at 72°C for 5 min

Preparation of products for
cloning

94°C for 2 min, followed by 15 cycles of
94°C for 15 sec, 55°C for 35 sec, 72°C for
30 sec, and a final extension at 72°C for
5-10 min

Confirmation of cloned
products

96°C for 2 min, followed by 33 cycles of
94°C for 40 sec, 57°C for 12 sec, 72°C for
30 sec, and a final extension at 72°C for 5
min

Genotyping with SSRs 96°C for 2 min, followed by 33 cycles at
94°C for 35 sec, annealing temperature*
for 15 sec, 72°C for 30 sec, and a final
extension at 72°C for 5 min

* Annealing temperatures for each SSR are shown in Additional file 1.
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more informative than dominant-types of markers. How-
ever, development of SSR markers is costly and time-
consuming and therefore only a very limited number of
SSR markers are publicly available for lettuce [5]. Previ-
ously, we have developed a set of EST-SSR markers [8]
from approximately twenty thousand unigenes of L. sativa
and its close wild relative prickly lettuce (L. serriola L.).
In the present work we describe the development of
SSR markers from genomic DNA for fingerprinting let-
tuce cultivars. To develop this set of novel SSR markers
we used the method of enriched microsatellite libraries
[11-13].
Objectives of the present work were to 1) develop a

set of genomic SSR markers; 2) test marker polymorph-
ism on a diverse set of lettuce cultivars; and 3) integrate
the SSR markers into the molecular linkage map of
lettuce.

Methods
Development of genomic SSR markers
Genomic SSR markers were developed from L. sativa cv.
Salinas according to the protocols of Glenn and Schable
[13] and Farias et al. [12], with some modifications. The
procedure consists of DNA extraction, DNA digestion
with a restriction enzyme, ligation of linkers to DNA
fragments, PCR-enrichment for microsatellite-containing
fragments, hybridization to microsatellite-specific probes,
recovery of microsatellite-containing fragments, and clon-
ing and sequencing of products.
Approximately 100 mg of tissue from young leaves of a

month-old, greenhouse-grown plant was collected and
immediately lyophilized. The sample was ground to fine
powder using a TissueLyser mill before extracting DNA
with DNeasy Plant Mini Kit (both from Qiagen, Valencia,
CA). The DNA concentration and quality was analyzed
with an ND-1000 Spectrometer (NanoDrop Technologies,
Wilmington, DE). Three μg of genomic DNA was digested
with BfuCI, an isoschizomer of Sau3AI (New England
Biolabs Ipswich, MA) according to the manufacturer’s
instructions. The enzyme was deactivated at 80°C for
20 min and a 5 μl aliquot was run on a 0.8% agarose gel to
verify the digestion. The linkers were created by hybridiz-
ing two oligonucleotides: Er1BhGATCSticky 50-GAT CGG
CAG GAT CCA CTG AAT TCG C-30 and Er1Bh1Blunt
50-GCG AAT TCA GTG GAT CCT GCC-30. These lin-
kers were then ligated to the fractioned DNA using T4
DNA ligase (New England Biolabs, Ipswich, MA) follow-
ing the manufacturer’s instructions.
A PCR was set up to increase quantity of the frag-

ments that are containing SSRs. PCR-enrichment was
performed using the product of the ligation as a tem-
plate and Er1Bh1Blunt as a primer. The reaction was set
up as follows: 1 × PCR ready mix (Promega, Fitchburg,
WI), 0.25 mM Er1BhBlunt primer, 1 μl template and
bidistilled water to 25 μl final volume (Table 1). Unin-
corporated nucleotides and primers were cleaned up
with Exonuclease I and Antarctic phosphatase (New
England Biolabs, Ipswich, MA). The oligonucleotide
probes were biotinylated using terminal transferase
(New England Biolabs, Ipswich, MA) following the man-
ufacturer’s instructions. In order to produce 1–3 biotins
per oligonucleotide, a proportion of 1 pmol of 30 ends to
0.01 mmol of biotin-14-dATP (Invitrogen, Grand Island,
NY) was used. The oligonucleotides were mixed as sug-
gested by Glenn and Schable [13]: mix 2 ((AG)12, (TG)12,
(AAC)6, (AAG)8, (AAT)12, (ACT)12, (ATC)8); mix 3
((AAAC)6, (AAAG)6, (AATC)6, (AATG)6, (ACAG)6,
(ACCT)6, (ACTC)6, (ACTG)6); and mix 4 ((AAAT)8,
(AACT)8, (AAGT)8, (ACAT)8, (AGAT)8). The mixes
were biotinylated independently at 37°C for 30 min and
the enzyme was deactivated by heating to 70°C for
10 min. The excess biotin was removed using precipita-
tion with 3 M sodium acetate and absolute ethanol, and
resuspending the probes in 100 μl of bidistilled water.
To isolate SSR-containing fragments, the probes were
attached to Streptavidin magnetic beads (New England
Biolabs, Ipswitch, MA) according to the manufacturer’s
instructions. The product of the enrichment-PCR was
denatured at 95°C for 5 min and quickly chilled on ice.
This product was then hybridized to the probes in an
oven at 55°C for 3 hours and washed with 2 × SSC buf-
fer and 0.1% SDS buffer twice, and then with 1 × TE
buffer-50 mM NaCl and resuspended in 200 μl of 1 ×
TE buffer. To recover SSR-containing fragments, the
probe-SSR complex was denatured at 95°C for 5 min



Table 2 List of 36 Lactuca accessions genotyped with
genomic SSR markers

Horticultural type
or species

Accession

Butterhead Bibb, Big Boston, Dark Green Boston, Margarita

Crisp Calmar, Empire, Great Lakes 54, Iceberg, La
Brillante, Reine des Glaces, Salinas, Salinas 88,
Vanguard, Winterhaven

Latin Eruption, Little Gem

Leaf Australian, Grand Rapids, Lolla Rossa, Prizehead,
Red Oak Leaf, Red Salad Bowl, Salad Bowl

Oil PI 251246

Romaine Clemente, Heart’s Delight, Paris Island Cos, PI
207490, Triple Threat, Valmaine

Stem Balady Aswan, Celtuce, Da Ye Wo Sun

L. saligna PI 509525

L. serriola UC96US23

L. virosa IVT 280
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and the beads were quickly removed with a magnet. A
PCR was set up to test recovery of fragments using the
Er1Bh1Blunt oligonucleotide as a primer and the product
of the hybridization as a template (Table 1). The PCR pro-
ducts were then run on a 1.2% agarose gel.
Once the fragment recovery was verified, a second

PCR-enrichment was set up to prepare sequences for
cloning. Four reactions were set up with 0.8 mM dNTPs,
1× PCR buffer, 0.4 μM Er1Bh1Blunt primer, 2.5 U Taq
Polymerase and 1 μl of the hybridization product
(Table 1). The PCR products were pooled, cleaned with
QiaQuick columns (Qiagen, Valencia, CA), and cloned
using Topo TA cloning kit for sequencing and E. coli
Mach1-T1R cells (Invitrogen, Grand Island, NY), accord-
ing to the manufacturer’s instructions. Transformed cells
were passed to 96 well plates with lysogeny broth (LB)
containing 50 mg/ml ampicillin, and grown for at least
4 hours at 37°C. A confirmation PCR was carried out
using standard M13 forward and reverse primers and 2–
3 μl of the LB medium with bacterial growth as a tem-
plate. Bovine serum albumin in the concentration of
25 μg/ml was added to the PCR; all other reagents were
used in concentrations described above. E. coli colonies
that contained products of expected size were trans-
ferred to Wu Broth supplemented with ampicillin and
submitted for sequencing to the USDA-ARS Genomics
and Bioinformatics Research Unit in Stoneville, MS.
Sequencing data were cleaned up from vector contamin-
ation and assembled in contigs using CLC DNA work-
bench 5.0 (CLCBio Aarhus, Denmark). The SSRs with the
minimal length of 14 bp were identified using WebSat
[14]. Primers for SSR amplification were designed by
Primer3 software [15] integrated into WebSat. Primer
quality analysis was performed with OligoAnalizer 3.1
(Integrated DNA Technologies Inc, Coralville, IA). When
sequences contained multiple SSRs, different primer-pairs
were designed for each SSR. If amplification with the
Primer 3-designed primers did not yield expected pro-
ducts, a second pair of primers was designed using CLC
DNA workbench. Sequences of SSR-containing fragments
were compared in January 2012 to the GenBank database
(www.ncbi.nlm.nih.gov) using CLC DNA workbench 5.0.
The ‘blastn’ option of the BLAST algorithm [16] was
applied to search the nucleotide collection (nr) of the
viridiplantae database using low complexity filter to avoid
spurious hits based on microsatellite sequence only. The
threshold of significance to report similarity was set at
1e-4.

Testing of marker polymorphism
A set of 36 accessions was used to test polymorphism of
newly developed SSR markers. This set comprised 33 L.
sativa cultivars plus a single accession from each of the
three wild species sexually compatible with cultivated
lettuce; prickly lettuce (L. serriola L.), willowleaf lettuce
(L. saligna L.), and bitter lettuce (L. virosa L.). Geno-
typed cultivars belonged to seven horticultural types:
crisphead, leaf, romaine, butterhead, stem, Latin, and oil
lettuce (Table 2).
Genotyping with SSR markers: The PCR conditions

for SSR amplification were optimized for each primer
pair. The optimal PCR conditions are described in Add-
itional file 1. In general, the reactions were set up using
0.2 μM of each primer, 5 ng of DNA template, and 1× of
Taq PCR master mix (New England Biolabs, Ipswich,
MA) in a final volume of 10 μl (Table 1). The PCR pro-
ducts were separated using eGene HDA-GT12 DNA
analyzer (currently known as QIAxcel System, from
Qiagen, Valencia, CA) and scored by Biocalculator soft-
ware (eGene, Irvine, CA).
Analysis of genetic heterozygosity: The statistical ana-

lyses of SSR data were performed with GenAlEx 6.1 [17]
for codominant markers and GenoDive v.2.0b20 [18].
Missing data and null alleles were excluded from the
analysis. The unbiased estimate of genetic heterozygosity
UHe [19] and observed number of different alleles Na
were used to measure marker informative value (GenA-
lEx 6.1). Genetic distances (Fst) [20] between all pairs of
horticultural types with at least two accessions, analysis
of molecular variance (AMOVA) [21], and principal
components analysis (PCA) were calculated using
GenoDive v.2.0b20. The significance of the differences
between the EST-based [22] and genomic SSRs were
tested with Student’s t-test.
Consistency of molecular marker datasets: Data reso-

lution (DR) statistics were used to evaluate the internal
consistency of the SSRs dataset with the program writ-
ten by van Hintum [23]. DR values can be in the range
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from 0 to 1; where higher values indicate higher internal
consistency of the data. The number of replications was
set to 10,000.
Identification of genotypes: The software MultiLocus

ver. 1.3b [24] was used to estimate the number of differ-
ent genotypes that can be identified in a set of 36 acces-
sions with a gradually increasing number of markers.
This analysis shows whether scoring more markers leads
to increasing number of identified genotypes. One thou-
sand samplings of markers were performed at random
from 1 to m-1, where m is the total number of markers.
The relative number of identified genotypes was calcu-
lated by dividing the number of identified genotypes by
the total number of accessions.

Integrating SSR markers into the molecular linkage map
of lettuce
Newly developed genomic SSRs were integrated into the
L. sativa (cv. Salinas) × L. serriola (accession UC96US23)
molecular linkage map [25]. A framework linkage map
consisted of SNP and AFLP markers spaced approxi-
mately 5–10 cM apart and covering all nine lettuce
linkage groups. These framework markers were selected
from the integrated SNP/AFLP linkage map, and the
marker information was downloaded in April 2010 from
the Compositae Genome Project website (compge-
nomics.ucdavis.edu/compositae_LettMap.php). Both par-
ental genotypes and 96 F8 recombinant inbred lines
(RILs) from the interspecific L. sativa × L. serriola map-
ping population were genotyped with SSRs. DNA isola-
tion and genotyping with SSRs was carried out as
described above. Integration of the SSR markers into the
framework linkage map was performed using MapMana-
ger QTX version 0.30 [26]. Program settings included
SelfRI for linkage evaluation, the Kosambi mapping
function, inference of missing data, and the command
for marker distribution with p-value ≤ 0.001. In addition
to genomic SSRs, EST-SSR markers previously devel-
oped in our laboratory [22] were also integrated into this
molecular linkage map.

Modeling and analysis of marker distribution
To analyze distribution of the SSR markers on the mo-
lecular linkage map, we compared the observed distribu-
tion of markers with a model that assumes a random
distribution of markers. This model was developed by
randomly placing markers on nine linkage groups of the
molecular linkage map. One thousand models were gen-
erated for each linkage group populated with genomic
SSRs and EST-SSRs. Analyses of marker distribution
were based on 1) the length of intervals between two
successive markers and 2) the clustering of markers. The
length of intervals (in cM) between two successive mar-
kers was calculated from the linkage map (or modeled
data). Subsequently, the intervals were grouped into bins
containing intervals of similar size (in 10 cM increase).
Evaluation of clustering was carried out by dividing each
of the nine linkage groups into segments 20 cM long.
The number of markers per 20 cM-long segment was
counted for both the real and modeled data.
Goodness of fit between observed and modeled distribu-

tions of markers was analyzed both with Kolmogorov–
Smirnov (K-S) test, and the Pearson’s Chi-square (χ2) test.
Modeling and statistical analyses were performed with
Microsoft Excel v.14.1.4 (Microsoft, Redmond, WA) and
JMP 6.0.3 (SAS Institute, Cary, NC, USA).

Results and discussion
Marker development
A total of 217 products were amplified from 548 bacterial
colonies grown on a selective media (LB with ampicillin).
One hundred and fifty-four of these products originated
from mix 2, 24 from mix 3, and 39 from mix 4. Out of
217 products, 192 were sequenced, yielding 117 unique
sequences that contained microsatellites. Sequencing
revealed that some fragments contain more than one
microsatellite. In such case, an attempt was made to
design primers that would amplify each microsatellite in-
dividually. The microsatellite-containing sequences were
named based on their origin (Lactuca sativa cv. Salinas)
followed by a plate code (A or B) and a consecutive num-
ber (LSSA ## or LSSB ##).
Seventy-nine percent of sequenced products contained

dinucleotide repeats; 14% of products contained trinucleo-
tide repeats; 3% of products contained tetranucleotide
repeats, and 4% of products contained repeats consisting
of five or more nucleotides. Two separate repeats were
detected in 24% of products and imperfect repeats were
found in 22% of products.

Results of sequence homology searches
Seventy-six SSR-containing fragments showed high se-
quence similarity (<1e-4) to the nucleotide collection of
the viridiplantae GenBank database (www.ncbi.nlm.nih.
gov). Nineteen sequences were similar to chloroplast
DNA (cpDNA) or mitochondrion DNA (mtDNA). How-
ever, several of these sequenced fragments showed
segregation in the mapping population, indicating that
they are likely originating from a nuclear DNA having
sequence similarity to cpDNA or mtDNA. In plant spe-
cies, a large percentage (61.4% to 94.3%) of mtDNA se-
quence is highly similar to nuclear DNA sequences [27].
A group of 14 sequenced fragments appeared to be
highly similar to resistance gene candidates (RGCs) and
RGC pseudogenes [28]. The SSR markers developed
from these fragments can be evaluated for association
with disease resistance and (if association is detected)
possibly used in tagging resistance phenotypes. Six of
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Figure 2 Distribution of unbiased estimate of genetic
heterozygosity (UHe) for 97 genomic SSRs. The mean UHe value
for SSRs is 0.56.
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the sequenced fragments were similar to transposons or
retrotransposons. Fifteen sequences matched to a num-
ber of putative genes including genes for chitinase, per-
oxidase, trypsin inhibitor, kaurene oxidase, or teosinte
branching. The remaining 22 fragments did not show
significant similarity to the genes or putative genes with
known function (Figure 1).

Marker informative value and analysis of accessions
When developed SSR-markers were used for genotyping
the set of 36 accessions, several markers had sizes sub-
stantially longer than was expected, showed several loci
per homozygous accessions, or were amplified only in
very few accessions. These markers were excluded from
further analyses, reducing the number of good quality
markers to 97 (Additional file 1). Genetic heterozygosity,
as measured by unbiased estimate UHe, ranged from 0
(for monomorphic markers) to 0.92 with the mean value
of 0.56 (Figure 2). The average UHe for genomic SSR
markers was significantly higher (t-test, p = 5.9 × 10-11)
than UHe observed on EST-SSR (0.32) [22]. Similarly,
the number of loci per SSR (Na) was significantly higher
(t-test, p = 7.3 × 10-6) for genomic-derived markers than
for the EST-SSRs. The number of loci per genomic SSR
ranged from 1 to 19 with the mean value of 5.50; while
the mean value for EST-SSRs was 3.56 [22]. Though the
set of accessions previously genotyped with EST-SSRs
[22] is not identical with the current set of accessions
genotyped with genomic SSRs, the two sets overlap.
Both sets contain material from the same horticultural
types of lettuce allowing a limited comparison. The
lower polymorphism of EST-SSR markers as compared
with genomic SSRs has been reported in several other
plant species, such as grape [29], rice [30], wheat [31],
Figure 1 Homology of sequences containing microsattelites.
Transposon group contains sequences similar to transposable
elements (both transposons or retrotransposons). RGC group
contains sequences similar to resistance gene candidates or RGC
pseudogenes. Functional gene group contains sequences that are
similar to proteins with known function, but not those in the RGC
group. Plastid group includes sequences similar to chloroplast or
mitochondrion.
and sunflower [32]. The lower polymorphism in EST-
SSRs is likely due to the conserved nature of coding
regions of a genome [33].
Results from AMOVA indicate that approximately 3.2%

of genetic diversity was within accessions, 78.9% (p <
0.001) among accessions, and remaining the 17.9% (p <
0.005) among horticultural types (Table 3). These results
are similar to those achieved with SNP markers that were
used to genotype five horticultural types of lettuce. Kwon
et al. [9] detected that 23% of the genetic variation resided
among horticultural types, while 68.2% resided within
horticultural types. We also calculated pairwise differenti-
ation (Fst) for all pairs of horticultural types with at least
two accessions per type (Table 4). The variation in the Fst
values ranged from 0.038 (between crisp and romaine
types) to 0.202 (between butterhead and leaf types). These
results were different from our previous analyses with
TRAP [7] and EST-SSR markers [22], which separated
crisp and romaine types into respective subpopulations [7]
or clusters [22]. The results of PCA revealed that acces-
sions of some horticultural types clustered together (e.g.
stem lettuces) and were well separated from other types,
while accessions from some other types did not cluster
well (Figure 3). For example crisp-lettuce accessions ap-
pear to form three separate sub-clusters, one containing
four accessions (Great Lakes, Winterhaven, La Brillante,
and Iceberg), the second consisting of Vanguard, Salinas,
Salinas 88, and Batavia Reine des Glaces, and the third
group of two accessions (Calmar and Empire). Because of
this distribution of accessions, Fst values for crisp type are
Table 3 Analysis of molecular variance (AMOVA)
calculated from genomic SSR markers

Source of variation Percentage of variation p-value

Within accessions 3.2

Among accessions 78.9 < 0.001

Among horticultural types 17.9 < 0.005



Table 4 Pairwise differentiation (Fst) among horticultural
types calculated from genomic SSR markers

Horticultural
type

Crisp Butterhead Latin Leaf Romaine Stem

Crisp - 0.105 0.048 0.096 0.038 0.145

Butterhead - 0.178 0.202 0.134 0.164

Latin - 0.084 0.060 0.117

Leaf - 0.101 0.157

Romaine - 0.136

Stem -
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generally low and range from only 0.038 (with romaine
lettuce) to 0.145 (with stem lettuces). Though PCA unam-
biguously separated all wild species from cultivated let-
tuce, L. serriola was closest to the cluster of L. sativa
accessions, while L. virosa was the most distant from this
cluster (Figure 3, insert in the upper right corner). The
observed distance between wild species and L. sativa
accessions corresponds to sexual compatibility of the three
species with cultivated lettuce. Similarly, the marker trans-
fer rate was highest to L. serriola (83%) that is the closest
relative of cultivated lettuce, followed by L. saligna (66%)
Figure 3 Principal component analysis (PCA) of the 33 L. sativa access
Color coding for horticultural types is: leaf – yellow, crisp – black, oil – red,
green. Insert in the upper right corner shows the relative position of L. serr
of L. sativa accessions.
and L. virosa (63%). These results correspond to previous
observations obtained with both genomic SSRs and EST-
SSRs [22].

Consistency of datasets and genotypic diversity
DR analysis shows the expected shape of the curve with
a low initial value of 0.036 for two markers and gradual
increase to the value of 0.644 for 97 markers (Figure 4).
The higher DR values indicate the higher internal
consistency of the SSR dataset when more markers are
analyzed. Van Hintum [23] observed similar results for
L. serriola accessions genotyped with AFLP markers. In
our analyses, 61 SSR markers were needed to reach the
DR of 0.5; an estimate from Van Hintum [23] indicates
that approximately 70 AFLP markers were needed to
reach the same DR value. It was previously observed that
for the same number of markers, consistency of SSR
datasets is usually higher than consistency of datasets of
dominant markers [23,34].
To analyze whether scoring more SSR markers increases

likelihood of distinguishing more genotypes, the genotypic
diversity analysis was performed on the set of 36 acces-
sions. On average only four markers were needed to
ions and three wild species genotyped with 97 genomic SSRs.
romaine and Latin combined – orange, stem – blue, butterhead –
iola (UC96US23), L. saligna (PI 509525), and L. virosa (IVT 280) to the set



Figure 4 Data resolution (DR) curve for the 97 genomic SSR
markers. The minimum DR value of two markers is 0.036; the
maximum DR value of 97 SSR markers is 0.644.
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identify 50% of genotypes, 10 markers were needed to
identify 90% of genotypes, and 19 markers were needed to
identify 99% of genotypes (Figure 5). Our analysis shows
that any 32 SSR markers were able to distinguish geno-
types of all 36 accessions unambiguously. This is a
relatively high number of markers that are needed for
genotyping. For example, only 17 SSR markers on average
were required to identify 54 sugar beet hybrid varieties
[34]. However, variability within certain horticultural types
of lettuce is generally very low and similarity among
accessions of the same type is high [7,22]. Therefore more
molecular markers are needed to distinguish closely
related material with high genetic similarity. In addition,
some of the SSRs tested in the present study originate
from the same genomic region, thus limiting their ability
to distinquish genotypes.
Figure 5 Effect of the increasing number of genomic SSR markers on
diversity of 50%, 90%, 99%, and 100%, respectively. The value of 100% was
Distribution and clustering of SSR markers on the
interspecific molecular linkage map
We mapped 54 genomic SSR markers on the molecular
linkage map of lettuce that was based on the segregation
of alleles observed in the Salinas (L. sativa) × UC96US23
(L. serriola) mapping population (Figure 6). Remaining
SSRs were not mapped due to homozygosity between
the parents, or due to weak linkage with markers on the
framework map. The mapped SSR markers were distrib-
uted on all nine linkage groups (LG). The fewest mar-
kers were located on LG 9 (two markers) and the most
markers were located on LG 8 (12 markers). The good-
ness of fit test indicates that the distribution of markers
on linkage groups was not significantly different from
the even distribution of markers (p = 0.115). In addition
to genomic SSRs, we have also mapped 52 previously
developed EST-SSRs [22], bringing the combined total
number of mapped SSRs to 106. Interestingly, the fewest
EST-SSRs were located on LG 8 (two markers) that har-
bors the highest number of genomic SSRs (12 markers).
However, a difference in the distribution of genomic
SSRs and EST-SSRs over all LGs was not significant (p =
0.056). Similarly as with genomic SSRs, distributions of
EST-SSRs and a combined group of genomic and EST-
SSR markers were not significantly different from the
even distribution of markers over all LGs (p = 0.422, and
p = 0.770, respectively). Truco et al. [25] reported 729
AFLP and 18 SSR markers in the same mapping popula-
tion. The highest number of markers (142) were
reported on LG 4, while the fewest markers (51) were
observed on LG 9.
The average length of intervals between two successive

markers was 29 cM for genomic SSRs, 30 cM for EST-
SSRs, and 18 cM when all mapped SSRs were considered.
the estimate of genotyping diversity. Circles indicate genomic
reached with 32 and more markers.



Figure 6 Distribution of microsatellite markers on the molecular linkage map of lettuce. The framework linkage map was based on the
segregation of alleles in the L. sativa (cv. Salinas) × L. serriola (accession UC96US23) mapping population [25]. EST-SSR markers [22] are
named SML; while genomic SSR markers are named LSSA or LSSB. Scale for the linkage map is indicated on the left side in cM. SSR-based
markers are underlined.
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Figure 7 Length of intervals between two successive SSR markers (left column) and the number of SSR markers per 20 cM-long
segment (right column). Information is shown for genomic SSRs (top row), EST-SSRs (middle row), and a combined group of genomic SSR and
EST-SSR markers (bottom row). Observed data are indicated by full circle and solid line, modeled data based on a random distribution of markers
are indicated by open circle and dashed line.
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The genome-wide distribution of the length of intervals
matches well with the modeled distribution (Figure 7, left
column). Neither the K-S test nor the χ2 goodness of fit
test detected a significant difference between the modeled
and the observed distribution of intervals (p values ranged
from 0.502 to 0.823). Similarly, the observed number of
markers per 20 cM-long segments matched well with the
modeled data based on a random distribution of markers
(Figure 7, right column). The p-values for the goodness of
fit tests between the observed and the modeled data distri-
bution ranged from 0.586 to 0.960 for the K-S test, and
from 0.203 to 0.738 for the χ2 test. We observed that the
modeled clustering of markers closely corresponds to a
theoretical clustering based on the Poisson distribution
(correlation of r = 0.999 for genomic SSRs, r = 0.995 for
EST-SSRs, and r = 0.993 for a combined group of genomic
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and EST-SSR markers). Therefore the Poisson distribution
can be used to identify parts of the linkage map where
clustering of markers is higher than expected [35]. Using

the Poisson distribution formula p k; λð Þ ¼ e�λλk

k! , where k
(k = 0, 1, 2, 3, . . .) is the number of markers per segment
for which a probability is being calculated, and λ is the
mean number of markers per segment, we calculated that
clustering of markers is suspected (at p < 0.01) if a 20 cM-
long segment harbors five or more markers (when only
genomic SSRs or only EST-SSRs are considered individu-
ally, four or more markers per segment indicate a possible
clustering). Examination of the molecular linkage map
revealed a single region with a possible clustering of mar-
kers. This cluster is located on LG 6, where nine markers
(six genomic SSRs and three EST-SSRs) are located within
the ~44 cM-long interval between markers LSSB3B and
SML-023. Our results are in line with previous studies
showing that the distribution of SSRs is usually even;
though some clustering of markers (mainly around
centromeric regions) is possible [36,37]. In lettuce, cluster-
ing of molecular markers in multiple genomic regions was
previously reported for AFLPs, while only a few regions
exhibited clustering of RFLP and RAPD markers [25].
Conclusions
We have developed a set of 97 genomic SSRs and placed
54 of them on the interspecific molecular linkage map of
lettuce. The SSR markers appear to be mostly randomly
distributed in the genome with a possible cluster of mar-
kers in a single region on LG 6. Based on a sample of
genotyping results, the maximum estimated genotyping
error per sample is up to 8%. The highest error rate was
observed when a difference in the size of analyzed alleles
is below 3 bp. This rate of error is similar to that
reported on maize [38], though it is higher than in some
other reports [39,40]. Generally, genotyping of lettuce
with genomic SSRs produces a higher error rate than
genotyping with EST-SSR [22]. The factors increasing
error rate involve a presence of stutter bands, high num-
ber of alleles per locus, and large product size [39]. The
other possibility for a relatively high error rate observed
in our genotyping system is that eGene DNA analyzer
has a lower resolution than some other instruments used
for SSR analysis [41]. The newly developed set of gen-
omic SSRs in combination with previously developed
EST-SSRs will be useful for cultivar fingerprinting, con-
struction of integrated molecular linkage maps, and
mapping genes of interest [42].
Data access
Described sequences have been submitted to GenBank
database under accession numbers JX474909 to JX474987.
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Additional file 1. Primer combinations and PCR conditions for
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Sequences with imperfect repeats are indicated by asterisk (*).
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