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A quadruple mutant of Arabidopsis reveals a
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on determination of the PSI/PSII ratio

Alessia Fiore'", Luca Dall'Osto?", Stefano Cazzaniga®, Gianfranco Diretto', Giovanni Giuliano' and Roberto Bassi**

Abstract

Background: Xanthophylls are oxygenated carotenoids playing an essential role as structural components of the
photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex, to
light absorbance and to photoprotection. The first step in xanthophyll biosynthesis from a.- and B-carotene is the
hydroxylation of &- and B-rings, performed by both non-heme iron oxygenases (CHY1, CHY2) and P450
cytochromes (LUT1/CYP97C1, LUT5/CYP97A3). The Arabidopsis triple chylchy2lut5 mutant is almost completely
depleted in B-xanthophylls.

Results: Here we report on the quadruple chylchy?lut2lut5 mutant, additionally carrying the /ut2 mutation
(affecting lycopene e-cyclase). This genotype lacks lutein and yet it shows a compensatory increase in p-
xanthophylls with respect to chylchy2lut5 mutant. Mutant plants show an even stronger photosensitivity than
chylchy2luts, a complete lack of gE, the rapidly reversible component of non-photochemical quenching, and a
peculiar organization of the pigment binding complexes into thylakoids. Biochemical analysis reveals that the
chylchy2lut2lut5 mutant is depleted in Lhcb subunits and is specifically affected in Photosystem | function, showing
a deficiency in PSI-LHCI supercomplexes. Moreover, by analyzing a series of single, double, triple and quadruple
Arabidopsis mutants in xanthophyll biosynthesis, we show a hitherto undescribed correlation between xanthophyll
levels and the PSI-PSII ratio. The decrease in the xanthophyll/carotenoid ratio causes a proportional decrease in the
LHCIl and PSI core levels with respect to PSII.

Conclusions: The physiological and biochemical phenotype of the chylchy2lut2lut5 mutant shows that (i) LUT1/
CYP97C1 protein reveals a major B-carotene hydroxylase activity in vivo when depleted in its preferred substrate .-

carotene; (i) xanthophylls are needed for normal level of Photosystem | and LHCIl accumulation.

Background

Carotenoids are a group of C,, pigments that contain a
conjugated double-bond system, leading to strong
absorption of visible light and antioxidant properties.
They are widely distributed among taxa, ranging from
cyanobacteria and fungi to red and green algae and land
plants [1]. Xanthophylls are oxygenated carotenoids that
play a crucial role in the photosynthetic apparatus of
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higher plants [2]. Their composition in plants is remark-
ably conserved and consists of five major xanthophylls,
the most abundant being the -g-xanthophyll lutein, and
the four B-B-xanthophylls violaxanthin, neoxanthin,
antheraxanthin and zeaxanthin [3]. Xanthophylls act
both as photoreceptors, absorbing light energy which is
used in photosynthetic electron transport, and as photo-
protectants of the photosynthetic apparatus from excess
light and from the reactive oxygen species (ROS) gener-
ated during photosynthesis [4-7]. Moreover, they are
structural elements of the photosynthetic apparatus:
LHCII, the major light-harvesting complex (LHC) of
Photosystem (PS) II, binds lutein, violaxanthin and
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neoxanthin at four distinct binding sites called respec-
tively L1, L2, N1 and V1 [8]; the occupancy of L1 site
was shown to be essential for protein folding [9].

Xanthophyll biosynthesis in plants is divided in two
distinct branches: the o branch leads to the formation
of the e-f-hydroxylated xanthophyll lutein from o.-caro-
tene, while the B branch leads to the production of B-3-
hydroxylated xanthophylls (zeaxanthin, antheraxanthin,
violaxanthin and neoxanthin) from B-carotene (Figure
1E). Recent studies on carotenoid biosynthetic mutants
of Arabidopsis thaliana have improved our understand-
ing on xanthophyll accumulation at the molecular level.
The first steps in plant xanthophyll biosynthesis are the
hydroxylation of a- and f-carotene. Two different
classes of enzymes are involved: the ferredoxin-depen-
dent di-iron oxygenases (CHY1 and CHY2) which are
active in B-ring hydroxylation, and the cytochromes
P450 (LUT1/CYP97C1, LUT5/CYP97A3) [10-14] which
are active in hydroxylation of both the e-ring and B-ring
of a-carotene, although the activity of LUT5 on &-rings
is low [13]. It has been suggested that a third chloro-
plast-targeted member of the CYP97 family, CYP97B3
might have a role in carotenoid biosynthesis [14]. This
hypothesis is however in contrast with the complete
lack of xanthophylls in the quadruple chyIchy2lutllut5
mutant [14], suggesting that CHY1, CHY2, LUT1/
CYP97C1 and LUT5/CYP97A3 are the complete com-
plement of carotene hydroxylases in A. thaliana.

The strong phenotypes of mutants with altered
xanthophyll composition imply that the presence and
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relative amounts of these pigments have a key role for
plant fitness. The /ut2 mutant, affected in e-ring forma-
tion, lacks lutein [15] and shows a complex phenotype
with reduced antenna size, photodamage in high light
(HL) due to impaired chlorophyll triplet quenching [16]
and decrease of non-photochemical quenching (NPQ)
[17]. Additional features include over-accumulation of
zeaxanthin in HL with respect to wild-type and mono-
merization of LHCIIL Lack of both lutein and zeaxanthin
further decreases the capacity for photoprotection in
both Arabidopsis and Chlamydomonas [16,18-20]. The
double chylchy2 mutant, in which the two non-heme f3-
hydroxylases are deleted, shows reduced levels of B-f3-
xanthophylls and decreased resistance to photooxidation
[10]. Introduction of the [ut5 mutation in the chylchy2
background leads to the almost complete disappearance
of B-xanthophylls and strong photosensitivity [6,12,14].
Neoxanthin preserves PSII from photoinactivation by
superoxide anions [21] while violaxanthin and zeax-
anthin show enhanced activity in singlet oxygen scaven-
ging [6]. In order to further detail the effects of altered
xanthophyll composition on the organization of photo-
synthetic complexes and gain understanding on the reg-
ulatory events controlling xanthophyll biosynthesis in
Arabidopsis, we have introduced the [ut2 mutation in
the semi-lethal chylchy2lutS background. Surprisingly,
the chylchy2lut2lut5 mutant shows increased presence
of B-B-xanthophylls with respect to chylchy2lut5. The
PSI/PSII ratio in this mutant is severely decreased as
well as the level of total xanthophyll accumulation,
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Figure 1 Growth and morphology of wild-type and carotenoid biosynthesis mutant plants. Phenotypes of 6-weeks-old wild type (A), lut2
(B), chylchy2lut5 (C), and chylchy2lut2lut5 (D) plantlets, grown at 30 pmol photons m? s (E) Biosynthetic pathway of carotenoids in A.
thaliana; names of the enzymes controlling each step are indicated: lycopene e-cyclase (LCY-g); lycopene B-cyclase (LCY-B); B-carotene
hydroxylase (CYP97A3); e3-carotene hydroxylase (CYP97C1); B-carotene hydroxylase 1 and 2 (CHY1, CHY2); zeaxanthin epoxidase (ZEP);
violaxanthin deepoxidase (VDE); neoxanthin synthase (NXS). Names of Arabidopsis knock-out mutants are indicated in parentheses. Scale bar = 5
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suggesting that the latter have a key role, beside photo-
protection, in regulating photosystem stoichiometry.

Results

Construction of the chylchy2lut2lut5 quadruple mutant
To generate the quadruple mutant chylchy2lut2iut5, the
homozygous triple mutant chylchy2lut2 was crossed
with the homozygous single mutant [ut5 [12]. All T-
DNA insertions were in the Columbia background and
appropriate oligonucleotides were used to confirm the
presence of the insertions and their homozygous vs. het-
erozygous state (Additional file 1: Figure S1 and Addi-
tional file 1: Table S1) [12]. The mutant was maintained
as a triple homozygous, single heterozygous stock: two
different parental genotypes were used, heterozygous for
either LUT5/CYP97A3 or CHY2, with similar results
(Additional file 1: Figure S2). The [ut2 and chylchy2lut5
lines were included in this characterization, representing
respectively the lutein-less and B-xanthophyll-less con-
trols. When selfed, the progeny of each single heterozy-
gous stock, as well as wild-type, chylchy2lut5 and lut2
seeds, were grown under low light conditions (30 pmol
photons m™ s™') both in agar plates containing sucrose
(see Methods) and in soil. No quadruple homozygous
mutants were recovered in soil after 1 week of growth,
while the progeny segregated in a 1:3 ratio for white:
green seedlings in agar plates. Wild type and [ut2 plants
did not display a visible phenotype after 6 weeks of
growth in agar plates, whereas mutants chylIchy2lut5
and chylchy2lut2lut5 showed, respectively, reduced
growth and paler leaves (Figure 1A-D).

Pigment composition

We analyzed by HPLC-DAD-MS the pigment content of
six-week-old leaves of wild type, lut2, chylchy2lut5 and
chylchy2lut2lut5 plants grown on agar plates (Tables 1,
2 and Additional file 1: Table S2). Pigments were
resolved on a C-30 column, able to separate cis- from
trans-carotenoids and their identity was confirmed by

Table 1 Pigment content of leaf tissue from wild-type
and mutant genotypes

chl a/b chl/car Chl Car
content content
(ng/g FW)  (ug/g FW)
wT 32£05% 33£08> 80188 244+51°
lut2 32£02° 33£07% 74279 222+38°
chylchy2luts 39+ 03° 34+07° 569+76° 166+ 25°
chylchy2lut2lut5 79 + 03 2.1 +04° 303 +42° 146+ 21°

Pigment composition was quantified via LC-DAD-MS in dark-adapted leaves
from 6-weeks-old plants. Data are expressed as mean + SD (n = 4). FW, fresh
weight. Values marked with the same letters are not significantly different
from each other within a column (P > 0.05).
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co-migration with authentic standards and high resolu-
tion MS (Additional file 1: Table S2). chyIchy2lut5 and
chylchy2lut2lut5 plants showed an increase in chloro-
phyll a/b ratio, as well as a reduced chlorophyll (Chl)
and carotenoids (Car) content per fresh weight, with
respect to both wild-type and /ut2; the effects were
more severe in the quadruple mutant, that showed a sig-
nificant reduction of Chl/Car ratio (2.1) with respect to
the other genotypes (~3.3, Table 1). Wild-type leaves
accumulate four major carotenoids (neoxanthin, violax-
anthin, lutein and B-carotene) and trace amounts of .-
carotene. Mutants show distinct composition of the
xanthophyll fractions: lutein represents > 98% of total
xanthophylls in chylchy2lut5 plants; lut2 and chylchy2-
lut2lut5 do not contain lutein and accumulate violax-
anthin, antheraxanthin, zeaxanthin and neoxanthin;
chylchy2lut2lut5 shows a higher content of -f-xantho-
phylls (24% of total carotenoids) with respect to chyl-
chy2lut5 (0.7% of total carotenoids). B-carotene content
is strongly increased in chylchy2lut2lutS with respect to
the wild-type and the other mutants (Table 2). As a
result, the xanthophyll/carotene ratio changes dramati-
cally, ranging from 2.5 + 0.7 in wild-type to 0.3 + 0.1 in
chylchy2lut2luts.

B-carotene accumulation is expected in chylchy2lu-
£2[ut5, in which the biosynthetic flux is diverted towards
the B-B-branch by the lack of three out of four -caro-
tene hydroxylases (CHY1, CHY2 and CYP97A3/LUT5)
(Figure 1E); however, B-B-xanthophyll accumulation in
this mutant suggests that the fourth hydroxylase
(CYP97C1/LUT1) is more active toward B-carotene in
this background than in the chyIchy2lut5 parent, result-
ing in 28-fold higher levels of -B-xanthophylls.

Gene expression

We measured the LUTI, LUT5, CHYI1 and CHY2
mRNA levels by real time PCR in the different mutants
(Figure 2). All mRNAs are almost completely absent in
the corresponding mutants; LUTS5, CHY1 and CHY2 are
induced in the /ut2 mutant, that accumulates higher
levels of B-carotene; LUTI is induced in the chylchy2-
lutS and, even more, in the chylchy2lut2lut5 mutant,
which shows drastically reduced xanthophyll/carotene
ratios; however, the increase of LUT1 levels between the
two mutants is only 1.3-fold, while the increase of f-B-
xanthophylls is 28-fold.

Photosynthesis-related functions: PSIl quantum efficiency
and non-photochemical quenching of chlorophyll
fluorescence

The impact of xanthophyll depletion on photosynthesis
was investigated by room temperature chlorophyll
fluorescence measurements (Table 3). The variable/
maximum fluorescence yield (F,/F,,) of dark-adapted
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Table 2 HPLC analysis of leaf carotenoid content (ug/g FW) in dark-adapted plants

Carotenoid content (ug/g FW)

neoxanthin violaxanthin antheraxanthin  lutein
WT 186 £ 16" 441 £58° nd 1056 +
224°
lut2 221 +07° 947 +49° 146 + 14° nd
chylchy2lut5 03 +0.2° 09 + 06° nd 69.1 +
47°
chyichy2lut2luts5 84 + 014 136+ 02° 85+ 0.1° nd

zeaxanthin o- B- B-B- xanthophylls/

carotene carotene xantophylls carotenes

nd 44 £ 621 + 62.7 + 60° 25+07°
06° 14.8°

50 + 06° nd 749 + 1364 + 5.1° 18 +0.1°
5.1°

nd 510+ 428+ 12406 07 +01°
27° 14°

34+01° nd 1094 + 339+ 03¢ 03 +0.1°
2.3¢

Plants grown at 30 umol photons m™ s™' for 6 weeks were dark-adapted, then carotenoids were extracted and quantified via LC-DAD-MS. Data are expressed as
mean * SD (n = 4). nd, not detectable; FW, fresh weight. Values marked with the same letters are not significantly different from each other within a column (P

> 0.05).

leaves reflects changes in PSII photochemical efficiency
[22]. [ut2 had the same F,/F,, ratio as wild-type (0.80),
while the triple chylchy2lut5 and quadruple chylchy2-
lut2[ut5 mutants scored, respectively, values of 0.68
and 0.51 (Table 3). The efficiency of PSII photochem-
istry (®@pgyy) gives a measure of the rate of linear elec-
tron transport, an indication of the photosynthetic
activity [23]. Chlorophyll fluorometry revealed a signif-
icant reduction in ®pgy; in both chylchy2lut5 and
chylchy2lut2lut5 (0.07 and 0.08 respectively, with
respect to 0.17 in wild-type plants, Table 3), confirm-
ing that efficient light use is compromised by B-f-
xanthophyll depletion.

Non-photochemical quenching (NPQ) of chlorophyll
fluorescence is the fastest photoprotective mechanism in
the chloroplast: thermal dissipation is activated within

Relative mRNA level

Wi Wi
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Figure 2 Real-time PCR expression profile of Arabidopsis
carotenoid hydroxylase genes. For individual genes, the relative
mRNA levels were normalized with respect to the TUBULIN
housekeeping transcript and then to wild-type levels. RNA was
extracted from dark-adapted, 6-weeks-old plants (see Methods for
details). Data are expressed as mean + SD (n = 3).

few seconds upon exposure to excess light and it pro-
tects photosynthesis by decreasing the lifetime of singlet
chlorophylls [24] in order to minimize generation of
ROS in the PSII [4]. NPQ was measured on detached
leaves, in saturating CO, (Figure 3). Wild-type plants,
upon short illumination at saturating light intensity
(1000 pumol photons m™ s™, 7 min), showed a rapid rise
of NPQ, reaching a maximum value of 0.8. Most of this
NPQ relaxed rapidly in the dark, thus reflecting the
ApH-dependent de-excitation of excess energy measured
as qE, the rapidly-reversible component of NPQ. [uz2
showed NPQ Kkinetics in agreement with published
results [6,19], with lower amplitude and slower rise than
wild-type plants (Figure 3A). The other mutants showed
a strong reduction in NPQ, scoring 0.30 in chylchy2lut5
and 0.22 in chylchy2lut2lut5; furthermore, upon correc-
tion for residual quenching after dark relaxation (photo-
inhibitory quenching, qI), both mutants showed very
little recovery (Figure 3A), suggesting that the measured
fluorescence quenching was mainly due to photoinhibi-
tion, and the capacity for qE was strongly reduced in
mutant leaves (Figure 3A). Furthermore, NPQ kinetics
were measured during steady-state photosynthesis, upon
a prolonged illumination with increasing light intensities
(ranging from 70 to 1500 umol photons m™ s™!, 20
min). All genotypes showed chlorophyll fluorescence
quenching, whose magnitude increased with irradiance.
However, fluorescence quenching in wild-type and [ut2
leaves was mainly due to the qE-type of NPQ (Figure
3B), while in both chylchy2lut5 and chylchy2lut2luts
the main component of NPQ was ql-type, irreversible
quenching (Figure 3C). These data confirm that both
the reduction of B-f-xanthophylls and the lack of lutein
are responsible for impaired NPQ kinetics.

Photosensitivity under short-term stress conditions

When photosynthetic organisms are exposed to light in
excess, photo-oxidative stress occurs within the chloro-
plast, with production of ROS such as singlet oxygen
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Table 3 Analysis of room temperature chlorophyll
fluorescence during steady-state photosynthesis

Fv/Fm ®PSII
WT 081 + 0.03° 0.17 + 0.05°
Iut2 0.80 + 0.02° 012 +001%°
chy1chy2lut5 068 + 0.02° 0.07 + 001¢
chy1chy2lut2luts 051 +0.10° 008 + 0.05> ¢

Detached leaves of wild-type and mutant plants grown at 30 umol photons
m? s for 6 weeks were given 20 min of illumination (1000 umol photons m2
"), then photosynthetic parameters were provided by analysis of RT
chlorophyll fluorescence: maximum quantum yield of PSII (F,/F,) and
efficiency of PSIl photochemistry (@ps). Data are expressed as mean + SD (n
= 4). Values marked with the same letters are not significantly different from
each other within a column (P > 0.05).

(*0,), leading to oxidative damages to a large variety of
biomolecules.

The B-xanthophyll-depleted mutants chylchy2lut5 and
chylchy2lut2lut5, even upon growth in low light (30
umol photons m™> s™), showed signs of photooxidation:
lower chlorophyll content and PSII quantum yield,
retarded growth and paler leaves with respect to wild-
type and [ut2 plants (Tables 1, 3). Therefore, in order to
assess whether lower xanthophyll levels affect the capa-
city to prevent chloroplast photooxidation, leaves from
wild-type and mutant plants grown in low light were
transferred to strong light (900 pmol photons m™ s™)
and low temperature (5°C) for 3.5 h; the combination of
low temperature and high light intensity is known to
enhance the induction of both PSII photoinhibition and
membrane photooxidation in leaves, since the enzymes
of the Calvin cycle are slowed down and the light har-
vested by photosystems rapidly exceed the capacity of
plants to use this energy. Thus, the treatment produces
a photooxidative stress, which can be measured as a
decrease in the chlorophyll content and an increase in
oxidation of membrane lipids. HL treatment was effec-
tive in producing higher pigment bleaching in chylchy2-
[utS5 (40% reduction) and chylchy2lut2lut5 (57%
reduction), while wild-type and [ut2 leaves were less
affected, loosing around 25% of their chlorophyll con-
tent (Figure 4A). To investigate the level of membrane
lipid peroxidation, the same leaves were analyzed for
MDA content (malondialdehyde, a byproduct of lipid
peroxidation): chylchy2lut2lut5 and chylchy2lutS leaves
showed higher accumulation of MDA upon stress treat-
ment (+120% and +45%, respectively), thus a far higher
level of lipid peroxidation with respect to wild-type and
lut2 plants (+25%); chylchy2lut2lut5 plants showed a far
higher photosensitivity in high-light than chyIchy2lut5
(Figure 4B); the latter was the xanthophyll mutant with
the highest light sensitivity described so far [6]. Results
clearly show an unprecedented level of photosensitivity
in chylchy2lut2lutS plants, thus implying a severe
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impairment of the photoprotection mechanisms in this
xanthophyll-depleted mutant.

Organization and stoichiometry of pigment binding
complexes

The extreme sensitivity to photo-oxidative stress of the
chylchy2lut2lut5 mutant could be due to altered pig-
ment composition, to altered protein composition of
photosystems, or to both. This mutant showed the high-
est Chl a/b ratio, and the lowest chlorophyll content
and xanthophyll/carotene ratio of all analyzed genotypes
(Tables 1, 2). Since both Chl b and xanthophylls are
associated with LHC, their decrease suggests a decrease
in antenna size. We investigated the organization of pig-
ment-protein complexes in thylakoids by non-denatur-
ing Deriphat-PAGE and by sucrose density gradient
fractionation of solubilized thylakoids, followed by SDS-
PAGE of the fractions (Figures 5, 6). Seven major green
bands were resolved upon solubilization of wild-type
thylakoid membranes with 0.8% dodecyl-o.-D-maltoside
(a-DM) on Deriphat-PAGE [25]. The PSI-LHCI com-
plex was the major band (B6) in the upper part of the
gel, while the components of the PSII-LHCII complex
migrated as multiple bands, namely the PSII core (B5)
and the antenna moieties, including the CP29-CP24-
LHCII-M supercomplex (B4) [26], LHCII trimer (B3)
and monomeric Lhcb (B2). Bands with high apparent
masses were detected in the upper part of the gel (B7)
containing non-dissociated PSII supercomplexes.

The chylchy2lut5 pattern was very similar to that of
wild-type, showing no major qualitative changes in the
organization of the photosynthetic apparatus: the main
differences consisted in a higher PSII core/Lhcb ratio
and a lower content in PSII supercomplexes (B7) [6]. In
the genotypes lacking lutein, namely [uz2 and chylchy2-
lut2lut5, the trimeric organization of LHCII was dis-
rupted, as previously described [17]. However, thylakoid
membranes isolated from chylchy2lut2lut5 plants
showed additional features, namely the complete
absence of bands 3, 4 and 7; bands 2 and 6 were much
less represented than in wild-type, while PSII core com-
plex was the most abundant among pigment-protein
complexes (Figure 5A).

In order to obtain sufficient amounts of pigment-pro-
tein complexes for further analysis, solubilized thyla-
koids from wild type and mutants were fractionated by
sucrose gradient ultracentrifugation (Figure 5B); the
results confirmed that trimeric LHCII band, as well as
the CP29-CP24-LHCII supercomplex completely disap-
peared in the chylchy2lut2lut5 mutant; further differ-
ences consisted into reduced levels of monomeric Lhcb
(band 2) and a much higher PSII/PSI ratio (band 5 vs.
band 6) with respect to the other genotypes. The
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Figure 3 NPQ analysis of wild-type and mutant genotypes. (A)
Kinetics of NPQ induction and relaxation were recorded with a
pulse amplitude modulated fluorometer. Chlorophyll fluorescence
was measured in dark-adapted leaves, during 7 min of illumination
at 1000 umol photons m™ s followed by 18 min of dark relaxation.
(B) Amplitude of the reversible energy dissipation (gE). (B, C) Extent
of feed-back de-excitation (qE, panel B) and photoinhibitory
quenching (qgl, panel C) determined at a series of irradiances as a
difference between NPQ values upon illumination and following 15
min dark relaxation. Symbols and error bars show means + SD (n =
4).

reduction of monomeric Lhcbs in the chylchy2lut2lut5
mutant occurs in spite of the presence of the [ut2 muta-
tion, which favors LHCII monomerization (compare
band 2 in wild type vs. lut2 and in chylchy2lut5 vs.
chylchy2lut2lut5, Figure 5B).
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Figure 4 Photo-oxidation of Arabidopsis wild-type and mutant
genotypes under photoxidative stress. Detached leaves on wet
paper were treated at 900 umol photons m? s™' at 5°C for 3.5 h,
then chlorophyll bleaching (A) and MDA formation (B) were
recorded. Data are expressed as means + SD (n = 4). Significant
difference (P < 0.05 (*) or P < 0.02 (**)) against wild type within
each treatment are marked. Chlorophyll and MDA contents were
quantified before (to) or after (ty) the high-light stress.

Fractions collected from the sucrose gradients of wild-
type and chylchy2lut2lut5 (bands 2-6) were further
characterized by SDS-PAGE using two buffer systems
(Figure 6A) and by absorption spectroscopy (Additional
file 1: Figure S3). According to previous results with o.-
DM, SDS-PAGE analyses of wild-type fractions showed
that band 2 contained the minor antennae CP29, CP26
and CP24 as well as components of monomerized
LHCII, while band 3 contained Lhcb1-3 polypeptides
only (Figure 6A, left panel) [27]. Band 5 was enriched in
PSII core complex (Figure 6A, right panel) [28], never-
theless the Chl b absorption (Additional file 1: Figure
S3) suggests it retains Lhcb proteins; band 6 contained
almost exclusively the PSI-LHCI complex (Figure 6A,
right panel and Additional file 1: Figure S3) [29]. Band 2
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and mutants. (A) Thylakoid pigmented complexes were separated
by non-denaturing Deriphat-PAGE (A) or by sucrose density
gradient fractionation (B) upon solubilization with 0.8% a.-DM.

A

from chylchy2lut2lut5 contained the same polypeptides
as the corresponding band from wild-type, although the
relative amounts of the Lhcb1-3 polypeptides and CP26
were decreased (Figure 6A, left panel). The data confirm
that LHCII is present in the mutant, however in far
lower amounts than in wild-type, and is in its mono-
meric aggregation state. Band 5 from the mutant con-
tained almost exclusively PSII core complex
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polypeptides (Figure 6A and Additional file 1: Figure
S3), band 6 from the mutant contained PSI-LHCI.

The levels of selected proteins in wild-type and chyl-
chy2lut2luts thylakoids were determined by quantitative
western-blot analysis using PsbB (CP47) as internal con-
trol (Figure 6B): all Lhcb subunits were reduced in chyl-
chy2lut2lut5 with respect to wild-type thylakoids; PsbA
(D1), OEC-33 and PsbS, subunits of the PSII core com-
plex, were present in the same level in both genotypes,
while cytochrome f and ATPase B-subunit were in
higher amounts in chylchy2lut2lut5. Immunoblotting
using PsaA as internal standard showed that each Lhca
protein was present in wild-type amounts, thus suggest-
ing that the Lhca/PSI ratio is conserved in the mutant.
In contrast, the PSI/PSII ratio was extremely low in
chylchy2lut2lut5, reaching approximately 22% of wild-
type value (Figure 6B).

The data shown above indicate that xanthophyll
depletion in the chylIchy2lut2lut5 plants causes a strong
reduction in the amount of Lhcb proteins per PSII reac-
tion center, and has a negative impact on the total
amount of the PSI-LHCI supercomplex. The latter result
is unexpected, since xanthophylls are mainly bound to
Lhc complexes while core complexes of both photosys-
tems only bind carotenes, implying that xanthophyll
abundance should not affect their folding or stability.

A key question is whether the lower PSI/PSII ratio
found in chylchy2lut2lut5 thylakoids is peculiar to this
genotype or is a general consequence of altered xantho-
phyll content. To answer this question, the abundance
of LHCII and PSI core with respect to CP47 was
assessed by quantitative immunotitration, in thylakoids
isolated from 12 Arabidopsis mutants with altered
xanthophyll content [6,12]. Figure 7 shows the distribu-
tion of LHCII (A) and PSI core (B) amounts, relative to
CP47, in the different mutants with different xantho-
phyll/carotenoid ratios: both distributions show an
increase of LHCII/PSII and PSI/PSII at increasing
xanthophyll/carotenoid ratios, and the data can be fitted
with an exponential function (y =y, + a-e™). The results
display a clear correlation between parameters (Rpycry
psii = 0.76; Rpgrpsi> = 0.78). Furthermore, quantitative
data for the individual pigment-protein complexes accu-
mulation level per fresh weight (namely PSI core, PSII
core and LHCII) were plotted vs. xanthophyll/carotenoid
content in the different mutants (Additional file 1: Fig-
ure S4). The distributions show a lower LHCII content
per fresh weight at decreasing xanthophyll/carotenoid
ratios (panel C), while PSII core (CP47 subunit) content
per fresh weight was essentially unaffected by xantho-
phylls depletion (panel B). Unlike PSII, the PSI core
(PsaA subunit) content decreases at decreasing xantho-
phyll/carotenoid ratios (panel A). These results suggest
that xanthophyll depletion not only causes a marked
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membranes by quantitative western blot, while xanthophyll/
carotenoid ratios were quantified by HPLC. Both distributions were
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Resypsi” = 0.78.

depletion in LHC proteins, as expected from the
xanthophylls being ligands of Lhcs, but also modulates
the ratio between PSI/PSII, despite f-carotene rather
than xanthophylls is the ligand for PSI and PSII core
complexes.

Discussion

In this work, we analyzed the modifications of the
photosynthetic apparatus in the Arabidopsis mutant
chylchy2lut2lut5, that accumulates B-xanthophylls
despite disruption of the three chyl, chy2 and [ut5 genes
encoding carotene hydroxylases. In this mutant the only
carotene hydroxylase activity is provided by the LUT1
gene product, which allows for accumulation of only
20% of the wild-type xanthophylls. In these conditions,
biogenesis of the photosynthetic apparatus was strongly
affected yielding into a reduction of PSII antenna size, a
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decrease of PSI/PSII
photosensitivity.

ratio and an increased

LUT1 as a B-carotene hydroxylase

LUT1 was originally reported to be only gene product
required for the e-ring hydroxylation of a-carotene [11].
The first indication of a possible involvement of LUT1
in B-ring hydroxylation came from the analysis of the
chylchy2lut5 triple mutant, which accumulates lutein
(B-¢e-dihydroxy-carotene), providing genetic evidence
that LUT1 must be also active in the hydroxylation of
the B-ring of a-carotene [12]. Introduction of the [utl
mutation in the chylchy2lut5 triple mutant completely
abolished xanthophyll biosynthesis, indicating that
CHY1, CHY2, LUT1 and LUT5 constitute the full com-
plement of carotenoid hydroxylases in Arabidopsis [14].
A number of studies [11-14] have shown a functional
redundancy amongst the carotene hydroxylase enzymes.
However, the extent of recovery in xanthophyll content
by mutants carrying a single carotene hydroxylase activ-
ity gave insights on the substrate preference of residual
activity. As an example, trace amounts of 3-B-xantho-
phylls, present in the chylchy2lut5 triple mutant and
abolished by the introduction of the [utl mutation [14],
led to the conclusion that LUT1 has a low level of activ-
ity toward the B-rings of B-carotene. Overall, in vivo
analysis clearly showed that CHY1 and CHY2 are most
active in f-carotene hydroxylation, while LUT1 and
LUT5 enzymes catalyze preferentially the biosynthesis of
o-xanthophylls [14]. Here we show that, in the absence
of a-carotene (whose synthesis is prevented by the [ut2
mutation), LUT1 shows a major -carotene hydroxylase
activity, leading to the accumulation of substantial
amounts of f-B-xanthophylls. Indeed, when considering
the moles of hydroxylated 3-rings accumulated in chyl-
chy2lut5 and chylchy2lut2lutS mutants, total amount is
maintained upon introduction of the /ut2 mutation into
the chylchyllut5 background: ~0.125 umol of hydroxy-
lated B-rings/gEW in chylchy2lutS vs. ~0.118 pmol/
gFW in chylchy2lut2lut5 (Table 2). However, the total
amount of xanthophylls per fresh weight is reduced sig-
nificantly in chylchy2lut2lut5 (-52%, see Table 2), while
the carotene/xanthophyll ratio is increased (+57%). The
most likely scenario is that LUT1 has a higher affinity
towards e-rings vs. B-rings and that, when o-carotene is
available, LUT1 performs mainly e-ring hydroxylation;
however, since no e-ring-substrates are available in the
chylchy2lut2lut5, the B-ring substrates are processed,
thus bringing out this minor activity of the enzyme.
Conversely, in the absence of the main hydroxylases for
B-rings CHY1, CHY2 and LUTS5, all f-rings become
available for LUT1 activity in chylIchy2lut2lut5. A conse-
quence of LUT1 operation on a less preferred substrate
(i.e., B-carotene over o.-carotene) is its reduced overall
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catalytic rate that limits the level of xanthophylls accu-
mulated in the chylchy2lut2lut5 genotype. It is worth
noting that the B-hydroxylase activity does not discrimi-
nate between P-rings of a- and B-carotene; indeed, the
total amount of hydroxylated B-rings per fresh weight is
the same in both chylIchy2lutS and chylchy2lut2lut5.
This evidence updates our knowledge on the molecular
details of carotenoid hydroxylases, with respect to the
view that LUT1 has only a low level of in vivo hydroxy-
lase activity toward the B-carotene and a stronger activ-
ity towards o-carotene [14].

The concentration of B-carotene increased in the
quadruple chylchy2lut2lut5 mutant to a level higher
than in the wild type (Table 2). This is the result of the
combination of several factors: first, the /ut2 mutation
redirects the flux in the pathway towards the B-f-
branch; this mutation alone is sufficient to cause a slight
increase in B-carotene (Table 2). Moreover, the reduced
hydroxylase activity due to the chyl, chy2 and lut5
mutations, reduces the rate of B-carotene processing
into downstream xanthophylls (Figure 1E), favoring its
accumulation. The almost 2-fold increase of the LUTI
transcript in the quadruple mutant with respect to the
wild type (Figure 2) is insufficient to fully compensate
for the disappearance of the CHY1, CHY2 and LUT5
hydroxylases, likely due to the low catalytic efficiency of
LUT1 for B-rings.

Reduced xanthophyll content negatively affects energy-
dependent quenching qE and photoprotection

The excess energy dissipation into heat (NPQ) is
strongly depleted in the chylchy2lut2lut5 mutant, its
amplitude being close to zero (Figure 3). Since the level
of PsbS, the pH sensitive trigger for NPQ [30] is similar
to wild-type, this effect can be attributed to the low
level of the interacting partners of PsbS where the actual
quenching occurs, i.e. the Lhcb proteins [31-34], and to
the lack of lutein which limit NPQ [16,35]. All together
these results support the correlation between xantho-
phyll content and amplitude of qE, previously indicated
on the basis of antisense inhibition of beta hydroxylation
[36]. However, the high photosensitivity of chyIchy2lu-
t2lut5 plants is likely to be caused by the failure of addi-
tional photoprotection mechanisms, since the npg4
mutant, although depleted in NPQ, only showed minor
increase in photosensitivity [30].

The fast leaf chlorophyll bleaching (Figure 4A) and
high levels of lipid peroxidation (Figure 4B) in chylchy2-
lut2lut5 with respect to wild-type, lut2 and chylchy2-
lut5 are likely due to the strong depletion in Lhcb
proteins (Figure 6B). Xanthophylls are needed for fold-
ing of Lhc proteins in vitro [37], thus it is not surprising
that a strong decrease in their availability leads to a
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decreased content in LHC. However, only Lhcb proteins
are affected, while Lhca proteins are maintained with
the same stoichiometry with respect to PSI reaction cen-
ter, as shown by the identical migration rate of PSI-
LHCI supercomplexes in sucrose gradients and native
gels (Figure 5B) and by quantitative immunotitration of
Lhca versus PsaA content (Figure 6B). As a result of the
higher stability of Lhca vs. Lhcb proteins, PSI antenna
function is maintained, while PSII antenna function is
impaired. We conclude that in vivo carotenes cannot
replace xanthophylls in stabilizing Lhcb proteins, thus
leading to their strong reduction. Furthermore, this
implies that functional Lhcb proteins are essential for
photoprotection, in agreement with a previous report
[38]. Extreme reduction in Lhc proteins is obtained with
the chl mutation in Arabidopsis, that impairs Chl b
synthesis and prevents assembly of functional LHC [39].
Although this mutant undergoes severe photoinhibition
in high light, it can grow on soil and is not photoinhib-
ited in moderate light [7]. Thus chl, with a PSII antenna
size even smaller than that of chylchy2lut2lut5, can sur-
vive in the absence of a reduced carbon source, a lethal
condition for chylchy2lut2lut5. We conclude that
reduced LHC content, although likely contributing to
sensitivity, cannot be the only reason for the extreme
phenotype of chylchy2lut2luts.

Limitation in total xanthophyll availability affects light-
harvesting complex content and PSI/PSII ratio
The analysis of the pigment-protein complexes in the
chylchy2lut2lut5 mutant shows that Lhcb proteins are
strongly decreased with respect to PSII, while Lhca
assembly into PSI-LHCI are much less, or not at all,
affected (Figures 5, 6). A reduction in Lhcb proteins is
also observed in the chylchy2lut5 mutant, albeit to a
lesser extent than in chylchy2lut2lut5 [6]. This effect is
likely due to the incapacity of Lhcb proteins to fold in
the absence of xanthophylls [37], while Lhca proteins
can also bind small amounts of -carotene [40,41].
Instead, there is no evident reason for the 5-fold
decrease in PSI/PSII ratio (Figure 7): since Lhca proteins
are maintained with the same stoichiometry with respect
to PSI reaction center and thus likely contribute to the
complex stability (Figures 5 and 6B), such a strong
decrease of PSI is not expected. The dependence of PSI/
PSII ratio on the xanthophyll/carotenoid ratio of differ-
ent genotypes contrasts with the fact that both PSI core
and PSII core complexes bind f-carotene [42] which is
fully available in chylchy2lut2lut5, as well as in the
other genotypes carrying mutations in xanthophyll bio-
synthesis (Figure 7).

Alternatively, it can be hypothesized that PSI level
might be limited by the amount of LHCI available.
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However, three lines of evidence are against the hypoth-
esis that PSI depletion is a secondary effect of a limita-
tion in LHCIL:

1) Several Arabidopsis mutants showing a strong
depletion of LHCI, including Lhca antisense lines [43]
or the chl mutant [7,44] still accumulate a functional
PSI core complex in moderate light [38].

2) P700" is not such a strong oxidizer as P680", there-
fore photooxidative damages to PSI require very strong
irradiance [45]. We have grown chylchy2lut2lut5 and
other genotypes (Figure 7) under moderate light, a con-
dition that did not affect PSI activity in ¢kl mutants
[38]. Thus it is unlikely that a fraction of assembled PSI
core complexes are destroyed due to lack of the LHCI
moiety.

3) The capacity of LHCI to fold by binding both
xanthophylls and -carotene [41] makes these subunits
less limited in their possibility to fold into pigment-pro-
tein complexes than Lhcb proteins.

We conclude that a tight correlation exists in plant
thylakoids between PSI accumulation and xanthophyll
availability which is not due to either direct stabilization
of the complex by xanthophylls or by photoxidative
stress. PSI and PSII core complex steady state level
could be limited by chlorophyll availability, while a co-
regulation of chlorophyll and carotenoid accumulation
has been reported [46]. Nevertheless, the reduced
amount of Chls in carotenoid biosynthesis mutants
appears to be mainly due to de-stabilization of the caro-
tenoid/chlorophyll-binding proteins [47]. Analysis of
chlorophyll biosynthesis mutants [48] showed that PSI
accumulation is less reduced than PSII accumulation,
suggesting that the strong effect on PSI we observed in
chylchy2lut2lut5 is not due to limitation in Chls supply.
The effect of norflurazon treatment, which shows a pre-
ferential effect on PSII activity [49], further suggests that
the phenotype we observe is specific for PSI core and is
specifically caused by xanthophyll depletion. The lack of
xanthophylls in PSI core, however, suggests this specific
effect must be indirect. One possibility is that xantho-
phylls, or their metabolites, control either PSI synthesis
or degradation. A number of factors are involved in the
synthesis of PSI and PSII subunits, either bound to the
thylakoid membrane or soluble in the chloroplast
stroma, that could be considered as tentative targets of
regulation, including srp and ftsy [50,51] or ATAB2 pro-
tein [52]. Alternatively, carotenoid catabolites with regu-
latory roles [53] could be responsible for this effect.
However, while the identification of the mechanisms
underlying the down-regulation of PSI synthesis under
limiting xanthophylls is beyond the scope of this manu-
script, it is interesting to consider the implications that
such a regulation would have on the function of the
photosynthetic apparatus:
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a) the regulation of xanthophyll/carotene level in high-
light would reflect into a modulation of PSI level
[54-56], thus alleviating PQ over-reduction and protect-
ing from photoinhibition;

b) while PSII reaction centers are subjected to rapid
turn-over and their level readily adjusted to environ-
mental conditions, PSI is much more stable, thus requir-
ing specific mechanisms for its down-regulation in
limiting light. Lhcbs bind large amounts of xanthophylls
and are strongly regulated depending on light intensity.
Coupling PSI to xanthophyll levels would provide a
mechanism for coordinated regulation of PSII antenna
size and PSI/PSII ratio, a phenomenon observed in
many species [57].

Conclusions

One of the most noticeable results of recent work on
the plant carotenoid biosynthesis pathway is the high
level of redundancy in carotene hydroxylation, which is
found to be catalyzed by 4 different enzymes. Here we
show that the LUT1 protein, previously reported to act
in o-carotene hydroxylation, has a major B-carotene
hydroxylation activity, which is evidenced in the o-caro-
tene-less genetic background of the chylchy2lut2luts.
Surprisingly, in this mutant LHCI proteins are main-
tained with the same stoichiometry with respect to PSI
reaction center. Unexpectedly, in spite of its correct
folding, PSI reaction center is drastically reduced in
chylchy2lut2lut5 with respect to wild type, a condition
that cannot be explained by a limitation in the availabil-
ity of its LHCI moiety. Upon analysis of genotypes hav-
ing different xanthophyll/carotenoid ratios, we show
that xanthophyll availability correlates with PSI/PSII
ratio within a wide range. The molecular mechanism(s)
underlying regulation of both PSII antenna size and PSI/
PSII ratio, alleviating PQ over-reduction during acclima-
tion to excess light conditions, are being investigated.

Methods

Plant material and growth conditions

T-DNA insertion mutants were identified in the Syngenta
and Salk collections. The knock-out lines mentioned in
the article can be obtained from the NASC under the
stock numbers N862308 (CHY1), N845663 (CHY2),
N629724 (LUT1), N505018 (LUT2), N616660 (LUT5).
Double and triple mutants were obtained as described
[6]. To generate the quadruple mutant chylchy2lut2luts,
the triple mutant chylchy2lut2 and the single mutant
lut5 were crossed, and F1 seeds were grown and self-fer-
tilized to obtain the F2 generation. The genotype of the
F2 individual seeds was checked by PCR using gene-spe-
cific and T-DNA primers [12]. We used two different
parental genotypes for selection of the quadruple gene
knockout (chylchylchy2CHY2[ut2lut2lut5lut5 and
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chylchylchy2chy2lut2lut2lut5LUTS) identified by PCR
from a segregating F, population of a chylchylchy2chy2-
lut2lut2LUTSLUTS x CHYICHY1ICHY2CHY2LUT2LU-
T2lut5lutS cross. Progeny from each quadruple mutant
parent genotype were analyzed on Petri plates containing
0.5x MS medium, 3.0% sucrose and 0.9% agar under a
photoperiod of 16 h light (30 umol photons m™ s™). The
genotypes of putative quadruple mutants were confirmed
by PCR [12].

In vivo fluorescence and NPQ measurements
Non-photochemical quenching of chlorophyll fluores-
cence (NPQ), its components qE and qI, and PSII yield
(Dpsi)) was measured on whole leaves at RT (room tem-
perature, 22°C) with a PAM 101 fluorometer (Walz,
Germany). Leaves were given either 7 or 20 min of illu-
mination in saturating CO,, and 15 min of dark-relaxa-
tion. Parameters were calculated during steady state
photosynthesis according to [58].

LC-MS analysis of leaf pigments

Chlorophyll/carotenoid extraction, LC separation and
photodiode array were performed as previously
described with slight modifications (Fraser et al., 2000).
Briefly, 2-3 mg of ground lyophilized leaf powder were
extracted with chloroform (spiked with 100 mg/l a.-
tocopherol acetate as internal standard) and methanol
(2:1 by volume), 1 volume of 50 mM Tris buffer (pH
7.5, containing 1 M NaCl) was added and samples were
kept 20 min on ice. After centrifugation (15,000 g for 10
min at 4°C), the organic hypophase was removed and
the aqueous phase was re-extracted with spiked chloro-
form (2 by volume). Combined organic phases were
then dried by speedvac and resuspended in 100 pl of
ethyl acetate. For each genotype, at least four indepen-
dent extractions were performed. LC-MS analyses were
carried out using a Discovery LTQ-Orbitrap mass spec-
trometry system (Thermo Fischer Scientific) operating
in negative mode-atmospheric pressure chemical ioniza-
tion (APCI), coupled to an Accela U-HPLC system
(Thermo Fischer Scientific, Waltham, MA). LC separa-
tions were performed using a C30 reverse-phase column
(250 x 4.6 mm) purchased from YMC (YMC Europe
GmbH, Schermbeck, Germany). The mobile phases used
were methanol (A), water/methanol (20/80 by volume),
containing 0.2% ammonium acetate (B), and tert-methyl
butyl ether (C). The gradient was: 95%A:5%B for six
minutes, followed by 80%A:5%B:15%C for 14 min and
by a linear gradient to 30%A:5%B:65%C over 16 min.
Detection was performed continuously from 220 to 700
nm with an online Accela Surveyor photodiode array
detector (PDA, Thermo Fischer Scientific, Waltham,
MA). All solvents used were LC-MS grade quality
(CHROMASOLV™ from Sigma-Aldrich). Carotenoids
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were quantified on the basis of the internal standard
amounts, obtained by through comparison with peak
areas of known amounts of external standard LC-MS
runs; data were then normalized on spectrophotometric
chlorophyll contents. For APCI-MS ionization of
xanthophylls (0-14 min of LC-MS run), nitrogen was
used as sheath and auxiliary gas which were set to 25
and 5 units, respectively while the vaporizer temperature
was 350°C, the capillary temperature was 250°C, the dis-
charge current was set to 6.5 pA, the capillary voltage
and tube lens settings were -2050 V and -77 V, respec-
tively. APCI-MS ionization of carotenes (14-30 min of
LC-MS runs) was performed with the following para-
meters: 40 and 10 unites of, respectively, nitrogen sheath
and auxiliary gas; 250°C for vaporizer and capillary tem-
peratures, 5.0 pA as discharge current, -30 and -110 as,
respectively, capillary voltage and tube lens settings.
Identification was performed by through comparison of
chromatographic and spectral properties of authentic
standards and reference spectra (Britton et al., 2004),
and on the basis of the m/z accurate masses, as reported
on Pubchem database http://pubchem.ncbi.nlm.nih.gov/
for monoisotopic masses identification, or on Metabolo-
mics Fiehn Lab Mass Spectrometry Adduct Calculator
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-
Adduct-Calculator/ in case of adduct ion detection.

Thylakoid isolation

Thylakoids were isolated from leaves as previously
described [59]. Membranes (70 pg of chlorophylls) were
washed twice with 5 mM EDTA, 20 mM Hepes pH 7.8,
then solubilized in 150 pl of 0.8% a-Dodecyl-maltoside
(a-DM), 10 mM HEPES pH 7.5. Solubilized samples
were then fractionated by ultracentrifugation (5.5 h at
60,000 rpm, 4°C) in a 0.1-1 M sucrose gradient contain-
ing 0.06% o.-DM.

Gel electrophoresis

SDS-PAGE analysis was performed with either the Tris-
Tricine or the Tris-Glycine buffer systems as previously
described [60]. Non-denaturing Deriphat-PAGE was
performed as described by [61]. For immunotitration,
thylakoid samples corresponding to 0.05, 0.1, 0.25 and
0.5 pg of chlorophyll were loaded for each sample and
electroblotted on nitrocellulose membranes. Filters were
incubated with specific antibodies and were detected
with alkaline phosphatase-conjugated antibody [62]. Gel
images were quantified using GelPro 3.2 (Bio-Rad).
Samples compared were loaded in the same slab gel.

Spectroscopy

Spectra were recorded on samples in 10 mM HEPES pH
7.5, 0.06% o.-DM, 0.2 M sucrose, using an SLM-Aminco
DW-2000 spectrophotometer at RT.
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Determination of the sensitivity to photooxidative stress
Photooxidative stress was induced in detached leaves by
a strong light treatment at low temperature. Detached
leaves on wet filter paper were exposed to high light
(900 pmol photons m?Zs, 5°C) for 3.5 h, then immedi-
ately frozen in liquid nitrogen. Photooxidative stress was
assessed by measuring malondialdehyde (MDA) forma-
tion [63]; the thiobarbituric acid adduct MDA-(TBA),
was quantified by HPLC [21].

Real-time PCR

Total RNA was isolated from frozen tissue and analyzed
through Real Time RT-PCR using previously published
methods [64]. Three independent RNA extractions
(from three pools of at least ten plants each) and three
cDNAs (one for each RNA extraction) were used for the
analyses; first strand cDNA was synthesized from 0.5 pg
of RNA in 20 pl with oligo-dT(16) and Superscript II
(Invitrogen). Real Time PCR was performed using an
ABI PRISM 7000 instrument and the SYBR Green Mas-
ter Mix kit (Applera). Standard dilution curves were
performed for each gene fragment and all data were
normalized for the B-TUBULIN transcript and for wild-
type expression levels. Primers for Real Time experi-
ments (Additional file 1: Table S1) were designed using
the Primer Express v2.0 software and validated with the
Amplify v3.1 software.

Statistics

Significance analyses were performed using an analysis of
variance with a pair-wise multiple comparison procedure
in Origin. Error bars represent the standard deviation.

Additional material

Additional file 1: Figure S1. Genomic structure of the different mutants
utilized. Figure S2. PCR confirmation of the different mutants. Figure S3.
Isolation and characterization of the pigment-protein complexes from
wild-type and chylchy2lut2lut5 thylakoid membrane. Figure S4.
Distribution of the PSI core (A), PSII core (B) and LHCII (B) amount per
fresh weight vs. the relative content of xanthophylls on thylakoids. Table
S1. Sequences of oligonucleotides used for RT-PCR measurement of
transcripts. Table S2. LC-DAD-MS analysis of wild-type and mutant
Arabidopsis leaves.
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PSI and PSII: Photosystem | and II: respectively; a-DM: n-dodecyl-a-D-
maltoside; Car: carotenoids; Chl a and b: chlorophyll a and b: respectively;
Fu/Fm: maximal PSII photochemical efficiency; gFW: gram of fresh weight; HL:
high-light; HPLC-DAD-MS: high pressure liquid chromatography - diode array
detector - mass spectrometry; Lhca and Lhcb: light-harvesting complexes of
PSI and PSII: respectively; LHCI: antenna complex of photosystem [; LHCII:
major light-harvesting complex of PSI; MDA: malondialdehyde; NPQ: non-
photochemical quenching; PQ: plastoquinone; gE: ApH-dependent
component of NPQ; gl: photoinhibition quenching; gP: photochemical
quenching; ROS: reactive oxygen species; RT: room temperature; TBA:
thiobarbituric acid; Opg: efficiency of PSII photochemistry.

Page 13 of 15

Acknowledgements

Work supported by the Italian ministry of Research, special fund for basic
research (PRIN 2008XB774B), and by the European Commission, Metapro
project.

Author details

'Italian National Agency for New Technologies, Energy and Sustainable
Development (ENEA), Casaccia Research Center, Via Anguillarese 301, 00123
Rome, Italy. 2Dipammemo di Biotecnologie, Universita di Verona, Strada Le
Grazie 15, 37134 Verona, Italy. *ICG-3: Phytosphére Forschungszentrum Jilich,
52425 Jiilich, Germany. “Dipartimento di Biotecnologie, Universita di Verona,
Strada Le Grazie 15, 37134 Verona, Italy.

Authors’ contributions

AF performed identification and isolation of all the genotypes used, carried
out the molecular genetic studies and drafted the manuscript; LD and SC
carried out the biochemical and photosynthetic characterization of plants
under control and photoxidative conditions, performed western-blot analysis
and drafted the manuscript; GD performed mass-spectrometry analysis; GG
and RB conceived the study, participated in its design and coordination and
edited the manuscript. All authors read and approved the final manuscript.

Received: 27 November 2011 Accepted: 18 April 2012
Published: 18 April 2012

References

1. Kull O, Pfander H: List of new carotenoids. In Carotenoids: Isolation and
Analysis. Edited by: Britton SL-JaHPe G. Basel: Birkauser Publishing;
1995:316-317.

2. Baroli |, Niyogi KK: Molecular genetics of xanthophyll-dependent
photoprotection in green algae and plants. Philos Trans R Soc Lond B Biol
Sci 2000, 355:1385-1394.

3. Demmig-Adams B, Adams WW: Photoprotection and other responses of
plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 1992,
43:599-626.

4. Niyogi KK: Safety valves for photosynthesis. Curr Opin Plant Biol 2000,
3:455-460.

5. DallOsto L, Caffarri S, Bassi R: A mechanism of nonphotochemical energy
dissipation, independent from Psbs, revealed by a conformational
change in the antenna protein CP26. Plant Cell 2005, 17:1217-1232.

6. Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R: Different roles of a-
and B-branch xanthophylls in photosystem assembly and
photoprotection. Journal of Biological Chemistry 2007, 282:35056-35068.

7. Havaux M, Dall'Osto L, Bassi R: Zeaxanthin has Enhanced Antioxidant
Capacity with Respect to All Other Xanthophylls in Arabidopsis Leaves
and functions independent of binding to PSIl antennae. Plant Physiol
2007, 145:1506-1520.

8. Liu Z Yan H, Wang K Kuang T, Zhang J, Gui L, et al: Crystal structure of
spinach major light-harvesting complex at 2.72 A resolution. Nature
2004, 428:287-292.

9. Croce R, Weiss S, Bassi R: Carotenoid-binding sites of the major light-
harvesting complex Il of higher plants. J Biol Chem 1999,
274:29613-29623.

10. Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D: Functional
analysis of beta- and epsilon-ring carotenoid hydroxylases in
Arabidopsis. Plant Cell 2003, 15:1320-1332.

11, Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D: The
Arabidopsis LUT1 locus encodes a member of the cytochrome p450
family that is required for carotenoid epsilon-ring hydroxylation activity.
Proc Natl Acad Sci USA 2004, 101:402-407.

12. Fiore A, Dall'Osto L, Fraser PD, Bassi R, Giuliano G: Elucidation of the beta-
carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett 2006,
580:4718-4722.

13. Kim J, DellaPenna D: Defining the primary route for lutein synthesis in
plants: the role of Arabidopsis carotenoid beta-ring hydroxylase
CYP97A3. Proc Natl Acad Sci USA 2006, 103:3474-3479.

14, Kim J, Smith JJ, Tian L, DellaPenna D: The evolution and function of
carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 2009, 50:463-479.

15. Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D: Arabidopsis
carotenoid mutants demonstrate that lutein is not essential for
photosynthesis in higher plants. Plant Cell 1996, 8:1627-1639.


http://www.biomedcentral.com/content/supplementary/1471-2229-12-50-S1.DOC
http://www.ncbi.nlm.nih.gov/pubmed/11127993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11127993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11074375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15749754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17913714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15029188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15029188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10514429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10514429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14709673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14709673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14709673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16890225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16890225?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492736?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19147649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19147649?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8837513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8837513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8837513?dopt=Abstract

Fiore et al. BMC Plant Biology 2012, 12:50
http://www.biomedcentral.com/1471-2229/12/50

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

Dall'Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R: Lutein is needed
for efficient chlorophyll triplet quenching in the major LHCII antenna
complex of higher plants and effective photoprotection in vivo under
strong light. Bmc Plant Biology 2006, 6:32.

Lokstein H, Tian L, Polle JE, DellaPenna D: Xanthophyll biosynthetic
mutants of Arabidopsis thaliana: altered nonphotochemical quenching
of chlorophyll fluorescence is due to changes in Photosystem Il antenna
size and stability. Biochim Biophys Acta 2002, 1553:309-319.

Gilmore AM: Xanthophyll cycle-dependent nonphotochemical quenching
in Photosystem II: mechanistic insights gained from Arabidopsis thaliana
L. mutants that lack violaxanthin deepoxidase activity and/or lutein.
Photosynthesis Research 2001, 67:89-101.

Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D, Bjorkman O:
Photoprotection in a zeaxanthin- and lutein-deficient double mutant of
Arabidopsis. Photosynth Res 2001, 67:139-145.

Baroli |, Do AD, Yamane T, Niyogi KK: Zeaxanthin accumulation in the
absence of a functional xanthophyll cycle protects Chlamydomonas
reinhardtii from photooxidative stress. Plant Cell 2003, 15:992-1008.
Dall'Osto L, Cazzaniga S, North H, MArion-Poll A, Bassi R: The arabidopsis
aba4-1 mutant reveals a specific function for neoxanthin in protection
against photoxidative stress. Plant Cell 2007, 19:1048-1064.

Maxwell K, Johnson GN: Chlorophyll fluorescence - a practical guide. J
Exp Bot 2000, 51:659-668.

Genty B, Briantais J-M, Baker NR: The relationship between the quantum
yield of photosynthetic electron transport and quenching of chlorophyll
fluorescence. Biochim Biophys Acta 1989, 990:87-92.

Horton P, Ruban A: Molecular design of the photosystem Il light-
harvesting antenna: photosynthesis and photoprotection. J Exp Bot 2005,
56:365-373.

Caffarri S, Croce R, Breton J, Bassi R: The major antenna complex of
photosystem Il has a xanthophyll binding site not involved in light
harvesting. J Biol Chem 2001, 276:35924-35933.

Bassi R, Dainese P: A Supramolecular Light-Harvesting Complex from
Chloroplast Photosystem-Il Membranes. Eur J Biochem 1992, 204:317-326.
de Bianchi S: Dall'Osto L, Tognon G, Morosinotto T, Bassi R: Minor
antenna proteins CP24 and CP26 affect the interactions between
Photosystem Il subunits and the electron transport rate in grana
membranes of Arabidopsis. Plant Cell 2008, 20:1012-1028.

Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R: Functional
architecture of higher plant photosystem Il supercomplexes. EMBO J
2009, 28:3052-3063.

Ballottari M, Govoni C, Caffarri S, Morosinotto T: Stoichiometry of LHCI
antenna polypeptides and characterisation of gap and linker pigments
in higher plants Photosystem I. Eur J Biochem 2004, 271:4659-4665.

Li XP, Muller-Moule P, Gilmore AM, Niyogi KK: PsbS-dependent
enhancement of feedback de-excitation protects photosystem Il from
photoinhibition. Proc Natl Acad Sci USA 2002, 99:15222-15227.

Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, et al:
Architecture of a charge-transfer state regulating light harvesting in a
plant antenna protein. Science 2008, 320:794-797.

Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, et al:
Zeaxanthin radical cation formation in minor light-harvesting complexes
of higher plant antenna. J Bio/ Chem 2008, 283:3550-3558.

Teardo E, De Laureto PP, Bergantino E, Dalla VF, Rigoni F, Szabo |, et al:
Evidences for interaction of PsbS with photosynthetic complexes in
maize thylakoids. Biochim Biophys Acta 2007, 1767:703-711.

Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall'Osto L,

et al: Light-induced dissociation of an antenna hetero-oligomer is
needed for non-photochemical quenching induction. Journal of Biological
Chemistry 2009, 284:15255-15266.

Pogson BJ, Niyogi KK, Bjorkman O, DellaPenna D: Altered xanthophyll
compositions adversely affect chlorophyll accumulation and
nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci
USA 1998, 95:13324-13329.

Pogson B, Rissler HM: Genetic manipulation of carotenoid biosynthesis
and photoprotection. Phil Trans R Soc Lond B 2000, 355:1395-1403.
Plumley FG, Schmidt GW: Reconstitution of chloroform a/b light-
harvesting complexes: Xanthophyll-dependent assembley and energy
transfer. Proc Natl Acad Sci USA 1987, 84:146-150.

Dall'Osto L, Cazzaniga S, Havaux M, Bassi R: Enhanced photoprotection by
protein-bound vs free xanthophyll pools: a comparative analysis of

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Page 14 of 15

chlorophyll b and xanthophyll biosynthesis mutants. Molecular plant
2010, 3:576-593.

Espineda CE, Linford AS, Devine D, Brusslan JA: The AtCAO gene, encoding
chlorophyll a oxygenase, is required for chlorophyll b synthesis in
Arabidopsis thaliana. Proc Natl Acad Sci USA 1999, 96:10507-10511.

Mozzo M, Morosinotto T, Bassi R, Croce R: Probing the structure of Lhca3
by mutation analysis. Biochim Biophys Acta 2006, 1757:1607-1613.
Morosinotto T, Castelletti S, Breton J, Bassi R, Croce R: Mutation analysis of
Lhcal antenna complex. Low energy absorption forms originate from
pigment-pigment interactions. J Biol Chem 2002, 277:36253-36261.

Nelson N: Ben Shem A: The complex architecture of oxygenic
photosynthesis. Nature 2004, 5:1-12.

Klimmek F, Ganeteg U, Ihalainen JA, van Roon H, Jensen PE, Scheller HY,
et al: The structure of higher plant LHCI: in vivo characterisation and
structural interdependence of the Lhca proteins. Biochemisty 2005,
44:3065-3073.

Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K: Chlorophyll a
oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll
a. Proc Natl Acad Sci USA 1998, 95:12719-12723.

Havaux M, Kloppstech K: The protective functions of carotenoid and
flavonoid pigments against excess visible radiations at chilling
temperature investigated in Arabidopsis npq and tt mutants. Planta
2001, 213:953-966.

Hartel H, Lokstein H, Dérmann P, Grimm B, Benning C: Changes in the
composition of the photosynthetic apparatus in the Galactolipid-
deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 1997,
115:1175-1184.

Paulsen H: Pigment ligation to proteins of the photosynthetic apparatus
in higher plants. Physiol Plant 1997, 100:760-768.

Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK,
et al: Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that
accumulate magnesium protoporphyrin IX. Plant Mol Biol 2010,
72:643-658.

Dong H, Deng Y, Mu J, Lu Q, Wang Y, Xu Y, et al The Arabidopsis
Spontaneous Cell Death1 gene, encoding a zeta-carotene desaturase
essential for carotenoid biosynthesis, is involved in chloroplast
development, photoprotection and retrograde signalling. Cell Res 2007,
17:458-470.

Asakura Y, Hirohashi T, Kikuchi S, Belcher S, Osborne E, Yano S, et al: Maize
mutants lacking chloroplast FtsY exhibit pleiotropic defects in the
biogenesis of thylakoid membranes. Plant Cell 2004, 16:201-214.

Grudnik P, Bange G, Sinning I: Protein targeting by the signal recognition
particle. Biol Chem 2009, 390:775-782.

Barneche F, Winter V, Crevecoeur M, Rochaix JD: ATAB2 is a novel factor
in the signalling pathway of light-controlled synthesis of photosystem
proteins. EMBO J 2006, 25:5907-5918.

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP,

et al: Strigolactone inhibition of shoot branching. Nature 2008,
455:189-194.

Ballottari M: Dall'Osto L, Morosinotto T, Bassi R: Contrasting behavior of
higher plant photosystem | and Il antenna systems during acclimation.
Journal of Biological Chemistry 2007, 282:8947-8958.

Kim JH, Glick RE, Melis A: Dynamics of Photosystem Stoichiometry
Adjustment by Light Quality in Chloroplasts. Plant Physiol 1993,
102:181-190.

Chow WS, Melis A, Anderson JM: Adjustments of photosystem
stoichiometry in chloroplasts improve the quantum efficiency of
photosynthesis. Proc Natl Acad Sci USA 1990, 87:7502-7506.

Dietzel L, Brautigam K, Pfannschmidt T: Photosynthetic acclimation: state
transitions and adjustment of photosystem stoichiometry-functional
relationships between short-term and long-term light quality
acclimation in plants. FEBS J 2008, 275:1080-1088.

Van Kooten O, Snel JFH: The use of chlorophyll fluorescence
nomenclature in plant stress physiology. Photosynt Res 1990, 25:147-150.
Casazza AP, Tarantino D, Soave C: Preparation and functional
characterization of thylakoids from Arabidopsis thaliana. Photosynth Res
2001, 68:175-180.

Schagger H, von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide
gel electrophoresis for the separation of proteins in the range from 1 to
100 kDa. Anal Biochem 1987, 166:368-379.


http://www.ncbi.nlm.nih.gov/pubmed/17192177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17192177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17192177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17192177?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997140?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12671093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12671093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12671093?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10938857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15557295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15557295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11454869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11454869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11454869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1740145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1740145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18381925?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19696744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15606753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15606753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15606753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18467588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18467588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17991753?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17250801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17250801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9789087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9789087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9789087?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16593794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16593794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16593794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20100799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10468639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16950167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16950167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9770552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11722132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11722132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11722132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9390443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9390443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9390443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20127142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20127142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14688289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14688289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14688289?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19558326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19558326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17139246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17139246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17139246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18690209?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17229724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17229724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12231808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12231808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11607105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11607105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11607105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18318835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18318835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18318835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18318835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16228340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2449095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2449095?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2449095?dopt=Abstract

Fiore et al. BMC Plant Biology 2012, 12:50
http://www.biomedcentral.com/1471-2229/12/50

61.

62.

63.

64.

Peter GF, Thornber JP: Electrophoretic Procedures for Fractionation of
Photosystem-I and Photosystem-Il Pigment-Proteins of Higher Plants
and for Determination of Their Subunit Composition. In Methods in Plant
Biochemistry. 5. Edited by: Rogers LJ. New York: Academic Press;
1991:195-210.

Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from
polyacrylamide gels to nitrocellulose sheets: Procedure and some
applications. Proc Natl Acad Sci USA 1979, 76:4350-4354.

Vavilin DV, Ducruet J-M, Matorin DN, Venediktov PS, Rubin AB: Membrane
lipid peroxidation, cell viability and photosystem Il activity in the green
alga Chlorella pyrenoidosa subjected to varius stress conditions. J
Photochem Photobiol B 1998, 42:233-239.

Carbone F, Pizzichini D, Giuliano G, Rosati C, Perrotta G: Comparative
profiling of tomato fruits and leaves evidences a complex modulation of
global transcript profiles. Plant Science 2005, 169:165-175.

doi:10.1186/1471-2229-12-50

Cite this article as: Fiore et al: A quadruple mutant of Arabidopsis
reveals a B-carotene hydroxylation activity for LUT1/CYP97C1 and a
regulatory role of xanthophylls on determination of the PSI/PSII ratio.
BMC Plant Biology 2012 12:50.

Page 15 of 15

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/388439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/388439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/388439?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Construction of the chy1chy2lut2lut5 quadruple mutant
	Pigment composition
	Gene expression
	Photosynthesis-related functions: PSII quantum efficiency and non-photochemical quenching of chlorophyll fluorescence
	Photosensitivity under short-term stress conditions
	Organization and stoichiometry of pigment binding complexes

	Discussion
	LUT1 as a β-carotene hydroxylase
	Reduced xanthophyll content negatively affects energy-dependent quenching qE and photoprotection
	Limitation in total xanthophyll availability affects light-harvesting complex content and PSI/PSII ratio

	Conclusions
	Methods
	Plant material and growth conditions
	In vivo fluorescence and NPQ measurements
	LC-MS analysis of leaf pigments
	Thylakoid isolation
	Gel electrophoresis
	Spectroscopy
	Determination of the sensitivity to photooxidative stress
	Real-time PCR
	Statistics

	Acknowledgements
	Author details
	Authors' contributions
	References

