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Abstract

Background: Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although
the physiological changes that occur during pineapple fruit development have been well characterized, little is
known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis
of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic
modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene
expression changes that occur during pineapple fruit ripening.

Results: Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the
mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share
significant homology with genes encoding proteins of known function, 53 share homology with genes encoding
proteins of unknown function and 34 share no significant homology with any database accession. Of the 237
pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit
ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed
confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin
C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and
importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR
analysis validated the microarray expression results for nine out of ten genes tested.

Conclusions: This is the first report of a microarray based gene expression study undertaken in pineapple. Our
bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with
putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the molecular
basis of pineapple fruit ripening and non-climacteric fruit ripening in general.
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Background

Pineapple (Ananas comosus) is a tropical fruit crop of sig-
nificant commercial value and is the most important
economic plant in the Bromeliaceae family. However, sur-
prisingly little research has been undertaken to understand
the molecular basis of pineapple fruit development - an
essential pre-requisite for future improvement by molecu-
lar breeding or genetic modification.

In terms of fruit ripening, fleshy fruits are classified as
either climacteric or non-climacteric. In climacteric fruits,
such as apples and bananas, a burst of ethylene biosyn-
thesis and an increase in respiration is observed at the
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onset of ripening. Conversely, non-climacteric fruits such
as pineapple lack the autocatalytic ethylene burst and the
increase in respiration. Although the physiological changes
that occur during pineapple fruit development are well
known, little is known about the molecular events that
govern pineapple fruit ripening.

The advent of high throughput sequencing and micro-
array technologies has facilitated large-scale studies on
gene expression changes during fruit development in a
number of species, including climacteric fruits tomato
and apple, and the non-climacteric fruit strawberry [1-
3]. In a previous study, we reported the construction of
subtracted and normalized EST ¢cDNA libraries, includ-
ing the green mature and yellow mature ripening stages
of pineapple fruits [4]. More recently, short read next
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generation sequencing technology was applied to a ripe
pineapple fruit gene discovery project [5]. In this study,
we report the development of an EST-based pineapple
microarray and its use to identify differentially expressed
genes during fruit ripening. Online bioinformatics tools
were used to assign putative identity and function to
those pineapple genes displaying differential expression
during fruit ripening. We also applied visual mapping
tools such as MapMan (v3.1.1), the Kyoto Encyclopedia of
Genes and Genomes (KEGG) online resource and Heat
Maps generated through DAVID to visualize biological
processes and pathways of significance during pineapple
fruit ripening. Quantitative real-time PCR analysis was
used to validate a subset of the differentially expressed
genes. This study contributes to our understanding of the
molecular basis of pineapple fruit ripening and non-
climacteric ripening in general.

Results and discussion

Microarray analysis of pineapple fruit ripening identifies
gene expression changes associated with important
metabolic pathways and processes

9277 cDNAs isolated from several pineapple tissues includ-
ing roots, green mature and yellow mature fruits were spot-
ted in duplicate onto microarray slides (Australian Genome
Facility, University of Queensland). Hybridization was
carried out using probes derived from mature green fruits
and fully ripened yellow fruits. In total, three replicate
microarray hybridizations were performed and analysis of
the results identified 271 differentially expressed ESTs
(> 1.5 fold). Of these, 160 were up-regulated and 77 down-
regulated during pineapple fruit ripening. Among the 271
EST sequences, 184 shared significant homology with
known gene products, 53 shared homology with products
of unknown function, and 34 had no significant homology
with any known plant gene sequence in the GenBank data-
base. EST sequences with homologs were subjected to func-
tional classification analysis and assigned an Arabidopsis
thaliana homolog ID tag (e.g. At2g43640). The microarray
data generated in this study has been deposited in NCBI's
Gene Expression Omnibus [6] and are accessible through
GEO series accession number GSE38521 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE38521).

The expression data was analyzed using the Functional
Annotation Cluster (FAC) tool contained in the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [7]. DAVID FAC analysis of the 160 up-regulated
genes (> 1.5-fold) produced a total of 37 enriched
functional clusters under high stringency conditions. Redox
activity, organic acid metabolism, metalloenzyme activity,
glycolysis, vitamin C biosynthesis and antioxidant-ROS
activity showed high enrichment scores with strong confi-
dence levels (EASE score). The enrichment score gives an
indication of the biological significance of the gene groups
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being analyzed, from which the top 10 were considered in
our study (Figure la). DAVID FAC analysis of the 77
down-regulated genes (> 1.5-fold produced 16 enriched
functional clusters under high stringency conditions and
protein catabolism was the most significant biological
process in green mature fruit (Figure 1b).

Redox activity

Reduction-oxidation (redox) activity showed the highest
enrichment score in the FAC analysis of genes up-
regulated in mature yellow fruits (Figure la). DAVID
heat map analyses identified 26 genes with an expression
range of 1.51 to 7.56 that functionally clustered into
common GO terms related to oxidation-reduction and
oxidoreductase activity (Figure 2A). A number of genes
identified in the heat map relate to dismutase, peroxire-
doxin, glutaredoxin, ascorbate-glutathionine and thiore-
doxin activities.

The state of oxidation for a given organism is influ-
enced by stress response-related enzymes such as dismu-
tases, peroxidase, glutaredoxin, ascorbate-glutathionine
and thioredoxin [8]. The state of oxidation may influ-
ence the rate at which ethylene is produced at the onset
of ripening in climacteric fruits [9]. Fruit maturation
may be thought of as a catabolic process involving an
array of redox enzymes causing degradation of fruit tis-
sue and emanation of ethylene as a catabolic by-product
that accelerates ripening. Possible differences between
the oxidation state and modes of catabolism stress
responses ought to be investigated between climacteric
and non-climacteric fruit species. The observed redox
activity in pineapple might also be related to the large
size of the fruit and the low partial pressure of oxygen.

Organic acid metabolism

FAC analysis identified organic acid metabolism as an
important biological process during pineapple fruit
ripening (Figure 1a). DAVID heat map analyses identified
18 genes with an expression range of 1.50 to 8.52 that
functionally clustered into common GO terms related to
organic acid metabolism and other associated processes
such as cellular ketone metabolism, oxoacid metabolism
and carboxylic acid metabolism (Figure 2b).

Organic acid content has been reported to increase dur-
ing ripening of climacteric and non-climacteric fruits
[10-13]. In pineapple, acidity increases during development
and starts declining once the fruit approaches maturity and
ripens [14]. Citric and malic acid are the two main organic
acids that contribute to the sourness and acidity of most
climacteric and non-climacteric fruits such as peach
[11,15,16], apple [17], kiwifruit [18], grape [19], orange
[20], cherry [21], strawberry [12] and pineapple [22].
Furthermore, citric acid was shown to undergo the greatest
increase in developing pineapple, reaching a peak prior to
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Figure 1 DAVID Functional Annotation Cluster (FAC) analysis of normalized and annotated genes during pineapple fruit development.
(@) Major FACs for up-regulated genes (> 1.5-fold). (b) Major FACs for down-regulated genes (> 1.5-fold). Significance is determined by corresponding

fruit ripening, whereas malic acid showed little change dur-
ing development [22].

Metalloenzyme activity

FAC analysis identified responses to inorganic compounds,
metal ion cofactors and cadmium as significant biological
processes during pineapple fruit ripening (Figure la). A
total of 16 genes ranging in expression from 1.51 to 4.09
fold, were identified in the DAVID heat map (Figure 2c).

A number of metalloenzymes activated in response to
inorganic substances, metal ion cofactors and cadmium
were identified in the heat map analysis (Figure 2c).
These include superoxide dismutase (SOD), metallothio-
nein (MET) and phytochrome A (PHYTA) homologs.
Metalloenzymes are known to regulate the redox state
of many plant crops and are involved in many important
biological processes such as oxidative stress, metal ion

homeostasis, pathogenicity, metal-mediated catalysis and
cell death. Pineapple waste (over-ripened fruit) has been
used in the bioremediation removal of toxic heavy
metals from wastewater and sewage plants [23,24]. This
is possibly due to an abundance of metalloenzymes such
as MET, SOD and PHYT in ripe fruit, where these
enzymes have the ability to act as ligands and chelate
excess metal ions in wastewater treatment procedures.
Indeed, MET has been implicated in cadmium detoxifi-
cation and metal ion homeostasis [25]. Previous studies
confirm that yellow pineapple fruit contains a small
transcriptome that is dominated by high levels of
metallothionein transcript [4].

Glycolysis and sugar catabolism
FAC and DAVID heat map analysis identified genes
involved in glycolysis and sugar catabolism (Figure 1la,
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Figure 2 DAVID heat map analysis of biologically significant FACs containing pineapple up-regulated genes (> 1.5-fold). (a) Redox
activity. (b) Organic acid metabolism. (c) Metalloenzyme activity. (d) Glycolysis and sugar catabolism. (e) Vitamin and L-ascorbate metabolism. (f)
Antioxidant activity and ROS metabolism. Green and black shading indicates positive and unconfirmed correlation of annotated pineapple gene
and functional GO terms, respectively. ‘Arab 1D’ shows the closest Arabidopsis homologue. ‘Expn’ means expression fold. ‘Contig’ identifies the

clone in the pineapple database (www.pgel.com.au).

Figure 2d). KEGG pathway visual analysis identified six
genes in the glycolysis pathway map that were up-
regulated in yellow ripe fruits by 1.56 to 7.56 fold
(Figure 3a, Figure 2d, Table 1). These findings indicate
the importance of glycolysis and sugar catabolism during
pineapple fruit development. Most of the genes identi-
fied on the KEGG map were also identified in the corre-
sponding heat map matrix.

Interestingly, gene expression profiling of non-climacteric
grape, also identified a significant cluster of up-regulated
genes involved in glycolysis and sugar catabolic activity
[26]. Taken together, the results in grape and pineapple
underlay the significance of glycolytic activity during non-
climacteric ripening. It is possible that ripening fruits gener-
ate increased ATP energy reserves and reducing power by
increasing glycolysis that could be later used by enzymes
involved in important fruit metabolic processes. The up-
regulation of glycolysis related genes might also be related
to phloem unloading of sugars and their storage in the
vacuole.

Anti-oxidant activity and reactive oxygen species (ROS)
metabolism

FAC analysis shows a significant enrichment of L-ascorbate
(vitamin C) biosynthesis genes, anti-oxidant activity
and ROS metabolism during pineapple fruit ripening
(Figure la). DAVID heat map analysis revealed a total of
five pineapple genes that functionally cluster with GO
terms related to vitamin biosynthesis, polyol metabolism,
inositol metabolism and L-ascorbic acid biosynthesis
(Figure 2e). To name a few, myo-inositol oxygenase 4
(MIOX4), myo-inositol oxygenase 2 (MIOX2) and L-galact-
ose-1-phosphate phosphatase (GPP), were identified with
expression levels ranging from 1.55 to 2.56-fold increase.
Radiotracer evidence showed that grape GPP (VTC4) is a
key enzyme involved in L-ascorbate biosynthesis as non-
climacteric grape fruits develop [27]. Our pineapple GPP
expression profile also correlates with the peach [28] and
tomato [29] GPP orthologs during fruit ripening. The pine-
apple MIOX4 and MIOX2 genes correlate with MIOX
orthologous genes found in grape [30] and tomato [29]
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Figure 3 DAVID heat map analysis of biologically significant FACs containing pineapple down-regulated genes (> 1.5-fold). (a)
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Proteolysis and ubiquitin-dependent catabolism. (b) Cysteine-type peptidase activity. Green and black shading indicates positive and unconfirmed
correlation of annotated pineapple gene and functional GO terms, respectively. ‘Arab ID" shows the closest Arabidopsis homologue. ‘Expn’ means
expression fold. ‘Contig’ identifies the clone in the pineapple database (www.pgel.com.au).
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Table 1 List of pineapple ESTs from KEGG pathway maps with contig ID numbers (www.pgel.com.au), Arabidopsis ID tag,
normalized expression value and annotated gene description

Schematic Name Arabidopsis Normalized Description KEGGID
homologue ClonelD Expression Levels
Glycolysis - KEGG PATHWAY
contig 763 At3g04120 4.1 Glyceraldehyde 3-phosphate dehydrogenase, cytosolic Ac763
contig 251 At4g33070 34 Pyruvate decarboxylase 1 Ac251
contig 30 At2g36530 2.3 Enolase Ac30
contig 1110 At1g77120 2.1 Alcohol dehydrogenase Ac1110
contig 3191 At3g55440 2.1 Triose-phosphate isomerase Ac3191
contig 441 At1g09780 16 Phosphoglycerate mutase Ac441
Cysteine and Methionine Metabolism
contig 3189 At4g14880 23 Cysteine synthase Ac3189
contig 117 At4g14710 1.7 ATARD?2 acireductone dioxygenase2 Acl17
contig 113 At3g25570 16 S-adenosylmethionine decarboxylase Ac113
contig 1009 At5g11520 15 Aspartate aminotransferase Ac1009
contig 3350 At4g19710 1.5 Bifunctional aspartokinase/homoserine dehydrogenase Ac3350
Ubiquitin-Mediated Proteolysis - KEGG Pathway
contig 1299 At2g02760 3.1 Ubiquitin conjugating protein UBE2A
contig 154 At1g16890 1.6 Ubiquitin carrier protein E2 36 UBE2N
contig 861 At5922920 1.6 Putative PGPD14 protein (pollen germination related protein) PIRH2
contig 1793 At5g42190 1.5 SKP1-like protein 1B SKP1
contig 1433 At1g64230 =20 Ubiquitin carrier protein E2 28 UBE2D_E
contig 153 At3g57870 -22 Ubiquitin carrier protein UBE2I

and are involved in the conversion of myo-inositol to
D-glucoronic acid during L-ascorbic acid biosynthesis.

DAVID heat map analyses also identified a cluster of
six pineapple genes found to be involved in anti-oxidant
activity, response to ROS, oxygen and ROS metabolism,
cellular response to oxidative stress and cellular response
to ROS activity (Figure 2f). L-ascorbate [27,31] and
glutathione [32,33] have been linked to plant antioxidant
activity and fruit ripening. In fact, fruit ripening is con-
sidered to be an oxidative process, where L-ascorbate
and glutathione are linked by a cycle of enzymes whose
biological role is to detoxify hydrogen peroxide [34].
KEGG pathway mapping (Figure 3b, Table 1) identified a
cluster of genes involved in L-cysteine biosynthesis, an
important precursor for glutathione. Aside from ripen-
ing, L-ascorbate production is influenced by various en-
vironmental cues such as light [35], temperature [29,36]
and ambient ozone concentrations [37]. These stresses
induce the formation of ROS, which are removed by the
plant’s antioxidant system involving catalase, superoxide
dismutase, peroxidases and enzymes involved in the
ascorbate-glutathione cycle [27]. Non-climacteric grape
orthologs of pineapple GPP, APOX3, PXDN-B1, SOD-
119 and SOD-3200 were also reported to be involved in
antioxidant activity [30]. Hydrogen peroxide (H,O,) is
the most stable ROS species and plays a crucial role as a

signaling molecule in various physiological processes
[38]. H,O, is also involved in cell membrane and wall
degradation of fleshy tomato fruit tissue, thereby causing
fruit softening [39]. This may also be the case in devel-
oping pineapple fruit tissue.

Proteolysis and Ubiquitin-type housekeeping processes
DAVID FAC analysis indicated that proteolysis and ubi-
quitin protein catabolism are active in both green and yel-
low pineapple fruit (Figure 1a, 1b). The enrichment score
for proteolysis and ubiquitin protein catabolism was com-
parable between both FAC analyses (Figure 1a, 1b), how-
ever it was significantly lower than other up-regulated
biological processes (Figure 1a). DAVID heat map analysis
identified six down-regulated genes (Figure 4a) and 14 up-
regulated genes (not shown) involved in proteolysis and
ubiquitin protein catabolism. KEGG pathway analysis
visually created an ubiquitin mediated proteolysis map
(Figure 3c, Table 1), showing genes which are active in
both yellow (up-regulated) and green (down-regulated)
mature pineapple fruit. MapMan (v3.1.1) pathway analysis
of a biotic-abiotic overview (Figure 5, Table 2) also identi-
fied 30 down-regulated genes and 41 up-regulated genes
involved in proteolysis and ubiquitin-type activity during
pineapple fruit ripening.
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Proteolysis is essential for many aspects of plant devel-
opment. It is responsible for cellular housekeeping and
stress responses by removing abnormal and miss-folded
proteins, supplying amino acids needed to make new
proteins, controlling homeostasis by reducing the abun-
dance of key enzymes and regulatory proteins, and con-
trolling gene function and programmed cell death of
specific plant organs or cells [40-42]. Our bioinformatics
analysis indicates that protein degradation during pine-
apple fruit development is a complex process involving a
multitude of proteolytic pathways. Selective proteolysis
of damaged proteins is mainly controlled through
ubiquitin-mediated processes involving ubiquitin and
several ubiquitin conjugating enzymes [43].

Pineapple fruit bromelain

DAVID FAC analysis of the 77 down-regulated genes
(> 1.5-fold), suggested that cysteine type peptidase activity
was the most significant process in green mature fruit
(Figure 1b). This is mainly due to two pineapple fruit bro-
melains, Ac-122 (-17.76-fold) and Ac-3033 (-31.75-fold)
that were identified on a DAVID heat map (Figure 4A)
and found to be strongly down-regulated as pineapple
ripens from mature green to mature vyellow fruit.
Bromelain is a cysteine-type protease unique to pineapple.

Cysteine-type proteases are also found in other fruits, such
as kiwifruit [44], papaya and fig [45]. Pineapple EST
library analyses identified an abundance of a bromelain
inhibitor (Ac124) and a fruit bromelain (Ac122) from
green mature fruit [4]. The bromelain inhibitor Ac124 was
the most abundant EST in the green fruit library with 52
clones isolated. Northern analyses further confirmed
decreased expression of Acl122 and Acl24 as pineapple
fruit develops [4]. The Ac124 bromelain inhibitor corre-
sponds to a non-cystatin bromelain inhibitor precursor
homolog in pineapple [46,47], that does not have an
inhibitory effect on pineapple fruit bromelain. It is possible
that Ac-122 and Ac-3033 are more abundant in green
mature pineapple fruit due to the role that cysteine-
type proteases play in plant defense mechanisms [45],
particularly before fruit maturation.

Validation of microarray data by real-time RT-PCR

In order to validate our microarray results we performed
quantitative real time PCR (qRT-PCR) to determine the
expression levels of ten pineapple genes randomly
selected from the list of genes differentially expressed
across mature green and mature yellow fruits. To avoid
bias, the tested genes were chosen from an array of
different processes including redox activity, organic acid
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Table 2 List of pineapple ESTs from MapMan maps with
contig ID numbers (www.pgel.com.au), Arabidopsis 1D
tag, normalized expression value and annotated gene
description

Schematic Arabidopsis  Normalized = MapMan Identifier
Name homologue  Expression
ClonelD Levels

REDOX State-Peroxidase-Antioxidant Activity - Stress Overview

contig 422 At2g16060 122 AHB1 (ARABIDOPSIS
HEMOGLOBIN 1)

contig 119 At2g28190 2.7 CSD2 (COPPER/ZINC
SUPEROXIDE
DISMUTASE 2)

contig 1366 At3g11630 25 2-cys peroxiredoxin,
chloroplast (BAST)

contig 3096 At4g35000 23 APX3 (ASCORBATE
PEROXIDASE 3)

contig 3200  At1g08830 22 CSD1 (copper/zinc
superoxide dismutase 1)

contig 37 At5g40370 16 GRXC2 (Glutaredoxin-C2)

contig 3227 At3g02870 1.5 VTC4 (2-bisphosphate
nucleotidase)

contig 107 at5g39950 1.5 ATTRX2 (Arabidopsis

thioredoxin h2)

Proteolysis Activity - Stress Overview

contig 122 At2g34080 =317 Fruit bromelain

contig 3033 At3g49340 -178 Fruit bromelain

contig 1322 At3g45630 -56 RNA recognition
motif (RRM)

contig 3424 At2g43210 -52 UBX domain-containing
protein

contig 756 At5g04250 —45 OTU-like cysteine

protease family protein

metabolism, metalloenzyme activity, vitamin C biosyn-
thesis, antioxidant activity, cysteine-type peptidase activ-
ity and ubiquitin proteolysis. The qRT-PCR expression
results correlated with the microarray expression data
for 9 out of the 10 genes tested (Figure 6, Table 3). qRT-
PCR determination of MGS and G3PD-816 mRNA levels
showed a 2.6-fold and 5.0-fold increase respectively in ma-
ture yellow fruits over mature green fruits and these
results compare favorably to the 2.7-fold and 8.5-fold
increase in expression determined by the microarray
analysis. Both of these genes are involved in organic acid
metabolism. ASP, GPP and CSD2 are involved in vitamin
C biosynthesis, redox and antioxidant activity. qRT-PCR
analysis showed an increase of 2.6-fold, 2.1-fold and 2.3-
fold in the levels of ASP, GPP and CSD2 respectively.
These results are in good agreement with our microarray
data that showed 2.3-fold (ASP), 1.5-fold (GPP) and
2.7-fold (CSD2) increases in expression during fruit ripen-
ing (Table 3). Expression levels of genes involved in
cysteine-type peptidase (Ac-122) and ubiquitin proteolysis
(OTU and UBE2A) were also quantitatively analyzed. Real-
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time data confirmed that Ac-122 is significantly down-
regulated (20.6-fold) and UBE2A up-regulated (2.1-fold) as
pineapple fruit ripens. Our microarray data correlated with
the qRT-PCR data, showing a 31.7-fold down-regulation of
Ac-122 and 3.1-fold up-regulation of UBE2A. Expression
analysis of OTU by qRT-PCR revealed a 2.0-fold up-regu-
lation, in contrast with the microarray data which showed
OTU to be down-regulated by 4.5-fold. OTU belongs to
the cysteine proteinase superfamily [48], a large multigene
family that is likely to contain genes with highly similar
sequences. While qRT-PCR results are usually accurate
and gene specific, the microarray used in this study was
constructed spotting ¢cDNA clones and it is therefore
possible that the hybridization results for genes encoded
by multigene families could be adulterated by cross-
hybridization of homologous probes. qRT-PCR analy-
sis further confirmed up-regulated expression of MET
(3.5-fold) and down-regulated expression of GAST (4.5-
fold), involved in metalloenzyme activity and stress
response pathways respectively. The microarray data corre-
lated with qRT-PCR showing a 1.95-fold (MET) increase
and 6.3-fold (GAST) decrease, respectively. MET cDNA
levels were found to be highly abundant in yellow pine-
apple fruit tissue and shown to be significantly up-
regulated during pineapple fruit development [4].

Conclusions
In this study we have analyzed the changes in expression
levels during pineapple fruit ripening using a purpose
built pineapple microarray containing 9,277 EST ele-
ments. We identified 271 unique pineapple clones with
differential expression of at least 1.5-fold from mature
green to mature yellow stages of fruit ripening. Of these
271 ESTs, 237 displayed significant homology to plant
sequences encoding proteins of known or unknown
function. Of these, 160 ESTs were up-regulated and 77
ESTs down-regulated during pineapple fruit ripening.
Furthermore, quantitative real-time PCR analysis vali-
dated the microarray results for nine out of ten genes
randomly chosen from different cellular processes.
Bioinformatics analyses of the microarray results sug-
gest that redox activity is a prominent biological process
during pineapple fruit ripening. Organic acid metabolism
of citric and malic acid and metalloenzyme activity were
also up-regulated during pineapple fruit ripening. The
significant increases observed in metalloenzyme encod-
ing genes, may contribute to the bioremediation proper-
ties of pineapple waste [23]. Glycolysis related genes
were also significantly up-regulated during pineapple
fruit ripening, possibly to generate ATP energy reserves
for important ripening processes or in response to the
influx of sugars and their storage in the vacuole.
Furthermore, L-ascorbate biosynthesis, antioxidant
activity and ROS metabolism were determined to be
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mgRT-PCR Expression Data

O Microarray Expressio Data

up-regulated during pineapple fruit development. The
antioxidant properties of L-ascorbate and glutathio-
nine may be involved in detoxifying H,O, as pine-
apple fruit ripens. H,O, may have a biological role
activating an up-regulated response of vitamin C ac-
cumulation and antioxidant activity during pineapple
fruit development.

Our studies also identified two pineapple bromelains,
Ac-122 and Ac-3033, which were highly abundant in

Table 3 gRT PCR validation of microarray results

green mature pineapple tissues and may possibly be
involved in plant defense mechanisms against pathogenic
attack prior to fruit maturation.

Applying a microarray based approach to studying large
scale gene expression changes during fruit development
has contributed to our understanding of the molecular
basis of pineapple fruit ripening and non-climacteric fruit
ripening in general. The development of the pineapple
microarray will also enable the future large scale analysis

Schematic Name Microarray Result qRT-PCR-Result

Target Gene

Redox Activity and Metalloenzyme Activity

contig 816 2.7 increase 2.6 increase
contig 3096 2.3 increase 2.6 increase
contig 119 2.7 increase 2.3 increase
Metalloenzyme Activity

contig 180 1.95 increase 3.5 increase
Vitamin C Biosynthesis and Antioxidant Activity

contig 3096 2.3 increase 2.6 increase
contig 119 2.7 increase 2.3 increase
contig 3227 1.5 increase 2.1 increase
Organic Acid Metabolism

contig 816 2.7 increase 2.6 increase
contig 604 8.5 increase 5.0 increase

Stress Related

contig 35 6.3 decrease 4.5 decrease

Cysteine-Type Peptidase and Ubiquitin Proteolysis

contig 122 31.7 decrease 20.6 decrease
contig 756 4.5 decrease 2.0 increase
contig 1299 3.1 increase 2.1 increase

GSPD-816 (glyceraldehyde 3-phosphate dehydrogenase, cytosolic)
ASP (peroxisome type ascorbate peroxidase)

CSD2 (copper/zinc dismutase 2)

MET (metallothionein)

ASP (ascorbate peroxidase, peroxisome type)
CSD2 (copper/zinc dismutase 2)

GPP (L-galactose-1-phosphate phosphatase)

GSPD-816 (glyceraldehyde 3-phosphate dehydrogenase, cytosolic)
MGS (monogalactosyldiacylglycerol synthase)

GAST (GAST-like protein)
Ac-122 (Fruit Bromelain Ac-122)

OTU (OTU-like cysteine protease family protein)
UBE2A (Ubiquitin conjugating protein)
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of gene expression changes in other pineapple develop-
mental processes, conditions and treatments.

Methods

Plant material and RNA extraction

Commercial field-grown pineapples (A. comosus L.
Smooth Cayenne, Clone C10) were harvested early in
the morning and graded according to ripening appear-
ance [4]. The skin and pith tissues were removed and
the middle third of the fruit flesh was snap frozen in li-
quid nitrogen, pulverized, and stored at —80°C. RNA was
extracted using TRIzol reagent (Invitrogen).

Microarray design and transcript profiling

PCR amplified cDNA elements derived from pineapple
fruit, root tip, root and nematode infected roots and gall
c¢DNA libraries were printed in duplicate onto Corning
UltraGAPS slides by the Microarray Facility at the ARC
Special Research Centre for Functional and Applied
Genomics, University of Queensland [49]. The array
contains 5533 previously sequenced cDNA elements
[50] and 3744 unsequenced elements.

Fruit flesh from the middle third of unripe mature
green pineapple and ripe mature yellow pineapple was
used for RNA extraction, as previously described [4].
The RNA was labeled with Cy3/Cy5 fluorescent dyes
using the LabelStar Array Kit (Qiagen) according to the
manufacturer instructions. Labeled cDNA was mixed
with 20xSSC (20 ul), liquid block (12 p), 2%SDS (4 pl)
and dH,O (up to 200 ul total volume). Denatured la-
beled target was hybridized to a pineapple microarray
slide in submersible hybridization cassette chambers
(Ambion) at 55°C for 12 hours. The arrays were then se-
quentially washed in 2x SSC/0.5% SDS, 1xSSC, 0.5xSSC
and 0.05xSSC for 5 minutes at room temperature. Each
slide was scanned using an ArrayWorx scanner (Applied
Precision) and spot-edited using SoftWorx tracker soft-
ware (Applied Biosystems). Each array dataset was then
imported into GeneSpring software for analysis.

For each replicate slide, the mean and background
intensity values from each channel (W595, W685) were
log2 transformed and normalized using the LOWESS
algorithm to remove intensity dependent effects within
the calculated values. Normalized values were used to
calculate the Cy3/Cy5 fluorescence ratios from experi-
mental and biological repeats before all replicates were
combined. Normalized data with a p-value of < 0.1 that
passed a 2-fold standard deviation (2xSD) test from each
replicate slide was individually tested. All normalized
data possessing a differential expression value of 1.5-fold or
more was further considered (Additional file 1: Table S1).
Due to redundancy features, unsequenced clones that
passed the p-value and 2xSD test, and found to be
differentially expressed by 1.5-fold or more were
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sequenced and updated in the raw data file of each
slide. Data was compiled from three hybridizations,
including one dye-swap replicate. The microarray data
has been entered into the Gene Expression Omnibus at
NCBI and the project has been assigned the accession
code GSE38521.

Real-time PCR validation

A total of ten differentially expressed genes were
selected based on their function and involvement in
pathways and processes important to pineapple fruit
development. Biological processes such as redox activity,
organic acid metabolism, metalloenzyme activity, L-
ascorbate (vitamin C) biosynthesis, antioxidant activity,
cysteine-type peptidase activity and ubiquitin proteolysis
were considered. A total of 18 green mature pineapple
fruits and 18 vyellow mature pineapple fruits, were
harvested in the morning and processed as previously
described [4]. Three biological replicate samples were
produced for both green mature and yellow mature
pineapple fruit types based on six fruit per replicate. All
fruit were cored, sliced from the middle third and diced
prior to liquid nitrogen treatment. Frozen diced fruit
samples were pooled together according to each
biological replicate and tissue type prior to being ground
to a fine powder under liquid nitrogen conditions. All
ground tissue from each biological replicate was homo-
genized and thoroughly mixed prior to RNA extraction
procedures. A total of 2.5ug RNA was extracted for each
biological triplicate tissue type according to methods
previously described [51]. The total RNA was used for
RT-cDNA synthesis using SuperScript® III Reverse
Transcriptase (Invitrogen, Carlsbad, CA) and the resulting
¢DNA template was diluted five-fold in molecular grade
water (Promega, Madisson, WI). Real-time assays were
conducted for all ten target genes by using the 7900HT
Sequence Detection System (Applied Biosystems, Foster
City, CA) and ActinB was used as the reference gene.
Real-time assays were based on three biological and tech-
nical replicates of green mature and yellow mature pine-
apple fruit tissue types. Gene expression and statistical
analysis was performed using SDS version 2.2.2 software
(Applied Biosystems, Foster City, CA).

Bioinformatics analysis of normalized microarray data

The National Centre Bioinformatics Information (NCBI)
BlastX tool was used to putatively annotate all normal-
ized genes (1.5-fold) of which Arabidopsis thaliana
homolog tags were assigned to each clone using The
Arabidopsis Information Resource (TAIR) online data-
base. Gene Ontology (GO) classification systems was
used to assign putative function to each clone by way of
biological process, molecular function and cellular com-
ponents. The Database for Annotation, Visualization and
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Integrated Discovery (DAVID) v6.7b [7] was used to de-
termine pathways and processes of major biological sig-
nificance and importance through the Functional
Annotation Cluster (FAC) tool based on the GO annota-
tion function.

DAVID functional annotation cluster analysis

DAVID FAC analysis was conducted on two independent
normalized gene lists containing the 1.5-fold up-regulated
normalized genes and 1.5-fold down-regulated normalized
genes. High stringency ease score parameters were
selected, to indicate confident enrichment scores of
functional significance and importance of the given
pathways and processes investigated. The Gene Ontology
(GO) system in DAVID was utilized to identify enriched
biological themes in both gene lists.

Mapping and visual pathway analysis

MapMan (v3.1.1) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway tools were used to visually
map cluster of pineapple genes involved in common
pathways and processes for both pathway-specific and
molecular overview purposes. KEGG pathway tools were
utilized through DAVID online tools. Since visual map-
ping was the primary objective, all normalized genes that
were differentially expressed by 1.5-fold were considered
for the MapMan and KEGG pathway analysis. Heat
map analyses were also conducted through DAVID to
produce a matrix of enriched GO terms with common
pineapple genes that were 1.5-fold or more up- and
down-regulated. The green and black shading on the
heat map matrix indicates a positive and negative
correlation between the enriched GO term and given
pineapple gene, respectively.

Enzyme abbreviations

superoxide dismutase (SOD-119, SOD-3200), metallothionein
(MET), phytochromeA (PHYTA), myo-inositol oxygenase
4 (MIOX4), myo-inositol oxygenase 2 (MIOX2), L-galact-
ose-1-phosphate phosphatase (GPP), 2-cys peroxiredoxin
BAS1 (PXDN-B1), superoxide dismutase (SOD-119,
SOD-3200) and L-ascorbate peroxidase 3 (APOX3), fruit
bromelains (Ac-122, Ac-3033), MGS (mono-galactosyl-
diacyl-glycerol synthase), glyceraldehyde 3-phosphate
dehydrogenase (G3PD-816), ascorbate peroxidase (ASP),
copper/zinc superoxide dismutase 2 (CSD2), OTU-like
cysteine protease family protein (OTU) ubiquitin conju-
gating protein (UBE2A), GAST-like protein (GAST).

note: where an enzyme abbreviation appears with an itali-
cized number separated with a hyphen, it indicates an in-
ternal identifier corresponding to the related contig number
for that enzyme (e.g. G3PD-763, SOD-119, Ac-122).
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Additional file

Additional file 1: Table S1. Full list of microarray elements displaying
at least 1.5x change in expression between mature green and mature
yellow stages of pineapple fruit ripening. Systematic ID refers to the
contig number assigned during EST sequence assembly. Normalized
integer refers to the fold difference in expression between mature green
(Pine3) and mature yellow (Pine9) stages of fruit ripening. A positive
normalized integer indicates up-regulation in mature yellow fruit (or
down-regulation in mature green fruit) while a negative normalized
integer indicates up-regulation in mature green fruit (or down-regulation
in mature yellow fruit).
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