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Abstract

Background: The plant tolerance mechanisms to low temperature have been studied extensively in the model
plant Arabidopsis at the transcriptional level. However, few studies were carried out in plants with strong inherited
cold tolerance. Chorispora bungeana is a subnival alpine plant possessing strong cold tolerance mechanisms. To get
a deeper insight into its cold tolerance mechanisms, the transcriptome profiles of chilling-treated C. bungeana
seedlings were analyzed by Illumina deep-sequencing and compared with Arabidopsis.

Results: Two cDNA libraries constructed from mRNAs of control and chilling-treated seedlings were sequenced by
Illumina technology. A total of 54,870 unigenes were obtained by de novo assembly, and 3,484 chilling
up-regulated and 4,571 down-regulated unigenes were identified. The expressions of 18 out of top 20 up-regulated
unigenes were confirmed by qPCR analysis. Functional network analysis of the up-regulated genes revealed some
common biological processes, including cold responses, and molecular functions in C. bungeana and Arabidopsis
responding to chilling. Karrikins were found as new plant growth regulators involved in chilling responses of
C. bungeana and Arabidopsis. However, genes involved in cold acclimation were enriched in chilling up-regulated
genes in Arabidopsis but not in C. bungeana. In addition, although transcription activations were stimulated in both
C. bungeana and Arabidopsis, no CBF putative ortholog was up-regulated in C. bungeana while CBF2 and CBF3
were chilling up-regulated in Arabidopsis. On the other hand, up-regulated genes related to protein
phosphorylation and auto-ubiquitination processes were over-represented in C. bungeana but not in Arabidopsis.

Conclusions: We conducted the first deep-sequencing transcriptome profiling and chilling stress regulatory
network analysis of C. bungeana, a subnival alpine plant with inherited cold tolerance. Comparative transcriptome
analysis suggests that cold acclimation is not a major chilling tolerance mechanism of C. bungeana. Activation of
protein phosphorylation and ubiquitination may confer chilling tolerance to C. bungeana in a more rapid and
flexible way than cold acclimation. Such differences may have contributed to the differences in cold tolerance
between C. bungeana and Arabidopsis. The results presented in this paper will be informative for gene discovery
and the molecular mechanisms related to plant cold tolerance.
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Background
Chorispora bungeana Fisch. & C.A. Mey (C. bungeana)
is a perennial subnival alpine plant that can survive
freezing temperature [1]. In the natural environments
where C. bungeana is growing (origin of Urumqi River
in Tianshan Mountains, Xinjiang Autonomous Region,
China), snowing and hailing often occur during favorable
growing seasons, and air temperature fluctuates fre-
quently ranging from above 20°C to below −10°C. C.
bungeana in local environment can survive, grow and
flower even in snow. Our previous studies performed at
physiological and molecular levels showed that this plant
has strong cold (chilling and freezing) tolerance [1-6].
However, little is known about its tolerance mechanisms,
if any, distinguishing C. bungeana from other tropical or
temperate plants.
Not all plants are always ready to tolerate freezing

temperatures. However, studies have shown many plants
are tolerant of freezing temperature after exposure to
non-freezing low temperature, a phenomenon called
cold acclimation [7,8]. In such a process, various physio-
logical and biochemical changes occur in plant cells,
which may confer subsequent acquired chilling and
freezing tolerance to plants. For example, during cold
acclimation, plants accumulate compatible solutes such
as sucrose, raffinose and proline [9-12]; membrane com-
positions and behaviors are changed [13-16]; and the
biosynthesis pathways of secondary metabolites such as
flavonoids are activated [17,18].
The physiological and biochemical changes during

plant cold acclimation result mainly from expression
changes of cold-responsive (COR) genes. A large num-
ber of studies demonstrate that gene expression changes
occur in a wide range of plant species in cold responses,
and it is believed that differences in COR gene expres-
sions contribute to differences in plant cold tolerance.
For example, considerable differences in the members of
COR genes were found in Solanum commersonii and So-
lanum tuberosum, which are closely related species that
differ in cold acclimation abilities [19].
The expressions of COR genes in plant cold responses

are under the control of some key transcription factors
(TFs). The best characterized TFs involved in plant cold
responses are a class of AP2/EFR TFs known as DREB/
CBF [20-23], which regulate COR gene expressions by
binding to the DRE/CRT cis-elements in the promoter
regions of COR genes. In Arabidopsis, there are three
major CBFs - CBF1, CBF2 and CBF3 (also known as
DREB1b, DREB1c, and DREB1a, respectively) [24]. Con-
stitutive expression of CBF1 and CBF3 can enhance
freezing tolerance in non-acclimated Arabidopsis [25].
Moreover, by studying the interactions with CBFs path-
way, the roles of some cellular or environmental factors,
such as calcium [26], light [27], and circadian rhythm
[28], in plant cold tolerance are revealed. Nonetheless,
CBFs may not represent all TFs that regulate the expres-
sions of COR genes and confer cold tolerance to plants.
Although CBF over-expression increases the freezing
tolerance of Arabidopsis, potato [29] and poplar [30], it
does not increase the freezing tolerance of tomato [31]
and rice [32]. Besides CBFs, some other TFs, such as
ZAT12 and RAV1 [33,34], are also discovered to regulate
the expressions of COR genes.
Given the importance of COR genes in plant cold tol-

erance, studying the cold responses at transcription level
may be a key step to identify specific tolerance mechan-
isms of plants. During the last two decades, numerous
studies were carried out to reveal the transcriptional
regulatory network of plants in response to cold stress.
However, most of the studies were performed with Ara-
bidopsis and others were conducted with crops such as
Brassica napus [35], rice [36], barley [37] and potato
[19]. Some studies were performed with species adapted
to arctic or alpine cold environments, such as Draba
[38,39] and Oxytropis [40], suggesting that plants may
adapt to cold environments with different strategies and
COR genes. However, due to lack of reference genome
sequence, such studies are relatively few. Sequencing the
genome of Coccomyxa subellipsoidea from the Antarctic
suggested that gene losses and gains may contribute to
low temperature adaptations [41], highlighting the im-
portance of studying cold tolerance at whole genome or
transcriptome level. Recently, the development of high-
throughput deep-sequencing technologies makes it pos-
sible to study gene expressions at whole genome level
without prior knowledge about reference genome se-
quence. In this study, we used Illumina deep-sequencing
technology to study the transcriptome profiles of
chilling-treated seedlings of C. bungeana.
C. bungeana is a Cruciferae species closely related to

Arabidopsis. Our previous studies showed that the
callus and suspension cells from C. bungeana were
ready to endure freezing temperature (−4°C) without
cold acclimation [3,6]. The aim of this study is to
examine what kinds of mechanisms contribute to the
specific cold tolerance of C. bungeana. Our results
showed a complicated regulatory network of C. bun-
geana responding to chilling stress. By comparative
transcriptome analysis, a large number of common chil-
ling responding processes, including a newly found kar-
rikins responding process, were found in both C.
bungeana and Arabidopsis. Furthermore, our results
implied the differences between C. bungeana and Ara-
bidopsis in cold acclimation and TF regulation net-
works. Importantly, our results suggested that protein
phosphorylation and ubiquitination might serve as rapid
and flexible mechanisms for cold tolerance regulations
in C. bungeana.



Table 1 Statistics of deep-sequencing

Sample Total reads Total nucleotides (nt) Q20 percentage N percentage GC percentage

Control 41,499,576 3,734,961,840 95.44% 0.01% 47.48%

Cold-stressed 40,009,694 3,600,872,460 95.92% 0.00% 47.55%
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Results and discussion
Sequencing and de novo assembly of
C. bungeana transcriptome
Two cDNA libraries were generated with mRNA from
control (22°C) or 24 hours chilling-treated (2°C) plants
of C. bungeana and sequenced by Illumina deep-sequen-
cing. 41,499,576 and 40,009,694 clean reads of 90 bp
were generated from control and chilling-treated cDNA
libraries, respectively (Table 1). De novo assembly was
carried out by Trinity method [42] and final unigenes
were obtained by TGICL clustering [43]. Overviews of
the assembly results were shown in Table 2. The se-
quence reads were finally assembled into 54,870 non-
redundant unigenes, spanning a total of 48.7 Mb of
sequence. All unigenes were longer than 200 bp. Mean
length of final unigenes was 888 bp and N50 was
1401 bp. With the Trinity de novo assembly method, no
N remained in the final unigenes. We also tried de novo
assembly with SOAPdenovo program [44]. However, the
assembly quality was worse than that of the Trinity
method, with a mean length of 596 bp and N50 of
809 bp, and 13.9% of the final unigenes had at least one
N remained (Table 3). The results were similar to the
transcriptome assembly report of Aegilops variabilis
[45], in which the assembly qualities of the Trinity
method were superior to that of the SOAPdenovo
method. Therefore, the assembly results from the Tri-
nity method were used for all the following analysis.

Functional annotation of all the unigenes of C. bungeana
Functions of the unigenes were annotated based on se-
quence similarities to sequences in the three public
Table 2 Statistics of the assembly (unigene number and
percentage) with the Trinity method

Control Cold-stressed Combined

200-500nt 21,064 (45.52%) 26,284 (51.97%) 25,233 (45.99%)

500-1000nt 11,421 (24.68%) 12,215 (24.15%) 12,746 (23.23%)

1000-1500nt 6,190 (13.38%) 5,811 (11.49%) 7,290 (13.29%)

1500-2000nt 3,651 (7.89%) 3,193 (6.31%) 4,458 (8.12%)

> = 2000nt 3,946 (8.53%) 3,071 (6.07%) 5,143 (9.37%)

N50 1,335 1,136 1,401

Mean 868 754 888

All Unigene 46,272 50,574 54,870

Length of all
Unigene (nt)

40,180,147 38,132,636 48,708,039
databases (NR, Swissprot and KEGG). Among the
54,870 non-redundant unigenes, 43,524 (79.4%) had at
least one hit in BLASTX search with E-value < =1e-5
(Additional file 1). Functional classifications of GO
terms of all unigenes were shown in Figure 1. In the cat-
egory of biological process, the largest groups were “cel-
lular process”, “metabolic process” and “response to
stimulus”. In the category of molecular function, uni-
genes with “binding” and “catalytic” activities were the
largest groups.

Expression analysis, differential expression genes (DEGs)
identification and qPCR verifications
The expressions of unigenes were analyzed with DEGseq
R package. Firstly, we tried to identify DEGs by applying
screening thresholds of 2 fold changes and Benjamini q
value <0.001. We got 12,808 DEG candidates out of
52,753 expressed unigenes (Additional file 2). However,
when we verified the expressions of the top 10 up-
regulated and down-regulated unigenes by RT-PCR and
qPCR, only 3 of them were amplified and none of them
showed up or down-regulated trends in chilling-treated
seedlings (data not shown). In addition, we found that
80% and 90% of the top 200 up and down-regulated uni-
genes presented only in one sample’s RNA-seq data, re-
spectively. PCR amplification failures of the selected
sequences suggested that such genes were most likely to
be the artifacts of de novo assembly.
To identify DEGs accurately, we dropped off all uni-

genes with RPKM < 1 in both sequencing libraries before
DEGseq analysis. By this method, 8,055 DEGs (25.7%;
3,484 up-regulated, 4,571 down-regulated) out of 31,295
Table 3 Statistics of the assembly (unigene number and
percentage) with the SOAPdenovo software

Control Cold-stressed Combined

100-500nt 48701 (72.6%) 57007 (77.46%) 39728 (62.99%)

500-1000nt 12066 (17.99%) 11880 (16.14%) 14121 (22.39%)

1000-1500nt 3539 (5.28%) 2987 (4.06%) 4897 (7.76%)

1500-2000nt 1479 (2.2%) 1054 (1.43%) 2220 (3.52%)

> = 2000nt 1296 (1.93%) 663 (0.9%) 2108 (3.34%)

N50 634 502 809

Mean 474 413 596

All Unigene 67,081 73,591 63,074

Length of all
Unigene (nt)

31,789,071 30,382,210 37,575,882



Figure 1 Functional classifications of GO terms of all C. bungeana unigenes.
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unigenes with minimal 1.0 RPKM in both cDNA sam-
ples were identified (Additional file 3). The top 50 most
up- or down-regulated unigenes were listed in Table 4
and Table 5, respectively. A number of genes involved in
cold or other stresses showed up in the top 50 up-
regulated list, such as putative orthologous genes
(POGs) of COR15A, ABR1, pectin methylesterase inhibi-
tor gene, MAPKKK13, heat shock transcription factor
A1E and LTI65 genes. A putative ortholog of Arabidop-
sis COR15A, which encodes a cryoprotective protein
located to the chloroplast stroma [46], was identified as
the most up-regulated unigene in C. bungeana.
The top 20 up-regulated DEGs were selected to verify

the expressions of the indentified DEGs by qPCR ana-
lysis. To get more reliable quantification results, we per-
formed an experiment in advance to screen reference
genes for qPCR (see Methods for details), and the rela-
tive expression levels of unigenes were normalized to 3
stable expressed reference genes. The results showed
that 18 of the top 20 up-regulated DEGs (90%) were
verified to be up-regulated by qPCR analysis, although their
fold changes differed from that of RNA-seq (Figure 2).
Except for CBT7920 and CBT22908, the expressions of all
other tested unigenes showed at least 3-fold increases after
24-hour chilling treatment. The most up-regulated
unigene were POGs encoded a plant invertase/pectin
methylesterase inhibitor superfamily protein (CBT4773,
552 folds). COR15A (CBT13817, 318 folds) was also
induced remarkably by chilling.
High throughput deep-sequencing is a powerful tool

for DEGs screening, especially for species without avail-
able genomic information [45,47,48]. However, since
Illumina sequencing is highly sensitive to templates pre-
sented in DNA samples, some traced transcripts or con-
taminants can be sequenced in one sample but not in
other samples. This will have huge effects on the results
of de novo assembly and increase false positive rate in
DEGs identification. One strategy to reduce the false
positive results is to set up biological repeats for sequen-
cing and increase sequencing depth, but it will greatly
increase the experimental costs. In this study, by simply
applying an additional threshold (RPKM > =1) for DEGs
screening without increasing costs, we got a high quality
(confirmed by qPCR) list of chilling regulated DEGs.

GO network analysis of up-regulated DEGs of
C. bungeana in response to chilling stress and
comparison with Arabidopsis
Since both C. bungeana and Arabidopsis are Cruciferae
species, it is more reliable to use the well-established
GO and KEGG annotation systems of Arabidopsis to
analyze the functions of C. bungeana DEGs. GO term
and KEGG pathway enrichment analysis of DEGs were
conducted with BiNGO [49], a Cytoscape plugin asses-
sing overrepresentation of ontologies in biological net-
works, using the list of all unigenes with a minimal
RPKM of 1 in both sequencing libraries as a reference
set. To compare the chilling responding network of C.
bungeana with Arabidopsis, the networks of chilling-
regulated DEGs of Arabidopsis were constructed using
previously published RNA-seq and microarray data (re-
ferred to ATH-SR and ATH-MA, respectively; see Meth-
ods for details).
In chilling up-regulated DEGs of C. bungeana and

Arabidopsis, two similar clusters in the networks of GO
biological process, “regulation processes” and “stimulus
responses”, were found among all three networks/data-
sets (Figure 3). In BiNGO constructed networks, most
biological information can be inferred from end nodes
and their relations with their source nodes such as gene



Table 4 Top 50 up-regulated unigenes of C. bungeana by
chilling stress. The homologs of Arabidopsis genes were
presented for functional description of unigenes

Unigene log2
(Fold change)

AGI Functional description

CBT13817 7.47 AT2G42540 cold-regulated 15a (COR15A)

CBT52238 6.67 - -

CBT6902 6.32 AT5G64750 ABA REPRESSOR1 (ABR1)

CBT7920 6.13 - -

CBT13614 6.10 AT5G63450 cytochrome P450, family 94,
subfamily B, polypeptide 1
(CYP94B1)

CBT4773 6.10 AT5G62360 Plant invertase/pectin
methylesterase inhibitor
superfamily protein

CBT52823 6.06 - -

CBT22908 5.91 AT1G22810 Integrase-type DNA-binding
superfamily protein

CBT13319 5.51 AT1G07150 mitogen-activated protein
kinase kinase kinase 13
(MAPKKK13)

CBT47699 5.46 - -

CBT15934 5.40 AT2G38240 2-oxoglutarate (2OG) and
Fe(II)-dependent oxygenase
superfamily protein

CBT47787 5.37 - -

CBT47948 5.36 AT5G65140 Haloacid dehalogenase-like
hydrolase (HAD) superfamily
protein

CBT11719 5.25 AT5G17460 unknown protein

CBT25137 5.25 AT1G19670 chlorophyllase 1 (CLH1)

CBT22504 5.19 AT5G63450 cytochrome P450, family 94,
subfamily B, polypeptide 1
(CYP94B1)

CBT45404 5.13 - -

CBT19519 5.08 - -

CBT1251 5.06 AT3G02990 heat shock transcription
factor A1E (HSFA1E)

CBT22708 5.06 AT5G45860 PYR1-like 11 (PYL11)

CBT22442 5.05 AT4G34131 UDP-glucosyl transferase
73B3 (UGT73B3)

CBT28264 4.97 AT4G01870 tolB protein-related

CBT26921 4.97 AT1G11925 Stigma-specific Stig1 family
protein

CBT11679 4.93 AT1G02400 gibberellin 2-oxidase 6
(GA2OX6)

CBT14428 4.92 AT3G06490 myb domain protein 108
(MYB108)

CBT19682 4.91 AT5G38780 S-adenosyl-L-methionine-
dependent methyltransferases
superfamily protein

CBT34609 4.90 - -

CBT47700 4.89 - -

CBT48057 4.83 - -

Table 4 Top 50 up-regulated unigenes of C. bungeana by
chilling stress. The homologs of Arabidopsis genes were
presented for functional description of unigenes
(Continued)

CBT6326 4.79 AT3G04010 O-Glycosyl hydrolases family
17 protein

CBT17469 4.79 AT4G14690 EARLY LIGHT-INDUCIBLE
PROTEIN 2 (ELIP2)

CBT47754 4.76 AT1G25220 anthranilate synthase beta
subunit 1 (ASB1)

CBT1612 4.74 AT5G52300 LOW-TEMPERATURE-INDUCED
65 (LTI65)

CBT29537 4.73 AT2G33710 Integrase-type DNA-binding
superfamily protein

CBT3801 4.68 AT1G57990 purine permease 18
(PUP18)

CBT17111 4.64 AT5G67600 unknown protein

CBT8371 4.61 AT2G46950 cytochrome P450, family 709,
subfamily B, polypeptide 2
(CYP709B2)

CBT21020 4.61 - -

CBT28985 4.59 AT1G65690 Late embryogenesis abundant
(LEA) hydroxyproline-rich
glycoprotein family

CBT336 4.59 AT3G24900 receptor like protein 39
(RLP39)

CBT845 4.57 AT2G34930 disease resistance family
protein / LRR family protein

CBT18111 4.55 AT1G05530 UDP-glucosyl transferase
75B2 (UGT75B2)

CBT45699 4.55 - -

CBT9147 4.52 - -

CBT37125 4.51 - -

CBT47516 4.50 AT2G43840 UDP-glycosyltransferase 74 F1
(UGT74F1)

CBT7419 4.50 AT1G64380 Integrase-type DNA-binding
superfamily protein

CBT51514 4.47 - -

CBT2368 4.46 - -

CBT7125 4.44 AT1G26390 FAD-binding Berberine family
protein
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numbers (node sizes) and p values (node colors) [49]. In
“regulation processes” cluster of all three networks,
genes involved in “regulation of transcription, DNA-
dependent” accounted for the enrichments of all other
nodes in this network branch since the end node was al-
most the same size and color as its source nodes, sug-
gesting that transcriptional regulations might have
common contributions in plants responding to chilling
stress. In the cluster of “stimulus responses”, the net-
work patterns showed that cellular responses to a wide
range of stresses were aroused by chilling stress in both
C. bungeana and Arabidopsis, which were probably due



Table 5 Top 50 down-regulated unigenes of C. bungeana
by chilling stress. The homologs of Arabidopsis genes
were presented for functional description of unigenes

Unigene log2
(fold change)

AGI Computational_description

CBT30334 −3.99 AT2G14660.1 unknown protein

CBT13943 −3.76 - -

CBT2874 −3.74 - -

CBT48038 −3.46 - -

CBT3212 −3.44 - -

CBT34638 −3.28 - -

CBT8991 −3.27 - -

CBT19662 −3.25 AT3G06145.1 unknown protein

CBT30596 −3.21 AT5G06950.4 AHBP-1B

CBT22861 −3.04 - -

CBT7674 −3.02 - -

CBT7734 −2.98 AT5G62280.1 Protein of unknown function
(DUF1442)

CBT3347 −2.98 - -

CBT31902 −2.94 - -

CBT17505 −2.91 AT3G06740.1 GATA transcription factor 15
(GATA15)

CBT24596 −2.90 - -

CBT15245 −2.90 - -

CBT27066 −2.90 - -

CBT2813 −2.89 AT4G20270.1 BARELY ANY MERISTEM 3
(BAM3)

CBT39819 −2.88 - -

CBT2069 −2.87 - -

CBT26600 −2.85 AT3G17668.1 ENHANCER OF ATNSI
ACTIVITY (ENA)

CBT7789 −2.83 - -

CBT7793 −2.83 AT3G48970.1 Heavy metal transport/
detoxification superfamily
protein

CBT38584 −2.82 AT3G60910.1 S-adenosyl-L-methionine-
dependent
methyltransferases
superfamily protein

CBT5244 −2.81 AT3G52905.1 Polynucleotidyl transferase,
ribonuclease H-like
superfamily protein

CBT26673 −2.80 - -

CBT27159 −2.78 AT5G55540.1 TORNADO 1 (TRN1)

CBT15242 −2.75 - -

CBT13738 −2.73 AT3G54560.1 histone H2A 11 (HTA11)

CBT38583 −2.70 - -

CBT31492 −2.69 - -

CBT38499 −2.69 - -

CBT29663 −2.68 - -

CBT6741 −2.68 - -

Table 5 Top 50 down-regulated unigenes of C. bungeana
by chilling stress. The homologs of Arabidopsis genes
were presented for functional description of unigenes
(Continued)

CBT30636 −2.67 - -

CBT26681 −2.66 - -

CBT23205 −2.65 AT5G54550.1 Protein of unknown function
(DUF295)

CBT4916 −2.64 AT5G26860.1 lon protease 1 (LON1)

CBT2774 −2.63 - -

CBT40023 −2.63 - -

CBT3096 −2.62 AT1G80080.1 TOO MANY MOUTHS (TMM)

CBT39489 −2.62 - -

CBT30184 −2.62 - -

CBT3289 −2.62 AT1G03270.1 CBS domain-containing
protein with a domain of
unknown function (DUF21)

CBT30641 −2.61 - -

CBT34154 −2.61 - -

CBT34041 −2.60 - -

CBT39400 −2.59 AT3G01690.1 alpha/beta-Hydrolases
superfamily protein

CBT23404 −2.59 - -
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to the cross-tolerance mechanisms of plants. The cluster
of “metabolism processes” comprised much more over-
representative terms in the network of C. bungeana than
that of Arabidopsis. “Flavonoid biosynthetic process”
was the only over-representative term of this cluster pre-
sented in both C. bungeana and Arabidopsis (ATH-SR).
Twelve biological processes (end nodes in the net-

works) were found to be common in both C. bungeana
and Arabidopsis (ATH-SR or ATH-MA), and ten of
them were related to stimulus responses (Table 6).
Genes “response to cold” were over-representative in all
three networks, suggesting that our chilling stress treat-
ments were efficient. However, the genes involved in
“cold acclimation” did not over-represent in C. bungeana
as did in Arabidopsis (Figure 3), indicating that cold ac-
climation mechanisms were not activated by chilling in
C. bungeana. The results imply that C. bungeana may
not have a cold acclimated mechanism or may have cold
acclimated mechanisms different from that of Arabidop-
sis. For plants from temperate regions, cold acclimation
is critical for them to tolerate freezing temperatures [8].
However, since cold acclimation requires a relatively
long period of time to get freezing tolerance, such
mechanisms may not be suitable for plants like C. bun-
geana in harsh environments. More rapid and efficient
mechanisms are needed for such plants.
Besides abscisic acid [50] and chitin responses [51],

which were known to be involved in cold tolerance of



Figure 2 Expression analysis of top 20 up-regulated DEGs
by qPCR.
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plants, the biological process “response to karrikin” was
found to be a common response to chilling stress in
both C. bungeana and Arabidopsis. To our knowledge,
no previous study reported the involvement of karrikins
in cold tolerance of plants. Karrikins are a new group of
plant growth regulators discovered in smoke that can
stimulate seed germination [52]. The biological and mo-
lecular functions of karrikins are largely unknown at
present. Our results suggested that karrikins might play
important roles in chilling tolerance of C. bungeana and
Arabidopsis.
Nineteen biological processes were over-represented in

chilling-treated C. bungeana but not in Arabidopsis.
Nonetheless, it did not mean that such processes were
specific to chilling responses of C. bungeana since most
of them, such as salicylic acid [53,54], jasmonic acid
[54], and immune response [55], were reported to be
involved in chilling response of Arabidopsis or other
plants. However, two processes, “protein phosphorylation”
and “protein autoubiquitination”, should be emphasized.
Post-translational modifications of pre-existing proteins
are believed to be a rapid pathway to get tolerance in
plant responses to chilling stress and have important
roles in plant cold acclimation [8]. In alfafa, low
temperature lead to rapid inhibition of PP2A activity,
and in turn lead to phosphorylation of proteins involved
in cold tolerance acquisitions [56,57]. Transcriptional
activation of genes of several kinase families were also
found under low temperature stress, such as MAP kin-
ase family genes MKK2 [58], OsMEK1 and OsMAP1
[59], CDPK family genes OsCDPK7 [60,61], OsCDPK13
[62] and PaCDPK1 [63], and CIPK family genes CIPK3
[64] and CIPK7 [65]. Although many studies reported
that certain protein kinases were activated and their
transcriptional expression increased in response to cold
stress, few studies reported that the expressions of pro-
tein kinases as a whole increased at transcriptome level.
In our study, a large number of genes whose products
were involved in protein phosphorylation were over-
represented in chilling up-regulated DEGs in C. bun-
geana. Given the habitats of C. bungeana, in which the
daytime temperatures fluctuate frequently and during
almost the whole plant growing seasons, our results
suggest that protein phosphorylation may be an import-
ant mechanism for rapid and flexible regulation of cold
tolerance of C. bungeana.
Protein autoubiquitination may play similar roles as

protein phosphorylation. In Arabidopsis, ubiquitination
of ICE1 by HOS1 which leads to ICE1 degradation is
vital for the activation of CBF pathways [66]. In this
study, eight chilling up-regulated unigenes of C. bun-
geana were associated with protein ubiquitination, six
of which might be involved directly in protein ubiqui-
tination (Table 7). However, POGs of HOS1 was not
on the list. Therefore, the roles of protein ubiquitina-
tion in chilling responses of C. bungeana need further
investigations.
Comparison of the molecular function networks of

chilling up-regulated DEGs showed that only one term/
node, “sequence-specific DNA binding transcription fac-
tor activity”, was in common in both C. bungeana and
Arabidopsis (Figure 4, Table 6). It was consistent with
the over-representative term of “regulation of transcrip-
tion, DNA-dependent” in network of biological process.
However, only a small amount of TF POGs of the three
experiments were overlapped (Figure 5A), including
ZAT12/RHL41, COL1, TOC1 and RAP2.7 orthologs
(Table 8) which were reported to be involved in plant
cold responses [33,34,67,68]. Surprisingly, none of the
CBFs (CBF1/DREB1b, CBF2/DREB1c and CBF3/
DREF1a) was on the list of overlapped TF genes though
CBF2 and CBF3 were chilling up-regulated in Arabidop-
sis as was shown by both ATH-SR and ATH-AR data



glutamine

family amino 

acid

catabolic

process

L-phenylalanine

metabolic

process

aromatic

amino acid 

family

catabolic

process

protein

autoubiquitination

protein

phosphorylation

jasmonic

acid

biosynthetic

process

indole

glucosinolate

metabolic

process

defense

response to 

fungus

transcription

factor import 

into nucleus 

response to 

oxidative

stress

response to 

nematode

response to 

wounding

response to 

UV-B

hyperosmotic

salinity

response

cold

acclimation

response to 

karrikin

anion

transport

response to 

chitin

response to 

water

deprivation

response to 

abscisic acid 

stimulus

cellular

response to 

endogenous

stimulus

drug

transmembrane

transport

camalexin

biosynthetic

process

anther

dehiscence

recognition

of pollen 

flavonoid

biosynthetic

process

response to 

water

deprivation

response to 

abscisic acid 

stimulus

response to 

chitin

circadian

rhythm

response to 

hypoxia

response to 

salt stress 

response to 

karrikin

regulation of 

transcription,

DNA-dependent
response to 

oxidative

stress

cold

acclimation

cellular

response to 

heat

defense

response to 

fungus

cellular

response to 

abiotic

stimulus

organic

substance

transport

defense

response to 

fungus

defense

response to 

bacterium

response to 

cold

response to 

UV-B

response to 

salt stress 

response to 

wounding

signal

transduction

response to 

chitin

response to 

karrikin

response to 

starvation

response to 

water

deprivation

response to 

oxidative

stress

regulation of 

transcription,

DNA-dependent

jasmonic

acid stimulus 

response to 

abscisic acid 

stimulus

response to 

salicylic acid 

stimulus

innate

immune

response

defense

response by 

callose

deposition in 

cell wall 

regulation of 

defense

response to 

virus by host 

two-component

signal

transduction

system

(phosphorelay)

regulation of 

transcription,

DNA-dependent

RNA

secondary

structure

unwinding

rRNA

processing

flavonol

biosynthetic

process

circadian

rhythm

A B

C

i
ii

i

iii

i

ii

iii

ii

Figure 3 Biological process network of over-representative GO terms of chilling up-regulated DEGs. A, C. bungeana; B, ATH-SR; C,
ATH-MA. Node size represented gene number in node and node filled color represented p value. White nodes were not significant
over-representative terms. End nodes were indicated by green border and blue label. (i) cluster of “regulation processes”; (ii) cluster of
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Table 6 Over-representative GO terms* in chilling-treated
C. bungeana and Arabidopsis

GO ID GO functional description Corrected p-value

Biological process:

80167 response to karrikin 1.59E-24

9611 response to wounding 9.61E-23

10200 response to chitin 1.61E-19

6355 regulation of transcription,
DNA-dependent

3.72E-16

9414 response to water deprivation 1.89E-09

9737 response to abscisic acid stimulus 2.36E-08

9409 response to cold 1.10E-07

50832 defense response to fungus 1.20E-07

6979 response to oxidative stress 8.15E-06

9651 response to salt stress 2.92E-05

10224 response to UV-B 4.68E-04

9813 flavonoid biosynthetic process 7.10E-03

Molecular function:

3700 sequence-specific DNA binding
transcription factor activity

1.11E-23

* Only GO terms of the end nodes in the network were presented.
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(Additional file 4). In fact, no ortholog of Arabidopsis
CBF1 or CBF2 was found in the transcriptome of C.
bungeana, while there were orthologs of CBF3 and
CBF4 (data not shown). The results suggest that the
transcriptional activation mechanism of C. bungeana dif-
fers greatly from that of Arabidopsis in chilling
responses although they share some common mechan-
isms. Given the important roles of CBFs in plant cold ac-
climation, lack of CBF orthologs suggests that cold
acclimation mechanisms may be weak in or absent from
C. bungeana, consisting with the finding that genes
involved in cold acclimation was not enriched in chilling
up-regulated DEGs of C. bungeana. Classification results
showed that MYB, AP2/ERF, WRKY and NAC family
members represent the most abundant TFs in chilling
up-regulated DEGs of C. bungeana (Figure 5B). The data
are insightful for further investigation of specific toler-
ance mechanisms of C. bungeana.
Ten terms/nodes in the network of C. bungeana were

not in the networks of Arabidopsis (Figure 4, Table 9).
Again, the over-representation of “protein serine/threo-
nine kinase activity” was overlapped with “protein phos-
phorylation” in the network of biological process. The
most abundant protein kinases in chilling up-regulated



Table 7 Chilling up-regulated unigenes annotated with
ubiquitination function

Unigene AGI model Functional description

CBT4839 AT5G57740.1 ubiquitin ligase, XB3 ortholog 2 in
Arabidopsis thaliana (XBAT32)

CBT21694 AT5G57740.1 ubiquitin ligase, XB3 ortholog 2 in
Arabidopsis thaliana (XBAT32)

CBT25162 AT3G52450.1 U-box domain E3 ubiquitin ligase
protein, plant U-box 22 (PUB22)

CBT24438 AT2G35930.1 U-box domain E3 ubiquitin ligase
protein, plant U-box 23 (PUB23)

CBT12523 AT3G11840.1 U-box domain E3 ubiquitin ligase
protein, plant U-box 24 (PUB24)

CBT9995 AT3G12630.1 A20/AN1-like zinc finger family
protein

CBT15631 AT3G46620.1 zinc finger (C3HC4-type RING finger)
family protein
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DEGs encoded cysteine-rich receptor-like protein
kinases (CRK), whose roles in plant cold responses were
largely unknown (Figure 6, Additional file 5). Genes for
leucine-rich receptor-like protein kinases (LRR RLK)
ranked the second. A small number of POGs of CDPKs,
CIPKs, MPKs, MKKs and MKKKs, some of which have
been reported to be involved in plant cold responses
[58-65], were found in chilling up-regulated DEGs of
C. bungeana.
Figure 4 Molecular function network of over-representative GO term
ATH-MA. Node size represented gene number in node and node filled colo
over-representative terms. End nodes were indicated by green border and
KEGG pathway analysis of up-regulated DEGs of
C. bungeana in response to chilling stress and
comparison with Arabidopsis
KEGG pathway network analysis showed that
“Biosynthesis of Other Secondary Metabolites” and
“Environmental Adaptation” were enriched in chilling
up-regulated DEGs of C. bungeana (Figure 7). The over-
representation of “Biosynthesis of Other Secondary
Metabolites” was due to biosynthesis of three kinds of
secondary metabolites: flavonoids, glucosinolates and
phenylpropanoids; and the over-presentation of “Envir-
onmental Adaptation” was due to enrichment of genes
involved in “plant-pathogen interaction” and “circadian
rhythm” regulation. Besides, genes involved in alpha
linolenic acid metabolism were also enriched. The
phenylalanine/tyrosine/tryptophan biosynthesis pathway
was overlapped with phenylpropanoid biosynthesis. In
Arabidopsis, genes involved in flavonoids biosynthesis
and circadian rhythm pathways were also enriched in
chilling up-regulated DEGs.
All over-represented pathways in C. bungeana, regard-

less of whether they were enriched in Arabidopsis, had
proved to be important in plant cold tolerance. For in-
stance, circadian rhythm regulates the expression of
CBFs [28,69], the core identified TFs that involved in
plant cold tolerance. As another example, under chilling
stress, plants preferentially accumulate polyunsaturated
s of chilling up-regulated DEGs. A, C. bungeana; B, ATH-SR; C,
r represented p value. White nodes were not significant
blue label.



Figure 5 Analysis of chilling up-regulated TFs. A. Venn diagram of chilling up-regulated TFs in C. bungeana and Arabidopsis. B. Classification
of chilling up-regulated transcription factors of C. bungeana by family.

Table 8 Chilling up-regulated TFs overlapped in C.
bungeana and Arabidopsis

Locus Id All gene symbols Description

AT5G15850 COL1 Homologous to the flowering-time
gene CONSTANS.

AT2G40140 CZF1; SZF2; ZFAR1 CZF1

AT5G05410 DREB2A Encodes a transcription factor that
specifically binds to DRE/CRT cis
elements (responsive to drought
and low-temperature stress)

AT3G02990 HSFA1E Member of Heat Stress Transcription
Factor (Hsf) family

AT2G28550 RAP2.7 Related to AP2.7 (RAP2.7)

AT5G59820 RHL41; ZAT12 Encodes a zinc finger protein
involved in high light and cold
acclimation

AT5G17300 RVE1 Myb-like transcription factor that
regulates hypocotyl growth by
regulating free auxin levels in a
time-of-day specific manner.

AT4G18390 TEOSINTE
BRANCHED 1; TCP2

TEOSINTE BRANCHED 1, cycloidea
and PCF transcription factor 2 (TCP2)

AT5G61380 TOC1;PRR1 Pseudo response regulator involved
in the generation of circadian
rhythms.

AT2G47260 WRKY23 Encodes a member of WRKY
Transcription Factor

AT2G38470 WRKY33 Member of the plant WRKY
transcription factor family

AT1G80840 WRKY40 Pathogen-induced transcription
factor

AT5G54470 B-box type zinc finger family
protein

AT5G58620 Zinc finger (CCCH-type) family
protein

AT1G43860 Sequence-specific DNA binding
transcription factors

AT2G47890 B-box type zinc finger protein with
CCT domain
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fatty acids such as linoleic and linolenic fatty acids
[70-72], and genetically increasing of unsaturated fatty
acids or lipids could enhance cold tolerance of transgenic
plants, probably by maintaining membrane fluidity under
cold stress [73,74]. Our previous findings indicated that
cold tolerance of C. bungeana was correlated with
changes in membrane lipids and membrane-associated
enzymes [3]. Under chilling treatment, the proportion of
unsaturated fatty acid in the plasma membrane increased
significantly in callus of C. bungeana [75]. Paralleling to
these results, KEGG analysis in this study showed that
unigenes involved in "alpha-Linolenic acid metabolism"
were enriched significantly in chilling up-regulated
DEGs, suggesting that lipid metabolism, especially lino-
lenic acid metabolism, might play a role in chilling toler-
ance of C. bungeana.
GO network analysis of down-regulated DEGs of
C. bungeana in response to chilling stress and
comparison with Arabidopsis
In chilling stress down-regulated DEGs of both
C. bungeana and Arabidopsis, there were several over-
represented terms in every biological process networks
(Figure 8). However, no over-represented term was in
common in C. bungeana and Arabidopsis. Further-
more, none of the over-represented term was the same
between two networks of Arabidopsis, although both
of them were related to chilling stressed down-
regulated DEGs. Similar results were also found in the
networks of molecular function (Figure 9). The huge
discrepancy among the networks implied that the gene
members of chilling stress down-regulated DEGs
were highly variable, which might be affected by
some subtle experimental details other than chilling
temperatures only. It was hard to deduce an unbiased
mechanism from their networks analysis. Therefore,
no further analysis was performed for the down-
regulated DEGs.



Table 9 Over-representative GO terms* in chilling
stressed C. bungeana but not in Arabidopsis

GO ID Description Corrected p-value

Biological process:

Stimulus responses related:

9751 response to salicylic acid stimulus 7.70E-10

9753 response to jasmonic acid stimulus 6.36E-09

52544 defense response by callose
deposition in cell wall

3.95E-06

42742 defense response to bacterium 1.09E-05

45087 innate immune response 5.27E-03

71214 cellular response to abiotic stimulus 5.41E-03

42594 response to starvation 2.31E-02

Metabolism processes:

9695 jasmonic acid biosynthetic process 3.95E-06

42343 indole glucosinolate metabolic process 6.93E-04

9074 aromatic amino acid family catabolic
process

1.51E-03

9065 glutamine family amino acid catabolic
process

1.43E-02

10120 camalexin biosynthetic process 2.15E-02

6558 L-phenylalanine metabolic process 1.97E-02

Developmental processes:

9901 anther dehiscence 1.00E-02

48544 recognition of pollen 1.40E-02

Others:

6468 protein phosphorylation 9.85E-04

71702 organic substance transport 1.28E-02

7165 signal transduction 1.57E-02

51865 protein autoubiquitination 2.15E-02

Molecular function:

43565 sequence-specific DNA binding 5.53E-09

5506 iron ion binding 2.42E-05

9055 electron carrier activity 4.39E-05

5199 structural constituent of cell wall 9.06E-05

16705 oxidoreductase activity, acting on
paired donors, with incorporation
or reduction of molecular oxygen

5.20E-04

19825 oxygen binding 6.82E-04

45735 nutrient reservoir activity 9.46E-04

4674 protein serine/threonine kinase activity 9.60E-04

16165 lipoxygenase activity 9.74E-03

16840 carbon-nitrogen lyase activity 1.12E-02

* Only GO terms of the end nodes in the network were presented.
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Conclusions
C. bungeana is a perennial subnival alpine plant with
high capacity of chilling and freezing resistance. In re-
cent years, much effort has been taken in our research
group to reveal the cold tolerance mechanisms of this
plant at physiological and molecular levels. In this paper,
we provide the first study on the transcriptome of chil-
ling stressed seedlings of C. bungeana. We got 54,870
assembled unigenes using the Trinity de novo assembly
method, and a number of chilling regulated genes were
identified, providing useful resources for gene mining to
improve cold tolerance of plants. Furthermore, the com-
parison of the functional networks of chilling regulated
genes in C. bungeana and Arabidopsis provided inform-
ative results, which could help us tell the differences in
cold tolerance mechanisms between C. bungeana and
Arabidopsis. We found that karrikins might be new
plant growth regulators involved in chilling tolerance of
plants. Although gene expressions at the transcriptional
level were stimulated by chilling in both C. bungeana
and Arabidopsis, their activation networks were different
as suggested by TFs analysis. Cold acclimation mechanism
may be weak in or absent from C. bungeana because of
lack of some CBFs orthologs. Alternatively, protein phos-
phorylation and ubiquitination may serve as more rapid
and flexible cold tolerance mechanisms for C. bungeana
to adapt to the harsh cold environments.

Methods
Plant material, growth conditions and treatments
Plant regeneration of C. bungeana via somatic embryo-
genesis was performed as described by Wang et al. [76].
Callus was induced from matured seeds of C. bungeana
on MS medium containing 4.0 mg l-1 GA3, 2.0 mg l-1

NAA, and 2.0 mg l-1 2,4-D. Seedlings were regenerated
from callus on MS medium containing 3% sucrose in
about 3 weeks. Regenerated plants were transferred to
new MS medium containing 3% sucrose and grown at
22°C with a 14 h photoperiod under 80 μmol m-2 s-1

fluorescent light for further 7 days before treatments.
For each treatment, ten plants (roots, shoots and leaves)
were randomly pooled and treated in MS liquid medium
containing 3% sucrose at 22°C or 2°C. Chilling stress
was initiated 4 hours after dawn (zeitgeber time 4; ZT4).
Upon the treatment time reaching 24 hours, both
control and chilling stressed samples were collected
at the same time point and frozen immediately with
liquid nitrogen.

RNA extraction, cDNA library construction and
RNA sequencing
For RNA sequencing, total RNA was extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The
quality of total RNA was checked using the NanoDrop



Figure 6 Classification of chilling up-regulated protein kinases
of C. bungeana by family.

Zhao et al. BMC Plant Biology 2012, 12:222 Page 12 of 17
http://www.biomedcentral.com/1471-2229/12/222
Spectrometer (ND-1000 Spectrophotometer, Peqlab) and
the Agilent 2100 Bioanalyzer (RNA Nano Chip, Agilent).
High quality RNA samples (20 μg each) were sent to
Beijing Genomics Institute (BGI, Shenzhen) for cDNA
libraries construction and sequencing using Illumina
HiSeq™ 2000. The cDNA library construction method
and Illumina deep-sequencing processes were the same
as described by Xu et al. [45].

De novo assembly and sequences clustering
The Trinity method [42] was used for de novo assembly
of the clean reads to generate Trinity unigenes, with opti-
mized k-mer length of 25. Then, the Trinity unigenes of
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Figure 7 KEGG pathway network of chilling up-regulated DEGs. A, C.
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both libraries were clustered with TGICL software [43]
to get sequences (final unigenes) that cannot be
extended on either end. De novo assembly was also
conducted with SOAPdenovo software [44] with opti-
mized k-mer length of 41.
Files containing the raw read sequences and their

quality scores are available from the National Center for
Biotechnology Information (NCBI) Short Read Archive
with the accession number: SRA054354. The Trinity uni-
genes have been deposited in the Transcriptome Shotgun
Assembly Sequence Database (TSA) at NCBI [GenBank:
JW988067-JW999999, KA000001-KA089547].

Expression analysis and identification of differentially
expressed genes (DEGs)
Clean reads were mapped back to assembled unigenes
with SOAPaligner (version 2.21) [44] allowing maximum
2 mismatches. The reads with unique best hits were
counted for each unigene. The expression level of C.
bungeana unigene was normalized by the number of
RPKM (reads per kilobase exon region per million
mapped reads) [77]. Since Illumina sequencing method
is highly sensitive, we only used a subset of unigenes
which presented in both sequencing libraries with a
minimal RPKM of 1 for DEGs analysis. Unigene expres-
sions were analyzed using DEGseq R package [78] with
MARS method. Chilling-regulated DEGs were identified
with Benjamini q < 0.001 [79] and normalized fold
change > =2.
For comparisons, two public available data sets of

Arabidopsis were used in our study. One data set (referred
to ATH-SR, means Arabidopsis short reads) was RNA
sequencing data downloaded from NCBI Sequence Read
Archive (SRA) database (http://www.ncbi.nlm.nih.gov),
thogen
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Figure 8 Biological process network of over-representative GO terms of chilling stress down-regulated DEGs. A, C. bungeana; B, ATH-SR;
C, ATH-MA. Node size represented gene number in node and node filled color represented p value. White nodes were not significant
over-representative terms. End nodes were indicated by green border and blue label.
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including a chilling-treated sample (4°C; SRA accession:
SRX006193) and a control (21°C; SRA accession:
SRX006704) sample [80]. After removing low quality
reads (polyA/T/G/C sequences) and trimming off four NTs
of both ends, all clean reads (28 NTs long) were mapped to
Arabidopsis cDNAs (TAIR10) with SOAPaligner. DEGs
identification was the same as described above. The
DEGs and indentified gene with RPKM> =1 were listed in
Additional file 6.
The other data set (referred to ATH-AR, means Arabi-

dopsis array) was Affimetrix microarray data set (Expres-
sion Set: ME00325) [81] downloaded from TAIR (http://
www.arabidopsis.org). Only cel files for 4 chilling-treated
samples (2 for roots and 2 for shoots, 24-hour chilling-
treated) and 4 control samples were used here. The cel
files were imported into R and analyzed with Affy pack-
age [82]. Root and shoot arrays were analyzed separately.
Probes expressed in all root or shoot arrays were consid-
ered to be presented probes (by mas5 present calls). Dif-
ferential expressed probes were identified using mas5
method of with FDR corrected p < 0.05 and fold change
> =2 and mapped to Arabidopsis transcripts. The gene
lists of roots and shoots were combined together to get
chilling regulated DEGs and all expressed genes for fur-
ther analysis (Additional file 7).
Functional categorization
We used two methods for functional categorization of
unigenes.
To get general gene ontology (GO) annotations for all

unigenes, sequences longer than 200 bp were aligned to
three public databases (NR, Swiss-Prot and KEGG) by
BLASTX with E-value < =1e-5. The GO annotations for
the top blast hits were retrieved with Blast2GO program
[83] and used to annotate the C. bungeana transcripts.
GO functional classification was performed by WEGO
website tool [84].
For GO terms and KEGG pathways enrichment ana-

lysis, we used the Arabidopsis annotation systems.
Briefly, the sequences of all unigenes were aligned
against Arabidopsis peptide database (TAIR10) using
BLASTX program with E-value < =1e-5. The top blast
hits were considered to be putative orthologous genes
(POGs). Then the C. bungeana unigenes were annotated
with GO (downloaded from TAIR) and KEGG annota-
tions (ath00001.keg, from http://www.kegg.jp/) for Ara-
bidopsis POGs, respectively. The ontology (GO and
KEGG) enrichment was analyzed with BiNGO plugins
[49] for Cytoscape [85], using hypergeometric test for
statistical analysis. For p value correction, we used rigor-
ous Bonferroni correction method. The cutoff p value

http://www.arabidopsis.org
http://www.arabidopsis.org
http://www.kegg.jp/


Figure 9 Molecular function network of over-representative GO terms of chilling stress down-regulated DEGs. A, C. bungeana; B, ATH-SR;
C, ATH-MA. Node size represented gene number in node and node filled color represented p value. White nodes were not significant
over-representative terms. End nodes were indicated by green border and blue label.
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after correction was 0.05. For ATH-SR dataset, since the
stressed sample was pooled from seedlings subjected to
various periods of chilling-treated (1, 2, 5, 10, 24 hours
of stressed) [80], the expressions of DEGs specific to a
certain stage might have been “normalized”. Therefore,
to get more information, we used FDR method instead
of Bonferronic method for p value correction to find
over-representative terms with BiNGO.

Quantitative real-time PCR (qPCR)
The gene-specific primers for real-time PCR analysis were
designed using Primer Premier (version 5.0) software
(PREMIER Biosoft). The specifities of primer pairs were
confirmed by BLASTN with non-redundant unigene set
of C. bungeana transcripts and the PCR products were
checked by agrose electrophoresis to ensure single band
amplifications. The primer sequences for all unigenes used
in this study were listed in Additional file 8.
For qPCR analysis, total RNAs were extracted from

control or chilling stressed C. bungeana seedlings (two
biological repeats) with TRIZOL reagent and treated
(20 μg RNA) with 1U DNase (TAKARA, Japan). cDNA
was transcribed reversely from 1 μg of DNase-treated
RNA with 200U M-MLV reverse transcriptase (Promega,
USA) and analyzed with Platinum SYBR green qPCR
supermix-UDG reagents (Invitrogen).
Before quantification of unigenes, the geNorm method

was applied to select stable expressed unigenes in the
four samples as reference genes [86]. A total of 8 candi-
date reference unigenes were selected for reference
genes screening, including an ACTIN2 ortholog, 3 uni-
genes showed stable expression levels in RNA-seq ana-
lysis and the other 4 unigenes were orthologs of
recommended Arabidopsis reference genes [87]. The in-
formation of reference gene candidates and the geNorm
analysis results were shown Additional file 8. Three uni-
genes (CBT10872/AT3G60800, CBT28565/AT5G27630
and CBT12464/AT2G28390) expressed most stably in
control and chilling-treated samples were selected and
used for all qPCR analysis.
qPCR analysis was performed with three technical

repeats for each sample. The relative expression levels of
unigenes were normalized with the three selected refer-
ence genes with Pfaffl method [86,88].
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Availability of supporting data
The data sets supporting the results of this article are
available in the NCBI GenBank repository, [http://www.
ncbi.nlm.nih.gov/sites/nuccore?term=104929[BioProject]],
and in the NCBI SRA repository, [http://www.ncbi.nlm.
nih.gov/sra?term=SRA054354].
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Additional file 1: Complete list of unigenes with BLASTX hits.

Additional file 2: Complete list of chilling regulated DEGs identified
with fold change > =2 and q < 0.001.

Additional file 3: Complete list of chilling regulated DEGs identified
with fold change > =2, q < 0.001 and RPKM > =1.

Additional file 4: Chilling up-regulated TFs. 1. List of chilling up-
regulated TFs in both ATH-SR and ATH-MA. 2. List all chilling up-regulated
TFs in Arabidopsis (ATH-SR or ATH-MA). 3. All chilling up-regulated TFs
(orthologs) in C. bungeana.

Additional file 5: List of chilling up-regulated protein serine/
threonine kinase in C. bungeana.

Additional file 6: List of chilling regulated DEGs and all expressed
genes of ATH-SR. 1. List of chilling up-regulated DEGs (SR). 2. List of
chilling down-regulated DEGs (SR). 3. List all genes RPKM > =1 (SR).

Additional file 7: List of chilling regulated DEGs and all expressed
genes of ATH-MA. 1. List of chilling up-regulated DEGs (MA). 2. List of
chilling down-regulated DEGs (MA). 3. List all expressed genes (MA).

Additional file 8: Primers and reference gene selections. 1. Primers
for reference gene selection. 2. Primers for qPCR verification. 3. Unigenes
for qPCR reference gene selection. 4. geNorm results of reference gene
selection.
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