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Abstract

Background: Brachypodium distachyon L. is a newly emerging model plant system for temperate cereal crop
species. However, its grain protein compositions are still not clear. In the current study, we carried out a detailed
proteomics and molecular genetics study on grain glutenin proteins in B. distachyon.

Results: SDS-PAGE and RP-HPLC analysis of grain proteins showed that Brachypodium has few gliadins and high
molecular weight glutenin subunits. In contrast the electrophoretic patterns for the albumin, globulin and low
molecular weight glutenin subunit (LMW-GS) fractions of the grain protein were similar to those in wheat. In
particular, the LMW-C type subunits in Brachypodium were more abundant than the equivalent proteins in

common wheat. Southern blotting analysis confirmed that Brachypodium has 4-5 copies of LMW-GS genes. A total
of 18 LMW-GS genes were cloned from Brachypodium by allele specific PCR. LMW-GS and 4 deduced amino acid
sequences were further confirmed by using Western-blotting and MALDI-TOF-MS. Phylogenetic analysis indicated
that Brachypodium was closer to Ae. markgrafii and Ae. umbellulata than to T. aestivum.

Conclusions: Brachypodium possessed a highly conserved Glu-3 locus that is closely related to Triticum and related

system for studying wheat quality attributes.

species. The presence of LMW-GS in B. distachyon grains indicates that B. distachyon may be used as a model

Background

Cereals are the main cultivated crops in agriculture, includ-
ing rice (Oryza sativa L.), wheat (Triticum aestivum L.),
barley (Hordeum vulgare L.), rye (Secale cereale L.), oats
(Avena sativa L.), maize (Zea mays L.) and sorghum
(Sorghum bicolor L.). They belong to the family of the
Poaceae. The major grain proteins in cereal crops are
storage proteins, accounting for about 60-80% of total
proteins depending on species and varieties. Prolamins
are major seed storage proteins in wheat, barley, rye and
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maize, and are important nutrition and food sources for
both humans and animals. Globulins are the predomin-
ant storage proteins in oat and rice, accounting for about
70-80% of the total seed proteins [1]. Previous studies
have been largely focused on wheat, rice, maize and
sorghum due to their importance as food crops in the
world. In wheat the major seed storage proteins include
glutenins and gliadins that are the primary determina-
tions of dough elasticity and extensibility, respectively
[2], and both protein groups play a key role in the pro-
cessing of wheat flour into different baked products.

So far, many prolamin genes have been cloned, not
only in common wheat but also in its related species such
as Aegilops L., Agropyron cristatum, Thinopyrum inter-
medium, Lophopyrum elongatum, Dasypyrum villosum,
Crithopsis delileana, Eremopyrum distans, and Tae-
niatherum caput-medusae [3-10]. The major protein
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components in milled rice or rice endosperm were
glutenins, which are different from the prolamins in
other cereals [11]. Rice (Oryza sativa L.) as a major
crop with a relatively small genome (about 451 Mbp)
has been promoted as a model system of monocots [12].
However, its relatively longer life cycle, large physical
stature and special semiaquatic growth requirement
limited its wide usage as a model system. Brachypodium
distachyon L. (B. distachyon), a member of the Pooideae
subfamily and a temperate wild annual grass endemic
to the Mediterranean and Middle East [13], has been
rapidly established as a model plant system especially
as an experimental model organism for grasses and
cereals. It possesses many attractive attributes such as
small genome (diploid with about 355 Mbp), short
growth cycle, self-fertility and simple growth require-
ments [13,14], as well as competence to be efficiently
transformed [15-17]. Furthermore the B. distachyon
genome exhibits a high level of colinearity and synteny
to the genomes of temperate cereal crops [18]. Thus,
it has facilitated a range of studies in comparative gen-
omics of cereals, including wheat, rice, and even Aegliops
species.

Phylogenic analysis has classified B. distachyon to be
closer to wheat and barley than to rice, corn or sorghum
[19,20]. An efficient transformation procedure and an
optimized plant regeneration protocol have been devel-
oped for B. distachyon, including conditions for inducing
embryogenic callus [21] and biolistic transformation
[15,16]. Vogel and Hill [22] identified an inbred diploid
line, Bd21-3, with high transformation efficiencies. Des-
pite these substantial studies and accumulated know-
ledge, its grain proteins and compositions are still not
clear. Laudencia-Chingcuanco and Vensel [23] demon-
strated that globulins are the main seed storage proteins
in B. distachyon based on sodium dodecyl sulphate poly-
acrylamide gel electrophoresis (SDS-PAGE) and mass
spectrometry (MS) analyses in a diploid accession Bd21.
Larré et al. [24] found that globulins and a few prola-
mins in Bd21-3, a diploid inbred line originated from
Bd21. Wang et al. [25] identified 18 storage proteins and
15 albumin proteins in Bd21, including a high molecular
weight glutenin subunit (HMW-GS). However, so far
low molecular weight glutenin subunits (LMW-GS) and
their gene organizations in B. distachyon remain unknown
although the genome sequencing of B. distachyon is
completed.

In this work, LMW-GS in B. distachyon were sepa-
rated and characterized by a proteomic approach and
their encoding genes were isolated by allele specific PCR
(AS-PCR). A phylogenetic analysis among cereal crops
was also carried out. Our results revealed that a highly
conserved Glu-3 locus is present in B. distachyon being
similar to that in Triticum and Aegilops species.

Page 2 of 13

Results

Separation and characterization of B. distachyon grain
proteins

The grain protein compositions of 6 accessions of B.
distachyon (Bd4, Bd10, Bd11l, Bd13, Bd16 and Bd21)
and 2 common wheat cultivars (Chinese Spring and
Kontrast) were analysed. The protein fractions analyzed
included albumins, globulins, gliadins and glutenins.
The results showed that the SDS electrophoresis patterns
of albumins and globulins in B. distachyon accessions as
well as their overall amount were generally similar to
those of common wheat although there were differences
in certain protein subunits and expression levels
(Figure la-c). In contrast, the gliadins, HMW-GS and
LMW-GS compositions displayed clear differences be-
tween B. distachyon and wheat. Only a few gliadin bands
in B. distachyon were present in the lower molecular
weight area on SDS-PAGE gels as shown in Figure 1d.
Based on Figure le, the B. distachyon accessions had B
and C but very few A and D type subunits, suggesting
that B. distachyon accessions possess few HMW glutenin
subunits. This result was similar to the previous report
[25]. Meanwhile, B. distachyon accessions had similar
LMW glutenin compositions to these of common wheat.
The LMW C-type subunits were much more prominent
than those of common wheat in both subunit compo-
nents and expression levels. At least 9 distinct bands
of each accession were visualized after staining on the
SDS-PAGE gel.

In order to confirm our results, LMW-GS in B. dis-
tachyon were extracted with a wheat glutenin extraction
method and separated by SDS-PAGE, and then trans-
ferred to PVDF membrane for Western-blotting and
antibody-based identification. As shown in Figure 2,
some positive signals could be observed for the LMW-B
bands of both CS and B. distachyon, indicating the pres-
ence of LMW-GS in B. distachyon. Further Southern
blotting analysis, using wheat LMW-GS gene as probe,
demonstrated that the copies of LMW-GS genes in
diploid Brachypodium distachyon 21 were 4—5 (Figure 2c).

The results of RP-HPLC analysis from Bd21, Bd13 and
Bd16 as well as Chinese Spring are shown in Figure 3. It
is known that proteins are separated by RP-HPLC
according to their surface hydrophobicities and proteins
with higher hydrophobicities elute faster than those with
lower hydrophobicities. HMW-GS have been shown to
have higher surface hydrophobicities and therefore elute
earlier than LMW-GS [26]. As shown in Figure 3,
HMW-GS and LMW-GS of Chinese Spring eluted at
15-30 min and 30-45 min, respectively. Interestingly,
the LMW-GS from B. distachyon had similar elution
time of HMW-GS from Chinese Spring, suggesting that
they have similar hydrophobicities. Thus, although Bra-
chypodium and common wheat had similar LMW-GS
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Figure 1 Separation and characterization of grain proteins from 6 Brachypodium accessions and common wheat varieties Chinese
Spring (CS) and Kontrast (Kon) by SDS-PAGE. The sample number of lane 1-6 from left to right was Brachypodium accession Bd4 (P1208216),
Bd21, BA16 (PI239715), Bd13 (PI1233228), Bd11 (P1226629) and Bd10 (P1226452), respectively. a. Albumins; b. Globulins; ¢. Albumins and globulins;
d. Gliadins; e. LMW glutenin subunits. Different glutenin groups were indicated by A (HMW-GS), B (B-type LMW-GS), C (C-type LMW-GS) and

D (D-type LMW-GS), respectively. Arrows indicate 5 representative LMW-GS bands (4-1, 21-1, 21-2, 13-1and 16-1) selected for further
identification by MALDI-TOF-MS.

electrophoretic compositions, their protein structures homologous Glu-3 locus that is similar to that in common

and properties might be different. wheat. Different AS-PCR primers for wheat LMW-GS

genes were used to amplify the homologous genes from B.
Molecular characterization of LMW-GS genes from distachyon. In the current study, a total of 18 LMW-GS
B. distachyon genes were amplified, cloned and sequenced from B. dis-

According to SDS-PAGE, Western blotting, Southern tachyon, including 12 LMW-m and 6 LMW-i type genes.
blotting and RP-HPLC analysis, Brachypodium has a  The PCR amplification products on the agarose gel were
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Figure 2 Identification of LMW-GS of B. distachyon by Western blotting and Southern blotting. a. The gel stained by Coomassie brilliant
blue after Western blotting. b. Western blotting analysis of B. distachyon. The sample number of lane 1
accession Bd4 (P1208216), Bd21, Bd16 (PI239715), Bd13 (PI233228), Bd11 (P1226629) and Bd10 (P1226452), respectively. ¢. Southern blotting analysis
of Bd21. Genomic DNA from Bd21 was digested with BamHI, EcoRl and Hindlll restriction enzymes.

-6 from left to right was Brachypodium

showed in Additional file 1. All genes were deposited in
GenBank (accession numbers in Table 1). Of the 18 genes
cloned, 12 LMW-m type genes were from hexaploid
Brachypodium while 6 LMW-i type genes were from
diploid and hexaploid Brachypodium (HQ220189 and
HQ220190 from Bd4, HQ220195 and HQ220197 from
Bd10, HQ220191 and HQ220193 from Bd21).
Comparative analysis of the nucleotide and the
deduced protein sequences showed that all LMW-GS

genes isolated from B. distachyon had the typical struc-
tural characteristics with those of common wheat and
related species (Figure 4). The deduced protein
sequences had a common structure model: a conserved
20 residues signal peptide, a 13 residues N-terminal
domain (deletion in LMW-i type), a variable repetitive
domain, and three subregions of the C-terminal domain.
It is evident that Brachypodium had highly homologous
Glu-3 loci to those in Triticum and related species.
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Figure 3 Separation of glutenin subunits from Bd21, Bd16, Bd13 and Chinese Spring by RP-HPLC. HMW-GS and LMW-GS were indicated.
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Table 1 The cloned LMW-GS genes from B. distachyon L
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B. distachyon accessions GenBank accession No. Size (bp) Deduced amino acid Mr Type No. of Cysteine
Bd4 (P1208216, 6n=30) HQ220189 1170 42.678KD LMW-i 8
HQ220190 1095 39.839KD LMW-i 8
Bd10 (P1226452, 6n=30) HQ220192 897 31.748KD LMW-m 8
HQ220194 894 31437KD LMW-m 8
HQ22019%6 885 31.223KD LMW-m 8
HQ220195 1038 37.723KD LMW-i 8
HQ220197 1035 37.568KD LMW-i 8
Bd11(PI1226629, 6n=30) HQ220199 885 31.257KD LMW-m 8
HQ220201 885 31.279KD LMW-m 8
HQ220202 900 31.794KD LMW-m 9
HQ220203 885 31.333KD LMW-m 8
HQ220204 900 31.728KD LMW-m 9
Bd13(PI 233228, 6n=30) HQ220205 894 31.410KD LMW-m 8
HQ220206 885 31.229KD LMW-m 7
Bd16(PI 239715, 6n=30) HQ220198 894 31.377KD LMW-m 8
HQ220200 894 31437KD LMW-m 8
Bd21(PI 254867, 2n=10) HQ220191 1164 42.551KD LMW-i 8
HQ220193 1134 41.360KD LMW-i 8
T. aestivum cv. Chinese Spring FJ615311 924 32.863KD LMW-m 8
T. aestivum cv. Chinese Spring AY453154 1131 41.266KD LMW-i 8

Sequence comparative analysis of 12 LMW-m and 6
LMW-i type genes showed a higher similarity. Thus, 5
typical LMW-m and LMW-i type genes were used to
identify SNPs and InDels through comparison with 23
wheat LMW-GS genes from GenBank, and the results
were showed in Table 2 and Table 3. For the 5 LMW-m
type genes, a total of 34 SNPs were identified at different
positions, and the numbers of SNPs in HQ220202,
HQ220206, HQ220198, HQ220194, and HQ220200 were
4, 9, 8, 7 and 6, respectively. A total of 31 SNPs,
accounting for 91.17%, were resulted from A—G or
C—T transition, slightly higher than that of LMW-i type
genes from Triticumm momoccocum [27]. The remaining
3 SNPs (8.83%) were generated from T—A or C—A
transition. Of the 34 SNPs detected, 22 variations
belonged to nonsynonymous and 12 were synonymous
mutations. No InDels were found among the 5 LMW-m
type genes. For the 5 LMW-i type genes, only 9 SNPs
were detected (Table 3), of which 7 were nonsynon-
ymous substitutions. Both HQ220195 and HQ220191
had a synonymous substitution. In particular, HQ220190
had no SNPs, but contained 6 deletions at the position
346 (C), 349-350 (CA), 352-353 (CA), 355 (C), 391 (T),
397-404 (CAACAACA). All nucleotide acid deletions
encoded a glutamine residue, except for the position 391
that encoded a serine.

Both HQ220202 and HQ220204 had an extra cysteine
located at the 4™ residue in the C-terminal III domain,

resulting from T—G dot mutation and leading to the
cysteine generation from glycin. Additionally, HQ220206
only had 7 cysteine, and one cysteine residue was
deleted in the C-terminal II domains, which was resulted
from a G—A transition, and led to generate a tyrosine
(TAT) from cysteine (TGT).

LMW-GS determination by mass spectrometry

Mass spectrometry has shown to be effective in gaining
structural information of glutenins and globulins directly
isolated from seeds [23,28-30]. According to the deduced
molecular masses (31-42kDa) of LMW-GS genes iso-
lated from Brachypodium in this work, 5 representative
protein bands on the SDS-PAGE (Figure le), corre-
sponding to different molecular mass ranges, were
chosen to further identify by MALDI-TOF-MS after
trypsin digestion. The standard error (M+H)" was based
on Sun et al. [28] which was set to less than 3.212. The
results of the mass spectrometric identifications were
summarized in Table 4.

The calculated mass spectra of trypsin digested
18 deduced LMW-GS were compared with 5 MALDI-
TOF measured peptide mass spectra, four LMW-GS
HQ220190, HQ220191, HQ220195 and HQ220198 were
well matched with subunits 4-1, 21-1, 13—-1 and 10-1,
respectively (Table 4, Additional file 2, Additional file 3,
Additional file 4 and Additional file 5), indicating that
they are true native subunits in Brachypodium grains.
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Figure 4 Mutliple alignment of the deduced amino acid sequences of 24 LMW-GS genes, included 18 cloned from Brachypodium. The
other 6 genes were from wheat or Aegliops deposited in GenBank: Y14104, AY453154 and AB062877 from T. turgidum subsp. durum, T. aestivum,
T. aestivum, and GQ870241, EU594331 and DQ287977 from Ae. umbellulata, Ae. comosa, Ae. tauschii, respectively. Black frames show the
conserved positions of cysteine residues. Blue arrow showed the extra cysteine.

J

Table 2 The positions of SNPs and InDels identified among 5 LMW-m type genes
LMW-GS 22 97 108 582 669 722 749 760 780 785 801 843 905 1033 1055 1058 1072 1078 1121 1135 1142

HQ220202 G A C T G A C C A A A A @ C G A T
HQ220206 AT A T T A A T C T G A G T G T T A @ A C
HQ220198 AANA T T G G T T A G A G C A T T G T G T
HQ220194 AT G T A G G T T A G A G T A T T G T A T
HQ220200 AAT A T T GG G T T A G G G T A T T G T A T
23 othertMW-m Genes* G T A T T G A T C A A A A T A T T G T A T

*Other 23 LMW-m genes were from GenBank, including EU329425 (Ae. markgrafii), EU594338 (Ae. comosa), EU571721 and FJ824795 (Ae. speltoides), DQ287977 (Ae.
tauschii), GQ870236 (Ae. triuncialis), F)824801 (Ae. bicornis), EU571719 (Ae. columnaris), GQ389630 and GQ389629 (Ae. cylindrica), EF188286 (Ae. geniculata),
GQ389632, EU305555 and EU189089 (Ae. longissima), GQ870241and EU571725 (Ae. umbellulata), F1824799 (Ae. searsii), AB062852 (T. aestivum), Y14104 and
EF188290 (T. turgidum subsp.durum), AY263369, AB062868 and FJ615311 (T. aestivum).
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Table 3 The positions of SNPs and InDels identified among 5 LMW-i type genes*

LMW-GS 38 251 275 346 349-350 352-353 355 391 397-404 464 789 1116 1040 1m7
HQ220190 @ A A - - - - S — T G A A T
HQ220195 T G A @ CA CA C T CAACAACA T G G A C
HQ220191 C A G C CA CA C T CAACAACA T G A G T
HQ220193 C A A C CA CA C T CAACAACA C C A A T
HQ220197 C A A C CA CA C T CAACAACA T G A A C

23 other

LMW-m Genes ~ C A A @ CA CA C T CAACAACA T G A A T

*Horizontal dashes indicated the deletions of nucleotide. Other 23 LMW-i genes from GenBank included GQ870245 (Ae. markgrafii), GQ870242 (Ae. umbellulata),
GQ870246 (Ae. speltoides), EU594331, EU594335 and EU594336 (Ae. comosa), EF536030 (Ae. juvenalis), EF536035 (Ae. geniculata), AY606257 and AY724436 (L.
elongatum), GQ870247 (T. urartu), DQ217661 and DQ217663 (T. turgidum subsp. dicoccoides), DQ345449 (T. monococcum L.), AY453154, AY453155, AY453157,

AY453160, EU189087, FJ549932, FJ755303, FJ755304 and AB062877 (T. aestivum).

The subunit 21-1 has been detected by the Western
blotting (Figure 2), and thus the mass spectra results
further confirmed that this band was LMW-GS. The
remaining Band 21-2 was identified as prolamine (Add-
itional file 6 and Additional file 7), which is likely to be a
C-type LMW-GS, corresponding to o/p- and y-gliadins
modified in the number of cysteine residues [31].

Phylogenetic evolutionary analysis among B. distachyon,
Triticum and Aegliops species

A total of 39 storage protein genes were used to construct
phylogenetic trees and to investigate their evolutionary
relationships among Brachypodium, Aegliops, and Triticum
species as well as other cereal crops with complete nu-
cleotide coding sequences. These storage protein genes

Table 4 Protein identification from SDS-PAGE bands in B. distachyon by MALDI-TOF-MS

LMW-GS LMW-GS Measured mass Calculated mass Missed Peptide sequences predicted Positions

Genes subunit (M+H)+ (M+H)+ cleavage by PeptideMass

HQ220190 4-1 8454112 8424913 0 QTPEQSR 218-224
10885128 1091.5411 0 QCCQQLR 211-217
1704.7904 1707.8036 1 QCCQQLRQTPEQSR 211-224
1765.9240 1765.7693 0 VFLQQQCIPVAMQR 179-192
1793.8608 1794.8394 0 SOMLQQSICHVMQR 197-210
2120.0925 2119.0759 1 VFLOQQCIPVAMQRCLAR 179-196

HQ220191 21-1 8454112 8425071 0 QTPEQSR 241-247
8783971 8794393 0 QCCQQLR 234-240
1704.7904 1707.8132 1 QCCQQLRQTPEQSR 234-247
1765.9240 1765.7466 0 VFLQQQCIPVAMQR 202-215
1793.8608 1791.7360 0 SQMLQQSICHVMQR 220-233
2104.0976 2102.0032 1 VFLOQQCIPVAMQRCLAR 202-219
2342.1501 23429780 1 CLARSQMLQQSICHVMQR 216-233
2643.3044 26433130 0 MCSVNVPLYETTTSVPLGVG IGVGAY 342-367

HQ220195 13-1 1479.7662 1482.8090 1 QIPEQSRHESIR 202-213
1687.9490 1687.8210 0 AIVYSIILQQQQQR 214-227
17188716 1723.8390 0 VFLQQQCIPVEMQR 163-176
1734.8665 1735.8500 0 VFLQQQCIPVEMQR 163-176
1823.9295 1828.8950 0 VFLQQQCIPVEMQR 163-176
2162.1031 2161.0060 1 VFLOQQQCIPVEMQRCLAR 163-180

HQ220198 10-1 1593.7876 1595.7630 0 METSCIPGLERPR 1-13
1850.9404 1851.8900 0 VFLOQQCSPIAMPQR 109-123
2086.1048 2085.9630 1 VFLQQQCSPIAMPQRLAR 109-126
2102.0997 2102.0290 1 VFLQQQCSPIAMPQRLAR 109-126
33374388 3337.6920 0 SQMWQQSSCHYMQQQCCQQLQQIPGQSR 127-154
3960.8448 3963.8230 1 LARSOMWQQSSCHVMQQQCCQQLQQIPGQSR 124-154
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included 18 LMW-GS genes from B. distachyon in this
work, 8 and 11 LMW-GS genes from Triticumn and
related genomes (A, B, D, C, N, U, M, S*, SP) from the
GenBank, respectively, and a B-hordein from barley and
a secalin gene from rye (Figure 5). The results showed
that 12 LMW-m and 6 LMW-i genes were tightly clustered
into one branch. The omega-secalin gene from rye was
obviously clustered into a separated group. The B-
hordein gene from barley was clustered in a branch with
the LMW-GS genes, but showing a significant difference
in sequence homology. Among the LMW -GS gene sub-
group, 2 clades corresponding to the LMW-m & s and
LMW-i type genes were separated. The LMW-m genes
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from B. distachyon were clustered with Ae. markgrafii
and Ae. umbelluta in the first clade while the LMW-i
genes from Brachypodium were clustered with the A
genome genes from Triticum aestivum and C genome of
Ae. markgrafii. These results suggested that the LMW
glutenin genes from Brachypodium were closer to Aegi-
lops than to Triticum at the Glu-3 loci.

Discussion

LMW-GS as important grain storage proteins in

B. distachyon

Based on the solubility in a series of solvents, plant pro-
teins are traditionally classified into water-soluble proteins

5 HQ220203
61{ HQ220201
q : [ HQz2mss b B. distachyon LMW-m
HQ220196
21 L ng220206
HQ220192
EU329425  Ae markgrafii(CC), LMW-m,C
- HQ220198
|_- HQ220194
99 | HQ220200
L HQ220205 ¢ B. distachyon LMW-m
HQ220202
100 HQ220204
100GQ870241  Ae ambeliniata (UU), LMW-m, U
EU571724 Ae. mniaristata (NN), LMW-m, N
65 DQ287977 Ae. tauschii(DD), LMW-m, D
FJ615311 T. aestivam (AABBDD), LMW-m, D
DQ357054 T. aestivam (AABBDD), LMW-m, D
AY299485 T. aestivam (AABBDD), LMW-m, D
AB262661 T. aestivam (AABBDD), LMW-s, B
FJ824799 Ae. searsii (S5, , LMW-m, §*
FI824795 Ae. speltoides (S*5%, LMW-m, $*
100 Y14104 T. targidamsubsp. duram (AABB), LMW-m, B
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L] 100 — HQ220195 B. distachyon LMW-i
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AY453160 T. aestivam (AABBDD), LMW-i, A
.|| Q220190
o0 [ HQ220191 B. distachyon LMW-i
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FJI561465 S cereale, omega secalin, R
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Figure 5 the phylogenetic tree showed the relationships among Brachypodium, Aegilops and Triticum species based on the LMW-GS
genes. All LMW-GS genes cloned from Brachypodium were used to construct phylogenetic tree. Nucleotide sequences are specified by their
accession number. A, B, or D at the end of the accession number indicates the chromosomal assignment of their sequences.
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(albumins), saline-soluble proteins (globulins) and alcohol-
soluble proteins (prolamins) [1]. Different plant species
generally have one predominant protein type in the grain
endosperm. Laudencia-Chingcuanco and Vensel [23]
reported that globulins were the main seed storage proteins
in B. distachyon. But in their work, only 7 major protein
bands were detected by SDS-PAGE and mass spectrom-
etry, of which 6 were identified as globulins. Glutenins and
gliadins were not extracted and analyzed. Recently, LMW-
GS like proteins were identified by SDS-PAGE, and their
masses were determined by MALDI-TOF in B. distachyon
[25]. These suggest that Brachypodium grains may contain
LMW-GS like proteins.

Our results demonstrated that Brachypodium grains
had similar electrophoretic compositions with common
wheat in LMW glutenin subunits, In particular, B. dis-
tachyon appeared to have more abundant LMW-C type
subunits than wheat (Figure 1). A total of 18 LMW-GS
genes isolated from B. distachyon displayed highly hom-
ologous with those from Triticum and Aegilops species.
The presence of LMW-GS in B. distachyon was further
confirmed by Western blotting, Southern blotting and
MALDI-TOE-MS (Table 4, Figure 2 and Additional file
2, Additional file 3, Additional file 4, Additional file 5,
Additional file 6 and Additional file 7). Glutenins play
important roles in the plant life cycle [1]. Therefore, the
primary role of LMW-GS in B. distachyon is probably
involved in providing energy and nutrition for seed
germination.

Allelic variations and gene organization at Glu-3 in

B. distachyon

High homology of LMW-GS genes between Brachypodium
and common wheat and related species was found in this
work (Figure 4-5), including similar gene sizes and struc-
tural characteristics. This suggests that a highly conserved
Glu-3 locus is present in B. distachyon. Of the 18 LMW-
GS genes isolated from B. distachyon, extensive allelic
variations were detected, including 34 and 9 SNPs in 5
typical LMW-m and LMW-i type genes, respectively,
and 6 deletions present in the LMW-i type gene
HQ220190. Particularly, both HQ220202 and HQ220204
had an extra cysteine, locating at the same position as
GQ870250 and GQ870241 from Ae. markgrafii and
Ae. umbellulata, respectively [32] (Figure 4). Thus, they
probably represent an ancient type among the LMW-GS
gene family. On the other hand, as in previous reports
[9], HQ220206 only had 7 cysteine residues and a cyst-
eine in the C-terminal II domain was changed into tyro-
sine because of a G—A transition. Therefore, the
abundant SNP and InDel variations present in the
LMW -GS genes of B. distachyon could result in different
biochemical properties of their deduced protein subunits
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such as higher surface hydrophobicity as revealed by
RP-HPLC (Figure 3).

The LMW-m and LMW-i genes isolated from B. dis-
tachyon were used to blast at the Brachypodium genome
project websites (www.phytozome.net and http://www.
brachypodium.org/). The blast results only returned one
locus, Bradi3g17070, which had some sequence similarity
with the LMW-GS genes cloned in this work. However,
Bradi3g17070 was more similar to gliadin or avenin-like
seed proteins. This suggests that the data of the Glu-3
locus encoding for LMW-GS in B. distachyon is not
present in the genome sequence database.

So far, although considerable work was carried out, the
precise gene organizations at the Glu-3 loci in wheat
and related species are still unclear. LMW-GS can be
devided to LMW-s, LMW-m, and LMW-i types according
to the first amino acid residue of the mature protein,
serine, methionine, or isoleucine, respectively [33]. LMW-
GS are encoded by multiple gene family at the Glu-3 loci
of A, B, D chromosomes of common wheat [33]. Some
other related genomes, e.g. S, C, M, N and U also contain
highly homologous Glu-3 loci [8,9,32]. According to previ-
ous reports, the copy numbers of the LMW-GS genes in
common wheat were estimated to be 10-15 [33,34] or
35-40 [35-37]. Wicker et al. [38] found that two LMW-i
type genes from the A genome of Triticum monococcum
that were located more than 150 kbp apart. This could
facilitate the occurrence of illegitimate recombination
events within the LMW-GS genes and result in novel
allelic variations, such as chimeric genes [9]. Both
homologous and illegitimate recombination may occur
at the Glu-3 and Glu-1 loci [9,39], resulting in the for-
mation of novel allelic genes. In the current study, our
results demonstrated that LMW-GS encoded by the
Glu-3 locus in Brachypodium also display the proper-
ties of a complex gene family as those in Triticum and
related species. The numbers of copies of LMW-GS
genes in B. distachyon are probably less than that in
T. aestivum according to the Southern blotting analysis
but similar mechanisms for generating allelic variations
at the Glu-3 locus might be present in Brachypodium.
Frequent SNP and InDel variations, duplications and
inversions of one and more repeats, by unequal crossing
over, slippage or illegitimate recombination [9,40], could
result in the allelic variations observed at Glu-3 in
B. distachyon.

Phylogenetic evolutionary relationships of B. distachyon

with Triticum and related species as revealed by Glu-3 loci
B. distachyon. has been shown to be much more closely
related to wheat, barley and rice than to sorghum, rye or
maize [19,20]. Recent studies have shown that B. dis-
tachyon is closely related to the tribe Triticeae and Ae.
tauschii, the donor of D genome of hexaploid wheat
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[18,41]. The analysis of bacterial artificial chromosome
(BAC) end sequences (BES) of Brachypodium genome
also revealed a closer relationship between Brachypodium
and Triticeae than Brachypodium and rice or maize [42].
In the present work, phylogenetic tree based on the
LMW-m type genes (Figure 5) indicated that Brachypo-
dium is more closely related to Aegilops than to wheat,
especially much closer to Ae. markgrafii (CC), Ae. umbel-
lulata (UU), Ae. uniaristata (NN) and Ae. tauschii (DD).
On the other hand, results revealed by the LMW-i type
genes demonstrated that B. distachyon was closer to
hexaploid common wheat and Ae. markgrafii than to Ae.
uniaristata and Ae. comosa. It has been argued that the
LMW-m type genes could be the progenitor of LMW-i
and LMW-s type genes [32]. The HQ220202 and
HQ220204 from B. distachyon and GQ870241 from the
U genome of Ae. umbellulata were clustered into a clade
while GQ870250 from the C genome of Ae. markgrafii
had higher similarity with GQ870241. These 4 LMW-GS
genes all had 9 cysteine residues located at a highly con-
served position (Figure 4), indicating that B. distachyon is
more closely related to Ae. markgrafii and Ae. umbellu-
lata. Our results further supported the recent report that
the C and U genomes appear to be closely related [32].

Evolution of Glu-1 and Gli-1 loci in B. distachyon

Our work demonstrated that B. distachyon grains had
similar compositions of albumins, globulins, and LMW -
GS with these of wheat, but with fewer gliadins and
HMW-GS. This suggests that, although the Glu-3 loci
are highly conserved among Brachypodium, Aegilops,
Triticum and other related cereal species, the Glu-1 and
Gli-1 loci in B. distachyon could undergo dramatic diver-
gence during its evolutionary process. A recent report
has shown that a single copy of HMW glutenin gene with
a premature stop codon was found in Brachypodium,
and its structure was considered to be different from the
wheat HMW glutenin gene [43]. However, we identified
a HMW glutenin subunit with a lower expression level in
Bd21 by a proteomic approach [25] and its encoding
gene has been recently cloned in our lab (data not
shown). This suggests that the Glu-1 is also conserved in
Brachypodium.

In common wheat, LMW-GS are encoded by the
genes at the orthologous Glu-A3, Glu-B3 and Glu-D3
loci on the short arms of group 1 chromosomes (1AS,
1BS and 1DS), which are closely linked with the Gli-A1,
Gli-BI and Gli-D1I loci encoding gliadins [44]. The phys-
ical relationships of Glu-3 and Gli-1 genes showed that
gliadin or gliadin-like genes can distribute between two
typical LMW-GS genes [45] and different types of
LMW-GS can locate separately [9,38]. This can poten-
tially result in formation of different chimeric genes be-
tween gliadin and the LMW-GS genes due to crossing
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over and illegitimate recombination between or in the
Gli-1 and Glu-3 loci in wheat and related species [9,46].
Therefore, some modified LMW -GS may also be present
in Brachypodium as reported in wheat [30].

According to our results, B. distachyon grains had very
few gliadins when separated by the same extraction
method as for wheat. Larré et al. also only found a few
putative avenin-like proteins in B. distachyon [24]. We
speculate that most of the gliadins in B. distachyon may
have evolved into LMW-GS, most likely the LMW-C
subunits. This may explain why Brachypodium con-
tained abundant LMW-GS especially the LMW-C type
subunits than wheat. Recent reports strongly support
this scenario: some modified LMW-GS in wheat were
identified by 2-DE and MALDI-TOF-MS, which might
belong to modified o/p- and y-gliadins [30]. It is also
possible that most of the gliadin genes were pseudogenes
and thus silent in mature grains due to premature stop
codons as those in wheat, rice, maize and other cereals
[47,48].

Both globulin and glutenin genes are specifically
expressed in seed developing tissues. Particularly, glutenin
genes have a higher expression level than globulin genes
[43,49]. Since fewer HMW-GS and no gliadins are
expressed in the grains, the LMW glutenin subunits with
higher expression level could be important grain storage
protein in Brachypodium.

Conclusion

Brachypodium was more closely related to Ae. markgrafii
and Ae. umbellulata than to T. aestivum; it possesses a
highly conserved Glu-3 locus. The presence of LMW-GS
in B. distachyon t warrants its usage as a model plant
system for wheat quality research.

Methods

Plant materials

Six B. distachyon accessions were used in this work, in-
cluding 5 hexaploid genotypes (2n=6x=30): Bd4
(P1208216), Bd10 (P1226452), Bdl1l (PI1226629), Bd13
(P1233228) and Bd16 (PI239715), and 1 diploid accession
Bd21 (2n=10). All accession seeds were kindly provided
by Dr. John Vogel, USDA-ARS, Albany, CA and Dr.
Chengtao Lin, Institute of Crop Sciences, Chinese Acad-
emy of Agricultural Sciences (CAAS). Hexaploid common
wheat varieties (Triticum aestivum L.) Chinese Spring
(CS), and Kontrast were used as control in the study.

Grain protein extraction, SDS-PAGE, RP-HPLC, Western
blotting and Southern blotting

B. distachyon seeds (50mg) were ground to powder and
used to extract different grain proteins. The albumins,
globulins and gliadins were extracted by distilled water,
dilute salt solutions and 70% ethanol, respectively. The
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method of glutenin extraction and SDS-PAGE were
adopted from Yan et al. [50]. The total albumins and
globulins were extracted from 50 mg B. distachyon
grains according to Gao et al [26]. Same volume
(15ul) for each sample was loaded per lane of the gels.
SDS-PAGE was performed with a Bio-Rad PROTEAN II
XL based on the previously described method [50].
Reverse-phase high performance liquid chromatography
(RP-HPLC) was performed on the basis of the method of
Gao et al. [51]. A polyclonal antibody (CIPGLERPWQQQPL)
specific for wheat LMW glutenin subunits was developed
for Western blotting analysis and the detailed procedures
were according to Li et al. [52]. The procedures of
Southern blotting were according to Yue et al. [53] with
minor modifications. Total genomic DNA was isolated
from young leaves of Bd21 using a modified cetyl-
trimethyl- ammonium bromide protocol [54] and was
quantified after RNase treatment. Considering that there
were no BamHI, EcoRI, and HindlIIIl restriction sites in
LMW-GS genes, the genomic DNA were digested with
the three enzymes. The digested products were electro-
phoresed using 0.8% agarose gel and blotted onto a
Hybond-N+ nylon membrane (Amersham, Buchingham-
shire, UK) with alkaline transfer buffer (0.4 M NaOH).
The PCR production of LMW-GS gene (FJ615311) from
Chinese Spring were used as probes and the positive plas-
mid of LMW-GS gene was used as amplified template
in above PCR system. Probe labeling, hybridization and
detection of the LMW-GS genes were performed using
the DIG High Prime DNA Labeling and Detection Starter
Kit II (Roche, Mannheim, Germany), following the
instructions of manufacturer. Four post-hybridization
washes were performed as following: (1) Wash 2 x
5 min in ample 2 x SSC, 0.1% SDS at 25°C under constant
agitation. (2) Wash 2 x 15 min in 0.5 x SSC, 0.1% SDS
(prewarmed to wash temperature) at 68° Cunder con-
stant agitation.

DNA extraction and PCR amplification

Genomic DNA was extracted from 30mg leaves of
Brachypodium seedlings 7 days after germination with
cetytrimethylammonium bomide (CTAB) method as
reported by Murray and Thompson [54]. Two pair of
primers (Primer 1+2 and primer 7+8) as described by
Pei et al. [6] and Jiang et al. [55] for amplifying wheat
LMW-GS genes were used to amplify the complete
open reading fragments (ORFs) of the LMW glutenin
genes of B. distachyon. PCR reaction in a 30 pl volume
was performed using a S1000 thermal cycler (Bio-Rad,
USA) with the following program: an initial step of 94°C
for 4 min, 34 cycles of 94°C for 45 s, 58°C for 1 min and
72°C for 80 s, and a final step of 10 min at 72°C. The
recombined DNA clones were sequenced by TaKaRa
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Biotech Inc., Japan. Each clone was sequenced three
times to avoid possible error.

Sequence comparison and SNPs/InDels identification
Bioedit 7.0 was used to conduct complete multiple
alignment based on the complete nucleotide of cloned
LMW-GS genes and other genes from GenBank.
Single-nucleotide polymorphisms (SNPs) and insertions/
deletions (InDels) among LMW glutentin genes from
B. distachyon as well as Aegilops and Triticum species
were identified based on the multiple alignments [10].

MALDI-TOF-MS

The deduced proteins of cloned LMW-GS genes were
further confirmed by matrix-assisted laser desorption/
ionization time-off mass spectrometry (MALDI-TOF-
MS). Based on the deduced amino acid sequences of
LMW-GS genes cloned in this work, the theoretical mass
spectra of trypsin digested LMW-GS were predicted by
using the bioinformatic program PeptideMass (http://
www.expasy.ch/tools/pep-tide-mass. html). 5 protein
bands (4-1, 21-1, 21-2, 13—-1 and 10-1) on SDS-PAGE
gels (Figure le), corresponding to deduced molecular
mass of cloned genes were selected for MS analysis. Pro-
tein bands were excised manually and their in-gel trypsin
digestions were performed according to Gao et al. [26].
MALDI-TOE-MS identifications were conducted by
searching against the NCBInr databases through the
MASCOT (http://www.matrixscience.com) search engine
and the putative Brachypodium protein database (http://
www.brachypodium.org) [13]. Finally, a comparative ana-
lysis between predicted and MS detected mass spectra was
performed.

Phylogenetic analysis

MEGAA4.1 was used to construct phylogenetic trees with
complete nucleotide coding sequences of LMW-GS and
the detailed steps were based on Wang et al. [32].

Additional files

Additional file 1: PCR amplification products on agarose gel of

6 B. distachyon accessions. The samples of lane 1-6 from left to right
are Brachypodium accession Bd4 (P1208216), BA10 (PI226452), Bd11
(PI1226629), Bd13 (P1233228), Bd16 (P1239715) and Bd21. M represents 1Kb
DNA marker, a. PCR ampilification results by primer 1 and 2, b. PCR
amplification results by primer 7 and 8.

Additional file 2: MALDI mass spectrum of the tryptic peptides
of the protein band 4-1 from Bd4 which was markedin Figure 1.

Additional file 3: MALDI mass spectrum of the tryptic peptides

of the protein band 22-1 from Bd21 which was marked in Figure 1.
Additional file 4: MALDI mass spectrum

of the tryptic peptides of the protein band13-1 from Bd13 which
was marked in Figure 1.

Additional file 5: MALDI mass spectrum of the tryptic peptides of
the protein band 10-1 from Bd10 which was marked in Figure 1.
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Additional file 6: MALDI mass spectrum of the tryptic peptides of
the protein band 21-2 from Bd21 which was marked in Figure 1.

Additional file 7: Protein identification of 21-2 in B. distachyon by
MALDI-TOF-MS.
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