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A stress inducible SUMO conjugating enzyme
gene (SaSce9) from a grass halophyte Spartina
alterniflora enhances salinity and drought stress
tolerance in Arabidopsis
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Abstract

Background: SUMO (Small Ubiquitin related Modifier) conjugation is a post translational regulatory process found
in all eukaryotes, mediated by SUMO activating enzyme, SUMO conjugating enzyme, and SUMO ligase for the
attachment of SUMO to its target protein. Although the mechanism for regulation of SUMO conjugation pathway
genes under abiotic stress has been studied to certain extent, the role of SUMO conjugating enzyme in improving
abiotic stress tolerance to plant is largely unexplored. Here, we have characterized a SUMO conjugating

enzyme gene ‘SaSce9’ from a halophytic grass Spartina alterniflora and investigated its role in imparting abiotic
stress tolerance.

Results: SaSce9 gene encodes for a polypeptide of 162 amino acids with a molecular weight of ~18 kD and
isoelectric point 8.43. Amino acid sequence comparisons of SaSce9 with its orthologs from other plant species
showed high degree (~85-93%) of structural conservation among each other. Complementation analysis using
yeast SCE mutant, Ubc9, revealed functional conservation of SaSce9 between yeast and S. alterniflora. SaSce9
transcript was inducible by salinity, drought, cold, and exogenously supplied ABA both in leaves and roots of

S. alterniflora. Constitutive overexpression of SaSce9 in Arabidopsis through Agrobacterium mediated transformation
improved salinity and drought tolerance of Arabidopsis. SaSce9 overexpressing Arabidopsis plants retained more
chlorophyll and proline both under salinity and drought stress. SaSce9 transgenic plants accumulated lower levels
of reactive oxygen under salinity stress. Expression analysis of stress responsive genes in SaSce9 Arabidopsis plants
revealed the increased expression of antioxidant genes, AtSOD and AtCAT, ion antiporter genes, AtNHXT and AtSOST,
a gene involved in proline biosynthesis, AtP5CS, and a gene involved in ABA dependent signaling pathway, AtRD22.

Conclusions: These results highlight the prospect of improving abiotic stress tolerance in plants through genetic
engineering of the sumoylation pathway. The study provides evidence that the overexpression of SaSce9 in plant
can improve salinity and drought stress tolerance by protecting the plant through scavenging of ROS,
accumulation of an osmolyte, proline, and expression of stress responsive genes. In addition, this study
demonstrates the potential of the halophyte grass S. alterniflora as a reservoir of abiotic stress related genes for
crop improvement.
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Background

Plants are constantly challenged by a wide range of en-
vironmental stresses such as drought, high salinity, and
temperature fluctuations due to their sessile nature. Re-
sponse to abiotic stresses is very complex, as various
stages of plant growth and development can be affected
by a particular stress and often several stresses simultan-
eously [1]. Molecular responses to abiotic stresses in-
clude stress perception, signal transduction to cellular
components, gene expression, and metabolic changes,
which help the plants to adapt to stress environments
[2,3].

Post-translational modifications of proteins play an
important role in most cellular processes by rapidly
altering the functions of preexisting proteins and protein
complexes. Sumoylation or SUMO (Small Ubiquitin
related Modifier) conjugation is one of the essential post
translational regulatory process essentially found in all
eukaryotes. It is a three step enzymatic cascade mediated
by SUMO activating enzyme (E1 or SAE), SUMO conju-
gating enzyme (E2 or SCE), and SUMO ligase (E3) for
the attachment of SUMO to its target protein [4,5].
SUMO plays an important role in regulation of protein—
protein interactions and subcellular locations in yeast
and animals [6-8]. Increased level of SUMO conjugates
in response to heat shock, oxidative stress, and DNA
damaging agents has been reported in mammalian cell
cultures [9-12]. Similarly, increased accumulation of
SUMO conjugates upon exposure of Arabidopsis seed-
lings to heat shock, H,O,, ethanol, and amino acid ana-
log canavanine suggests its important role in stress
response and protection in plants [13]. Several studies in
Arabidopsis highlighted the importance of sumoylation
in post translational regulation in response to stresses
such as salt, cold, drought, heat, copper toxicity, and nu-
trient deprivation [14-18]. Importance of sumoylation
for abiotic stress response is strengthened from the
reports on drastic reduction in tolerance to stresses due
to mutation of genes involved in SUMO conjugation
[14-16,19]. Further, embryo lethality caused by inser-
tional mutation in AtSAE2 or AtSCEI or double muta-
tions in AtSUMOI and AtSUMO?2 genes of Arabidopsis
inferred its role in plant growth and development [17].
The reversible conjugation of the SUMO peptide to pro-
tein substrates is emerging as a major post-translational
regulatory process in plants [16]. Arabidopsis SUMO
and related enzymes have been implicated in abscisic
acid (ABA) responses, flowering time regulation as well
as stress responses [20]. In rice (Oryza sativa), tran-
scripts for the SCE is regulated by cold, salt, ABA, and
heat [21,22]. However, detailed understanding of SCE for
abiotic stress tolerance in plant is still in its infancy.

Spartina alterniflora, a halophytic grass commonly
known as smooth cordgrass, possesses all the known
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mechanisms of salt tolerance [23]. In this investigation,
we have functionally characterized a SCE gene, SaSce9,
previously obtained from the salinity stressed cDNA
library of Spartina alterniflora [24]. SaSce9 is a functional
homolog of SUMO conjugating enzyme, Ubc9 of Sac-
charomyces cerevisiae. Salt, drought, cold, and ABA
induced the expression of SaSce9 in leaves and roots of
Spartina alterniflora. Furthermore, SaSce9 overexpres-
sion in Arabidopsis improved abiotic stress tolerance
by regulating the stress responsive genes involved in
ion homeostasis, proline accumulation, and detoxifica-
tion of reactive oxygen radicals. This study demon-
strates the potential and superiority of orthologous
stress responsive genes from a halophyte grass Spartina
alterniflora in improving salt and drought stress
tolerance in plants.

Results

SaSce9 of spartina alterniflora is an ortholog of SUMO
conjugating enzyme

A full length cDNA clone of 489 bp open reading frame,
encoding a SUMO conjugating enzyme, named as
SaSce9, was obtained from the salt stressed ¢cDNA li-
brary of Spartina alterniflora constructed in our labora-
tory [24]. SaSce9 gene codes for a polypeptide of 162
amino acids with a molecular weight of ~18 kD and iso-
electric point 8.43. Amino acid sequence comparisons of
SaSce9 with its orthologs from other species showed 90-
93% similarity with SCE of monocots such as Triticum
durum, Oryza sativa, Brachypodium distachyon, 85-89%
to dicots, Nicotiana benthamiana, Glycine max, Vitis
vinifera, Medicago truncatula, Arabidopsis thaliana,
81% to bryophyte Selaginella moellendorffii, 53% to Ent-
amoeba histolytica, and 57% with Ubc9 of Saccharo-
myces cerevisiae (Figure. 1a). Clustering of SaSce9 with
monocots in phylogenetic analysis and sharing of high
degree of homology with counterpart proteins from
dicots, yeast, and amoeba, suggested evolutionary con-
servation of SCE proteins and possible evolution from a
common ancestor (Figure. 1b). We also evaluated the
conservation of tertiary structure of SaSce9 by modeling
of predicted tertiary structure based on crystallographic
data deposited on the Swissprot [25]. Comparison of
predicted tertiary structure of SaSce9 with that based on
crystallographic analysis of the human counterpart
HsUbc9 [26], revealed the presence of four alpha helices
and four beta sheets in SaSce9 with overall 65% identity
with HsUbc9 (Figure. 1c).

SaSce9 Functionally complemented Ubc9 mutant of
saccharomyces cerevisiae

We analyzed the catalytically conserved role of SaSce9
using Ubc9 mutant strain of S. cerevisiae. Ubc9 mutant
is temperature sensitive, which normally grows at 25°C
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Figure 1 Multiple sequence alignments, phylogenetic analysis, and predicted tertiary structure of SaSce9 protein. (a) Multiple sequence

alignment of SaSce9 protein with SCE proteins from various organisms. Conservation of amino acid residues are shown by black bars below the

alignments. Accession numbers of sequences for SCE proteins are: P50623 (Saccharomyces cerevisiae), XP_001735131 (Entamoeba histolytica),

XP_002980875 (Selaginella moellendorffii), ABG79538 (Triticum durum), XP_003558940 (Brachypodium distachyon), BAG88233 {Oryza sativa

(0s03g0123100)}, BAH00378 {Oryza sativa (Os10g0536000)}, CAE45567 (Nicotiana benthamiana), XP_003517314 (Glycine max), XP_002283130

(Vitis vinifera), XP_003611678 (Medicago truncatula), NP_191346 (Arabidopsis thaliana); (b) Phylogenetic tree of SaSce9. The amino acid sequences

were subjected to Bootstrap test of phylogeny by the MEGA 4.0 program, using neighbour-joining method with 1000 replicates. Numbers on the

Figure are bootstrap values; (c) Model of predicted tertiary structure was performed using SWISS-MODEL based on crystallographic data

deposited on the Swissprot.
. J

but unable to grow at restrictive temperature of 37°C  lacking leucine, supplemented with 2% glucose at 25°C
[27]. SaSce9 ORF was cloned into the yeast expression as well as at 37°C. We found that only pVTL260-SaSce9
vector pVTL260 under the regulation of an endogenous  transformed Ubc9 mutant was able to grow at 37°C, but
alcohol dehydrogenase (ADH) promoter to produce not the un-transformed or only vector (pVTL260) trans-
pVTL260-SaSce9 (Figure. 2a), transformed into yeast formed Ubc9. At 25°C, growth of all the strains
Ubc9 mutant, and grown on synthetic dropout medium  (Figure. 2b) was normal (Figure. 2c). This experiment
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Figure 2 Complementation of the yeast Ubc9-ts mutation by expression of the SaSce9. (a) Schematic representation of yeast expression
vector (pVTL260-SaSce9) used for complementation assay, containing an ORF of SaSce9 cloned at Nhel and BamHiI site driven by ADH promoter;
(b) Strains used in this experiment. Ubc9-Ts: temperature sensitive mutant for SUMO conjugating enzyme of Saccharomyces cerevisiae; pVTL260:
Ubc9-Ts mutant carrying only vector as control; SaSce9: Ubc9-Ts mutant carrying pVTL260-SaSce9 of Spartina alterniflora; () Growth of yeast strains

at 25°G and (d) Growth of yeast strains at 37°C on solid yeast, peptone, and dextrose containing (YPD) media for 3 days.

indicated the functional complementation of Ubc9 mu-
tant by SaSce9 (Figure. 2d).

Regulation of expression of SaSce9 by multiple stresses in
spartina alterniflora

Quantitative real-time PCR was used to analyze the ex-
pression patterns of SaSce9 in leaves and roots of Spar-
tina alterniflora. As shown in Figure 3, SaSce9 was
constitutively expressed in both leaves and roots of Spar-
tina alterniflora but differentially expressed by abiotic
stresses such as salt, drought, cold, and ABA. Under salt
stress, SaSce9 expression was gradually upregulated in
leaves and roots starting from 30 min up to 72 h of
stress. In root, salinity led to highest expression of
SaSce9 within 24 h, whereas in leaves it was observed at
48 h of stress. Under drought stress in root, transcript
induction peaked within 24 h, but in leaves it was seen
at 48 h of drought stress. Under cold stress, expression
in leaves began at 1 h, peaked at 8 h, declines gradually
after that, and reached to basal level at 72 h. However,
in root, transcript accumulation slightly increased after
30 min, maintained up to 1 h before doubling at 8 h,
and reached a maximum peak at 24 h. ABA stress in
leaves led to little induction of transcripts up to 1 h,
then continued to increase up to 72 h, whereas root
showed early and abrupt increase (2.5 times) of tran-
script accumulation just after 30 min of ABA treatment,
then increased up to 8 h and maintained up to 72 h.

Increased expression of SaSce9 transcripts by salinity,
drought, cold and ABA revealed the stress responsive
nature and possible ABA mediated regulation of SaSce9
in Spartina alterniflora.

Overexpression of SaSce9 improved salinity tolerance

To investigate the possible role of SaSce9 in imparting
salinity tolerance in plant, SaSce9 ORF was cloned into
binary vector pCAMBIA1304 under 35S promoter to
produce 35S-SaSce9 (Figure. 4a), and was transformed
into Arabidopsis ecotype Columbia by floral dip
method. T3 homozygous SaSce9 transgenic plants were
analyzed for stress tolerance. Two transgenic lines
(T16-3 and T17-2) were chosen for further analysis
based on their high level expression of SaSce9 tran-
scripts (data not shown). Four-week old soil grown wild
type (WT) and 35S:SaSce9 plants were irrigated with
150 mM NaCl until the salt stress induced injury symp-
toms such as yellowing of rosette leaves and reduced
plant heights were visible. As shown in Figure 4b, 35S-
SaSce9 Arabidopsis plants had less visual salt induced
stress injury in comparison to WT plants even after
three weeks of stress, while WT plants did not survive.
To further evaluate the role of salt stress on ionic bal-
ance in 35S-SaSce9 Arabidopsis, leaves from WT and
transgenic lines were collected after three weeks of salt
stress and Na®, K" concentration was estimated on dry
weight basis. The SaSce9 transgenic lines, T16-3 and
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T17-2, showed higher K*/Na" ratio under non-stress,
and also maintained significantly higher K*/Na™ ratio
than the WT under salinity stress, which indicated the
possible role of SaSce9 in regulating ion homeostasis
(Figure. 4c). The SaSce9 overexpressing transgenic
plants accumulated more chlorophyll and proline than
the WT under salinity stress (Figure. 4d, e).

Overexpression of SaSce9 improved drought tolerance

To further characterize the function of SaSce9 for
drought tolerance, 4-week-old soil grown WT and
SaSce9 transgenic Arabidopsis plants were subjected to
water stress for 14 d. At the 14" day of water withhold-
ing, most of the WT plants appeared dehydrated and
weak, but the SaSce9 overexpressing plants grew nor-
mally and were healthier than the WT (Figure. 5a). To
study the membrane stability due to overexpression of
SaSce9, uniform sized rosette leaves were detached from
non-stressed WT and SaSce9 Arabidopsis plants and
after seven days of continuous drought stress, electrolyte
leakage was measured. Electrolyte leakage was relatively
less in T16-3, T17-2 plants than WT, under non stress
and drought stress (Figure. 5b). Also, chlorophyll levels
in SaSce9 transgenic plants after withholding water for
14 d were significantly higher compared to WT
(Figure. 5c¢). Similarly, the amount of proline after seven
days of drought stress was more in T16-3 and T17-2
plants compared to the WT (Figure. 5d).These results

showed that overexpression of SaSce9 improved drought
tolerance.

SaSce9 Reduced reactive oxygen species (ROS) under
drought stress

We assayed the WT and SaSce9 transgenic Arabidopsis
plants for detection of ROS levels using nitroblue tetra-
zolium (NBT) staining. Leaves from four week old plants
after seven days of drought stress and non-stress were
incubated into NBT solution. Without drought treat-
ment, leaves of WT and 35S-SaSce9 transgenic lines,
T16-3 and T17-2, showed minimal NBT staining indicat-
ing low superoxide levels whereas drought stressed WT
plants showed higher level of staining than SaSce9 over-
expressing plants (Figure. 6).

Expression pattern of stress-responsive genes in SaSce9
transgenic Arabidopsis

We further elucidated the possible molecular mechan-
ism of SaSce9 in stress response by analyzing the ex-
pression levels of a set of selected ion transporter
genes (AtNHXI, AtSOSI), stress responsive genes
(AtP5CS, AtRD22) and antioxidants genes (AtSODI,
AtCATI) (Table 1) in SaSce9 transgenic Arabidopsis
plants. Transcript expression levels for genes belonging
to all the three categories were upregulated in SaSce9
transgenic plants compared to the WT plants
(Figure. 7).
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Figure 4 SaSce9 overexpressing Arabidopsis plants improved salinity tolerance. (a) Schematic representation of pCAMBIA1304 plasmid
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three independent experiments. Comparison was made between WT and individual transgenic lines under control condition or salinity stress by
paired t-test. ***, ** and * indicate significant differences in comparison with the control at P < 0.001, P < 0.01 and P < 0.1, respectively. WT
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Discussion

Sumoylation pathway is involved in post translational
modification of proteins through employment of three
key enzymes, SUMO activating enzyme (E1), SUMO
conjugating enzyme (SCE or E2), and SUMO ligase (E3)
by regulating gene expression, nuclear localization, and
signal transduction [13,20]. Sumoylation pathway begins
with the activation of the SUMO C-terminus through ex-
posing glycine by a SUMO-specific E1 activating enzyme.
Activated SUMO is subsequently transferred to the cyst-
eine residue of a SUMO-conjugating enzyme E2, and
then with the help of an E3 ligase, SUMO is finally conju-
gated to the target lysine residue of a substrate protein
[5,34]. In Arabidopsis, sumoylation of proteins has been

reported in environmental response, flowering time regu-
lation, and phosphorus starvation [13,14,16,19,35-37].
Members of sumoylation pathway such as AtSCEI
(SUMO conjugating enzyme), AtSIZ1 (SUMO ligase),
AtSUMO1land AtSUMO2 have been identified and found
to be involved in ABA signaling and drought response in
Arabidopsis [14,16,35]. In rice, regulation of SUMO con-
jugating enzyme genes by temperature stress has also
been reported [22]. But whether SUMO conjugating en-
zyme imparts stress tolerance to plant is still not clear. In
this study, we characterized a SUMO conjugating en-
zyme gene “SaSce9” from a halophytic grass, Spartina
alterniflora, and investigated its role in abiotic stress tol-
erance mechanisms in plant.
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SaSce9, an ortholog of SCE, induced by multiple stresses
in halophytic grass Spartina alterniflora

We have identified a SUMO conjugating enzyme gene,
SaSce9 from Spartina alterniflora, which has same se-
quence characteristics as the reported yeast SUMO conju-
gating enzyme, Ubc9. The deduced protein sequence
analysis of this gene revealed the presence of high struc-
tural homology with SCE orthologs from amoeba, yeast,
and plants, suggesting evolutionary conserved function of
SCE across the eukaryotes. Predicted tertiary structure of
SaSce9 using SWISS-MODEL software suggested the pres-
ence of four alpha helices and four beta sheets similar to
the known X-ray crystal structure of SCE, HsSce9 of
human [26]. To further validate the functionally conserved
role of SaSce9, a temperature sensitive mutant strain of
Saccharomyces cerevisiae, Ubc9-ts was used [27]. SaSce9
was able to functionally complement the Ubc9 mutant of
yeast, indicating the potential evolutionary conserved

function of SaSce9 between Spartina and yeast. There are
several reports for functional complementation of Ubc9
mutant phenotype by expression of DmlUbc9 from D. mela-
nogaster [38], NbUbc9 from N. benthamiana [39], HsUbc9
from H. sapiens [40], and OsScel from O. sativa [22].
Sumoylation status of the proteins involved in stress
response is reported to be altered as they travel between
the nucleus and the cytosol [13,17]. As the SaSce9 gene
was obtained from salinity stressed library of Spartina
alterniflora, we further wanted to check its organ spe-
cific inducibility in leaves and roots of Spartina alterni-
flora under salt, drought, cold, and exogenously supplied
ABA stress. Interestingly, the increased expression of
SaSce9 transcript was observed under all the stresses, as
shown by qRT-PCR, with highest early induction (30
min) found in leaf by salinity and drought and in root by
drought and ABA, suggesting the stress responsive tran-
script accumulation of SaSce9 in Spartina alterniflora.
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The inducibility of SaSce9 gene by ABA indicated that
the expression of SaSce9 may be regulated through ABA
responsive pathway in Spartina alterniflora. ABA med-
iates the responses of plant to stress conditions such as
salinity, drought, and cold [41,42]. Moreover, salt, cold,
and ABA stress induced accumulation of SUMO conju-
gates and high expression of AtSCE1a has been observed
in different tissues of Arabidopsis [13]. OsScel was found
to be induced by temperature stress in the seedlings of
rice [22]. Chaikam and Karlson [21] reported develop-
mental and stress responsive regulation of SUMO cas-
cade components with highest level of expression in
reproductive tissues suggesting possible role of sumoyla-
tion during flowering in rice.

SaSce9 enhances salinity and drought tolerance in
Arabidopsis

Considering the stress inducible response of SaSce9 in
Spartina alterniflora, SaSce9 gene was further tested for
its role in-planta towards abiotic stress. Under normal
condition, growth and morphology of WT, SaSce9 trans-
genic lines were similar. Under 150 mM NaCl stress, both

Table 1 Stress responsive genes and their functions

transgenic lines could grow and set seed successfully,
while most of the WT plants died. Higher K*/Na" ratio
in SaSce9 transgenic lines under non-stress and salinity
stress suggested improved basal uptake of K™ due to over-
expression of SaSce9. Several studies have demonstrated
the importance of increased K*/Na* ratio for tolerance of
plants against salinity stress [43-46]. Enhanced expression
of two ion transporters, AtNHX1 and AtSOSI, in SaSce9
transgenic plants compared to WT thus confirmed our
hypothesis for the preferential uptake of K" by SaSce9
transgenic plants. Under continuous drought stress,
SaSce9 transgenic plants were healthy, turgid, and green,
while WT plants lost its vigor and growth. SaSce9 expres-
sion improved drought tolerance of SaSce9 Arabidopsis
by maintaining membrane stability as its electrolyte leak-
age was lower than the WT. Retention of chlorophyll in
plants under stress is an important aspect for increased
stress tolerance. This study demonstrated that the
increased level of chlorophyll under salinity and drought
stresses might be an important mechanism for the im-
provement of stress tolerance due to expression of SaSce9
in Arabidopsis.

Gene Function Reference
AtNHX1 (vacuolar Na*/H* antiporter) Compartmentalization of the excessive Na* into vacuole [28]
AtSOST (plasma membrane Na*/H™ antiporter) Na* extrusion from cytosol to surrounding medium [29]
AtP5CS (delta-1-pyrroline-5-carboxylate synthase) Proline biosynthesis [30]
AtRD22 (responsive to dehydration) Drought stress responsive gene [31]
AtSODT (superoxide dismutase) Decomposition of superoxide into hydrogen peroxide [32]
AtCAT (catalase) Decomposition of hydrogen peroxide into water and oxygen [33]
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Figure 7 Expression of stress- responsive genes in SaSce9 Arabldops:s plants. Relative mRNA levels of stress-responsive genes were
determined by quantitative RT-PCR using cDNA synthesized from total RNAs isolated from the shoots of 3-week-old Arabidopsis plants grown
under normal conditions in soil. The Arabidopsis tubulin gene was used as an internal control for normalization of different cONA samples.
Error bars represent standard error of means based on three independent reactions.

SaSce9 enhances abiotic stress tolerance through
scavenging oxygen radicals and proline production
Proline plays a vital role in maintaining osmotic balance
and stabilizing cellular structures in plants [30,47,48].
Increased free proline content in transgenic Arabidopsis
under salinity and drought stress conditions indicated
the role of SaSce9 in proline accumulation, thereby pro-
tecting the plants against the stress. Enhanced expres-
sion of P5CSI (the key gene involved in proline
biosynthesis) in SaSce9 plants compared to the WT
plants further supported our hypothesis for the role of
SaSce9 in osmotic stress tolerance. In an earlier report,
transgenic plants overexpressing the P5CS gene from
Vigna aconitifolia accumulated more proline and were
more tolerant to osmotic stress [47]. Furthermore, histo-
chemical staining of leaves using NBT showed that even
without stress O3 could be stained, but the transgenic
lines had lower levels of ROS (reactive oxygen species)
relative to WT. Drought stress resulted in increased
ROS levels in WT but transgenic lines accumulated re-
markably less O3 as evidenced by the accumulation of
less blue products. ROS were produced in both non-
stress and stress conditions but the balance between the
production and removal of ROS determines its effect on
cellular system [30,32,33]. Plants evolve a complex anti-
oxidant system in order to detoxify stress-induced ROS
in which ROS scavenging enzymes such as superoxide
dismutase and peroxidase play essential role [49].

Increased expression of AtSODI and AtCAT in SaSce9
transgenic plants might be responsible for scavenging
ROS produced under drought stress in this study. These
analyses further validated the role of SaSce9 for improv-
ing stress tolerance in plant by affecting different stress
related pathways. Our observation clearly showed the in-
direct role of SaSce9 in scavenging of oxygen radicals
resulting in protection of plant against osmotic stress.

Conclusions

This study demonstrated for the first time that manipula-
tion of a SaSce9 gene, a member of the sumoylation path-
way, through transgenic approach, can lead to improved
abiotic stress tolerance in plants. Although, Lois et al,
[35] developed AtScela expressing transgenic Arabidopsis
plants, the focus of their study was to correlate the level
of AtScela expression with the level of sumoylation
which in turn attenuates ABA-mediated growth inhibition
and induces ABA- and stress-responsive genes. Thus, we
hypothesize that overexpression of SaSce9 might have
increased the sumoylation status in SaSce9 transgenic
plants and improved the stress tolerance by regulating
stress responsive genes. Further investigations on identify-
ing interacting partner(s) of sumoylation pathway mem-
bers and its target protein by comparing SCE mutant
would reveal the exact molecular mechanisms for pos-
sible role in imparting stress tolerance through manipula-
tion of post translational modifications in plant.
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Methods

Spartina alterniflora plants and stress treatment

Young (three to four-leaf stage) uniform, clonally propa-
gated plants of Spartina alterniflora cv. ‘Vermilion’
grown in sand-filled plastic pots under normal growth
conditions inside a greenhouse with 14 h light and 10 h
dark at 26/18°C day/night temperature were used for
stress related experiments [24]. Pots were supplied with
Hoagland’s nutrient solution [50]. Salinity stress was
imposed by using a 5% (w/v) solution of commercial
synthetic sea salts (Instant Ocean, Aquarium Systems,
Mentor, OH, USA) dissolved in Hoagland’s solution,
which is equivalent to the salt concentration of sea water
(~35 parts per thousand). Drought stress was imposed
by keeping uprooted uniform Spartina plants on What-
man paper under normal growth condition of green-
house. For cold stress, pots containing plants were kept
at 4°C under dim light. For ABA treatment, plants were
supplied with 100 pM ABA (Sigma, USA). Leaf and root
tissues were collected at different time intervals of stress
i.e. 30 min, 1 h, 8 h, 24 h, 48 h, and 72 h from three rep-
resentative plants. Both root and leaf tissues were thor-
oughly washed, wiped with tissue paper, immediately
frozen in liquid nitrogen, and stored at —80°C till further
use. Unstressed plants were harvested as control.

Sequence analysis

An expressed sequence tag #968 (EST) of Spartina alter-
niflora from a salinity stressed EST library constructed
previously in our laboratory [24] was found to be similar
with SUMO conjugate enzyme gene and was referred as
‘SaSce9’ in this report. It was used for multiple sequence
alignment with orthologs from different organisms. Mul-
tiple alignments of SaSce9 were performed using Clus-
talW program [51] using amino acids, and phylogenetic
analyses were conducted in MEGA 4 [52]. Phylogenetic
tree of these sequences were inferred using the
Neighbor-Joining method [53]. The bootstrap consensus
tree inferred from 1,000 replicates was used to represent
the evolutionary history of the selected eukaryotic spe-
cies. The tertiary structure of SaSce9 was predicted by
homology modeling based on crystallographic data
deposited on the Swissprot using SWISS-MODEL [25].

Yeast complementation

Complete open reading frame (ORF) of SaSce9 was PCR
amplified using forward primer, SaSce9NhelF and reverse
primer, SaSce9BamHIR containing Nhel and BamHI re-
striction endonuclease (RE) sites, respectively (Table 1)
and ligated into the Nhel and BamHI cloning site of yeast
expression vector pVTL260 to generate pVTL260-SaSce9
plasmid. The recombinant clone was confirmed by re-
striction analysis and DNA sequencing. Plasmid pVTL260
obtained from EUROSCARF (Frankfurt, Germany) has
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leu2d as the selectable marker and it uses the yeast
ADHI1 promoter and terminator for expression in yeast.
For complementation, Ubc9-ts temperature sensitive yeast
mutant, YWO103 [MAT a ubc9-TRP1, his3-200 leu2-3,
2-112 lys2-801 trpl-1(am) wura3-52 barl:HIS3] was
used [27]. YWOI103 is a temperature sensitive mutant of
S. cerevisiae containing mutant SUMO conjugating
enzyme gene, Ubc9. YWO103 normally grows at 25°C
but is unable to grow at restrictive temperature of 37°C.
Transformation of strain YWO103 was carried out as
described by Ito et al, [54]. Briefly, yeast cells were grown
overnight in YPD medium (BD bioscience, USA) until
reaching the mid-log phase (Agp=1.0), and were then
transformed with pVTL260-SaSce9 or empty pVTL260
(as control) plasmid by PEG/LiCl method. Transformants
were selected in a minimal synthetic drop out medium
lacking leucine (amino acid used as auxotrophic marker).
Transformed yeast cells were checked by PCR for the
presence of SaSce9 gene and colonies were then
restreaked onto solid yeast peptone and dextrose (YPD)
medium and incubated at permissive (25°C) and restrict-
ive (37°C) temperatures. Cloning of genes was carried
out using the protocols in laboratory manual [55]. All the
primers used in this study were designed using primer3
input version 4.0 [56].

RNA isolation and cDNA synthesis

Total RNA was isolated using the RNeasy plant midi kit
(Qiagen, USA), and on-column DNAsel digestion was
carried out to avoid the possible contamination of gen-
omic DNA as per the manufacturer’s instruction (New
England Biolab, USA). Quality of total RNA was checked
in 1.2% formamide-denaturing agarose gel and quantifi-
cation was carried out using ND-1000 spectrophotom-
eter (Nanodrop Technologies, USA). First strand cDNA
was synthesized using iScript™ first strand cDNA synthe-
sis kit (Bio-Rad, USA) as per the instructions given in
the manual.

Quantitative real time reverse transcription polymerase
chain reaction (qRT-PCR)

Quantitative PCR (qRT-PCR) was used in order to
evaluate the expression levels of SaSce9 gene under dif-
ferent stress treatments in the roots and leaves of Spar-
tina alterniflora. qRT-PCR reaction was performed
following the protocol described by Karan and Subudhi
[57]. RNA isolation and cDNA synthesis of the collected
samples were performed as mentioned above. Each 10 pl
of PCR reaction contained 5 pl 2xSYBR Green mix
(Quanta Bioscience, USA), diluted cDNA, and 0.4 pM of
each primer, SaSce9RTF and SaSce9RTR, specific for
SaSce9 gene (Table 2), while tubulin gene of Spartina
alterniflora (Table 2) was used as an internal control for
expression normalization in different cDNA samples.
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Table 2 Primers used for cloning and qRT-PCR of the
SaSce9 gene

Primer name Sequence (5-3)

SaSce9RTF TCAGACTGCAGGCTAAGCAG

SaSce9RTR TGACCCAACGATTTTGTGAA

SaSceBglllF GGAAGATCTATGTCTGGGGGTGGGGGAATC
SaSceSpelR GGACTAGTTCAGACCAGTGCAGGATACTGCTTAGC
SaSceNhelF CTAGCTAGCATGTCTGGGGGTGGGGGAATC
SaSceBamHIR CGGGATCCTCAGACCAGTGCAGGATACTGCTTAGC
pCAMF GGAGAGAACACGGGGGACTCTTG

SaTUBRTF GAAGGTGATGAGGGTGATGAGT

SaTUBRTR TTCAAGCAAACAAGCCTTCATA

Melt curve analysis was performed to check the specifi-
city of amplified product and relative gene expression
levels were determined using the 2788CT method [58].
The CT (cycle threshold) values for both the target and
internal control genes were means of three technical
replicates.

The same procedure was followed to analyze the expres-
sion patterns of six abiotic stress-related genes (Primers
listed in Table 3) in three week old T3 homozygous trans-
genic Arabidopsis and wild type Columbia ecotype plants
grown in vermiculite under normal growth conditions.
The AtTUBRTF and AtTUBRTR (primers for Arabidopsis
tubulin gene in Table 3) were used to verify equal con-
centration of templates for the expression analysis. The
qRT-PCR was repeated at least three times, with different
number of PCR cycles to confirm the differential expres-
sion of stress-related genes in SaSce9 transgenics.

Generation of transgenic plants
The complete ORF of SaSce9 was amplified by PCR
using forward primer SaSce9BglIIF and reverse primer

Table 3 Stress related gene primers used for qRT-PCR in
SaSce9 transgenic Arabidopsis plants

Primer name Sequence (5-3)

AtTUBRTF ATAACCGTTTCAAATTCTCTCTCTC
AtTUBRTR TGCAAATCGTTCTCTCCTTG
AtRD22F GATTCGTCTTCCTCTGATCTG
AtRD22R TGGGTGTTAACGTTTACTCCG
AtP5CSF GAGGGGGTATGACTGCAAAA
AtP5CSR AACAGGAACGCCACCATAAG
AtINHX1F CCGTGCATTACTACTGGAGACAAT
AtNHX1R GTACAAAGCCACGACCTCCAA
AtSOSTF TCGTTTCAGCCAAATCAGAAAGT
AtSOSTR TTTGCCTTGTGCTGCTTTCC
AtSOD1F TCAACTGGAAATATGCAAGCGAGGT
AtSOD1R ACCACACAGCTGAGTTGAGCAAA
AtCATF AGCGCTTTCGGAGCCTCGTG
AtCATR GGCCTCACGTTAAGACGAGTTGC
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SaSce9SpelR (Table 1) containing the Bg/Il and Spel RE
sites respectively, with Pfu DNA polymerase (NEB, USA).
The identity and orientation of p35S-SaSce9 was further
confirmed by DNA sequencing. The PCR product was
digested with Bg/Il and Spel and cloned into pCAM-
BIA1304 vector (CAMBIA, Australia), as Bg/II-Spel frag-
ment of SaSce9 to generate the binary vector 35S-SaSce9.
The construct harboring 35S-SaSce9, was introduced
into Agrobacterium by freeze thaw method and trans-
ferred into wild type Columbia ecotype of Arabidopsis by
floral dip method [59]. Positive transgenic lines were
screened on 40 mg/L hygromycin containing MS
medium [60], and integration of transgene was con-
firmed by PCR using vector specific forward primer,
pPCAMEF and SaSce9 specific reverse primer, SaSce9SpelR
(Table 2). Expression of SaSce9 transgene was verified by
RT-PCR using cDNA made from total RNA isolated from
positive SaSce9 transgenic plants. The SaSce9 transgenic
plants of T3 generation were further used for salinity and
drought stress experiments.

Salinity and drought tolerance assay

Seeds of WT and SaSce9 transgenic Arabidopsis were steri-
lized and directly sown on the vermiculite containing pot-
ting medium PM-15-13 (Lehle seeds, USA) and kept at 4°C
for 4 days then transferred to growth chamber containing
white fluorescent light of 100 pmol m™ s™ under 16 h
light/8 h dark photoperiod at 23+1°C. Four week-old WT
and transgenic plants were further supplied with 150 mM
NaCl for 20 days for salinity stress, and water withheld for
14 days were used for drought test. Rosette leaves harvested
at different time points were used for various physiological
and biochemical assays. At least, three independent experi-
ments with three replicates for each WT and, SaSce9 trans-
genic lines were studied.

Measurement of electrolyte leakage (EL), total chlorophyll
content and proline content

Rosette leaves of four week old WT and SaSce9 trans-
genic Arabidopsis, grown under non-stress and stress
conditions for one week, were harvested and used for
physiological and biochemical measurements. For EL
measurement, protocol of Bajji et al, [61] was used.
Briefly, 100 mg leaves were placed in 25 ml distilled
water, shaken on a gyratory shaker (200 rpm) at room
temperature for 2 h, and the initial conductivity (C1)
was measured with a VWR® Traceable® Expanded
Range Conductivity Meter (VWR, USA). The samples
were then boiled for 10 min to induce maximum leak-
age. After cooling down at room temperature, electro-
lyte conductivity (C2) was measured and the relative
electrical conductivity (C %) was calculated based on
(C1/C2) x 100.
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For estimation of total chlorophyll in WT and SaSce9
lines, protocol suggested by Arnon [62] was followed.
About 100 mg of fine powder of leaf tissue was homoge-
nized in 1 ml of 80% acetone and kept for 15 min at
room temperature in dark. The crude extract was centri-
fuged for 20 min at 10000 rpm (rotation per minute) at
room temperature, and the resultant supernatant was
used for assessing absorbance at 663 and 645 nm with a
spectrophotometer (Shimadzu UV-1600, Japan). Total
chlorophyll content was computed in terms of fresh
weight (FW).

For free proline estimation of WT and SaSce9 trans-
genic plants, standard protocol of Bates et al, [63] was
followed using fresh leaf tissues. Around 100 mg of tis-
sues were used and extracted in 5 mL of 3% sulphosa-
licylic acid at 95°C for 15 min. After filtration, 2 mL of
supernatant was transferred to a new tube containing 2
mL of acetic acid and 2 mL of acidified ninhydrin re-
agent. After 30 min of incubation at 95°C, samples were
kept at room temperature for 30 min and 5 mL of tolu-
ene was added to the tube with shaking at 150 RPM, to
extract red products. The absorbance of the toluene
layer was determined at 532 nm using spectrophotom-
eter (Shimadzu UV-1600, Japan). Standard curve pre-
pared using different concentration of proline by same
method was used for measuring free proline content in
experimental samples. The experiment was repeated at
least three times.

Na* and K* estimation

Leaf tissues were harvested from unstressed, salt-stressed
plants (three weeks old plants treated with 150 mM NaCl
for 20 days) of WT and SaSce9 Arabidopsis, and oven-
dried at 65°C for 48 h. Fifty milligrams of oven dried tis-
sues were digested with 0.1% HNOj; at 100°C for 45 min
and then Na" and K" concentrations were measured using
inductively coupled plasma-mass spectrometry (ICP-MS,
Perkin-Elmer Plasma 400 emission spectrometer).

In situ histochemical localization of O5

For detection of superoxide radicals, histochemical stain-
ing with nitro blue tetrazolium (NBT) was followed
according to Dong et al, [64] with minor modifica-
tion. Leaves detached from four week old WT and the
SaSce9 Arabidopsis plants grown under non-stress or
drought stress for next 7 days were vacuum-infiltrated
in 1 mg/ml fresh NBT solution (prepared in 10 mM
phosphate buffer, pH 7.8) and incubated at ambient
temperature until appearance of dark spots. The stained
leaves were then bleached in concentrated ethanol, kept
in 70% ethanol, and photographed. Images were opened
in Adobe Photoshop version 7 (Adobe Systems Incorpo-
rated, San Jose, CA) and stained areas of leaves were
quantified as described by Lehr et al., [65].

Page 12 of 14

Statistical analysis

Mean values, standard error, and ¢-test were performed
with the help of pre-loaded software in Excel, available
for statistical calculations (http://www.Physics.csbsju.
edu/stats/t-test.html).
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