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Abstract

Background: Seed germination is of immense significance for agriculture and has been studied for centuries. Yet,
our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its
infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the
main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is
overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown.
We therefore attempted to shed light onto some of the genetic events downstream of RGL2.

Results: Gene ontology of the transcriptome differentially requlated by RGL2, as well as extensive cross-comparison
with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a
state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are
known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of
differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription
factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in
RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP), we show that RGL2 directly
downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading
to inhibition of seed germination.

Conclusions: Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell

wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely
interacts with various types of proteins to regulate transcription, and differentially regulates several transcription
factors. Collectively, our data indicate that gibberellins, acting via RGL2, control several aspects of seed germination.
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Background

Gibberellins are phytohormones regulating growth and
development throughout a plant’s life cycle; they are essen-
tial in processes such as stem elongation, floral development
and seed germination [1-4]. The importance of gibberellins
in these processes is most obvious in gibberellin-deficient
mutants; GIBBERELLIC ACID REQUIRING 1 (GAl)
encodes for the ent-kaurene synthetase A of the gibberellin
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biosynthetic pathway, gal plants are therefore unable to
synthesise gibberellins. These mutants are extremely
dwarfed, male-sterile, and most importantly their seeds fail
to germinate without exogenous gibberellin [5,6].
Significant progress has been made in recent years in
elucidating the gibberellin signalling pathway [7,8]. The
gibberellin signal is perceived by the soluble receptors
GIBBERELLIN INSENSITIVE DWARF 1 (OsGID1 or
OsGID1-like) [9,10]. Arabidopsis contains three GID1-like
genes, GIDIa, GIDI1b and GIDIc [11]. The gibberellin-
GID1 interaction triggers the degradation of DELLA
proteins, the major negative regulators of gibberellin
signalling, via the 26S proteasome pathway [12-15]. The
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gibberellin-specific F-box proteins OsGID2 and SLEEPY1
(AtSLY1) mediate this degradation [16-19].

DELLA proteins are a subfamily of the GRAS family of
transcriptional regulators [20], named after their highly
conserved N-terminal DELLA motif, which mediates
gibberellin-responsiveness [21-23]. In Arabidopsis, there are
five DELLA proteins: GIBBERELLIN INSENSITIVE (GAI),
REPRESSOR OF gal-3 (RGA), RGA-likel (RGL1), RGL2
and RGL3 [13,24-26]. Extensive genetic studies using var-
ious combinations of DELLA knock-out mutations have
elucidated overlapping as well as distinct functions of each
protein in repressing plant growth and development: RGA
and GAI are the main repressors of stem elongation,
whereas floral development is regulated by a combination
of RGA, RGL1 and RGL2, and RGL2 is the key DELLA
protein repressing seed germination [24,27-31].

However, the events downstream of DELLAs in the
gibberellin-mediated regulation of growth and develop-
ment are less well understood. Until recently, it was not
clear how DELLA proteins repress gibberellin-mediated
gene expression. Although they have been classified as
transcriptional regulators, they do not have conserved
DNA binding domains. A major break-through in
understanding the molecular mechanism of DELLA-
action was achieved when the direct interaction of
DELLA proteins with PHYTOCHROME INTERACT-
ING FACTOR 3 (PIF3) and PIF4 was shown [32,33].
Since then, the main mode of DELLAs in regulating
transcription is thought to occur via the sequestering of
transcription factors. Recently, the interaction in yeast
with more members of the basic helix-loop-helix
(bHLH) subfamily 15, namely PIF3-like 5 (PIL5), PIL2
and SPATULA (SPT) was shown; the authors thus
hypothesised that DELLAs could interact with all mem-
bers of this subfamily [34]. This further corroborates the
conclusion that the main molecular mechanism of
DELLA function is their interaction with transcription
factors, which leads to the formation of inactive com-
plexes [35]. This model has been further revised to show
that DELLA proteins are also able to activate transcrip-
tion by sequestration of inhibitors [36-38].

Here, we focus on gibberellin-mediated regulation of
germination, in particular the molecular mechanism by
which the DELLA protein RGL2 suppresses germination.
Germination is a complex process of three phases, each
being tightly regulated at various levels. Phase I
describes the intake of water, during which the seed
imbibes, whereas in phase II metabolic processes are re-
initiated (also called germination semsu stricto), and in
phase III the radicle emerges [39,40]. Seed germination
is regulated by the balance of the two phytohormones
abscisic acid and gibberellins, which inhibit and promote
germination, respectively. Gibberellins function in late
phase II of germination [41], a phase which is
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physiologically characterised mainly by post-imbibitional
cell elongation in embryonic radicle and hypocotyl as
well as endosperm weakening [42]. Gibberellins are
therefore key players in the actual commitment of seeds
to germination.

RGL2 is the major DELLA protein involved in repres-
sing germination [25,31]. It performs this function, at
least partly, through increasing abscisic acid biosynthesis
as well as activities of ABI5 and ABI3 [43,44]. This has
been further elucidated by Lee et al. [45], showing that
RGL2 regulates abscisic acid release in the endosperm to
control embryo growth. In fact, RGL2 has been identi-
fied as one of the genes to be involved in the regulation
of seed germination at the phase II to phase III transi-
tion [46]. Despite all these findings, it remains unclear
exactly how RGL2 suppresses this complex process of
germination. Therefore, elucidation of the molecular
mechanism of RGL2 function would not only allow us
to gain a deeper understanding of gibberellin-mediated
germination, but also enable us to manipulate details of
germination, for example to prevent pre-harvest sprout-
ing in crops, at the same time ensure full and synchro-
nous germination upon sowing.

In this study, we show that RGL2 function causes
seeds to enter a state of dormancy. Microarray analysis
showed that RGL2 up-regulates several genes associated
with dormant states of seeds. Enforcing dormancy is
partly achieved by RGL2 directly inhibiting transcription
of cell wall-modulating genes ALPHA EXPANSIN3
(EXPA3) and EXPAS, by binding to their promoters, per-
haps as a complex with as yet unidentified transcription
factors. Thus, RGL2 directly affects cell growth. These
data suggest that RGL2 inhibits seed germination both
directly and indirectly.

Results

RGL2-mediated transcriptome in non-germinating seeds
In order to identify genes that are differentially regulated
by RGL2 to repress germination, an oligonucleotide-
based DNA microarray analysis (Agilent 60-mer gene
expression microarray, 4x44k) was performed. We com-
pared the transcriptome of the gal-3 rga-t2 mutant
seeds, which are unable to germinate, with that from
gal-3 rga-t2 rgl2-1, in which germination is rescued to
near wild type levels (Figure 1). Our aim was to identify
target genes specifically regulated by RGL2. We there-
fore chose seeds from both gibberellin-deficient as well
as RGA knock-out backgrounds. With the gibberellin-
deficient background we aimed to exclude gibberellin-
mediated, DELLA-independent target genes [47]. The
knock-out of RGA in both genotypes was meant to
further narrow our results down to RGL2-specific tar-
gets, since RGA plays a minor, additive role in repressing
seed germination [31]. RNA was obtained from seeds
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Figure 1 A mutation in RGL2 can rescue the non-germinating
phenotype of the gibberellin-deficient mutant. Seeds of the
double mutant gal-3 rga-t2 fail to germinate, due to stabilised RGL2,
whereas the mutation of RGL2 in the triple mutant gal-3 rga-t2
rgl2-1 rescues germination to near wild-type levels. Germination rate
was determined over a period of five days following stratification of
seeds at 4°C for five days. Error bars indicated SD of three biological
replicates. Seeds were deemed germinated when the radicle had
visibly emerged from the seed coat. Pictures are representative of
seeds/seedlings five days after imbibition.

after imbibition for five days at 4°C. This cold treatment
promotes as well as synchronises germination [41,48].
Hence, the RNA isolated from seeds treated in such a
way should represent the steady-state transcriptomes of
seeds poised for germination. Two microarray replicates
were performed for each genotype with independently
obtained RNA. We applied stringent analysis criteria,
referring to genes as being RGL2-up-regulated (RGL2-
UP) or RGL2-down-regulated (RGL2-DOWN), only if in
both hybridisations the signal ratio of gal-3 rga-t2 to
gal-3 rga-t2 rgl2-1 was equal to or more than 2-fold dif-
ferent, with a p-value cut-off at 0.01. Using these criteria,
we identified 607 genes as putative RGL2-regulated
genes, 253 being up-regulated (RGL2-UP) and 355 being
down-regulated (RGL2-DOWN) (Additional file 1).

To further understand events during the RGL2-
mediated arrest in germination, and to eliminate second-
ary effects of the germination arrest, we classified our
gene lists by gene ontology (GO) (http://www.arabidopsis.
org/tools/bulk/go/index.jsp and http://bioinfo.cau.edu.cn/
agriGO/index.php) (Additional file 2). In our data, 350
and 249 of down- and up-regulated genes, respectively,
were annotated. As expected, transcripts related to post-
embryonic morphogenesis were significantly (p<0.01)
enriched in RGL2-DOWN. In accordance with that, GO
terms related to cellular components ‘plasma membrane’
and ‘plant-type cell wall'’ were significantly enriched. We
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further found a significant over-representation of the
molecular function terms ‘hydrolase activity, ‘carboxyles-
terase activity’ (p<0.05) and ‘serine-type carboxypeptidase
activity’ (p<0.01). The predominant functional themes in
RGL2-UP were related to responses to various exogenous
and endogenous cues; GO terms ‘response to oxidative
stress, ‘response to abiotic stimulus, ‘toxin catabolic pro-
cesses’ and ‘response to gibberellin' were significantly
enriched (p<0.01). With respect to molecular functions,
we found a significant (p<0.01) enrichment of genes
assigned ‘glutathione transferase activity and ‘UDP-
glucosyl transferase activity'. Furthermore, 33 genes (13%)
were found in the ‘transcription factor activity’ category.
These include several uncharacterised transcription fac-
tors containing MYB, basic helix-loop-helix (bHLH) or
AP2 domains, as well as the Homeodomain-Leucine-
zipper (HD-Zip) genes ATHB4 and ATHB7, MYBIII,
WUSCHEL-related homeobox 2 (WOX2) and WRKY40,
among others. Furthermore, several hormone pathways
seem to be affected; genes involved in the response to sal-
icylic acid and gibberellins are significantly enriched in the
up-regulated genes, whereas the response to auxin appears
as an enriched term in down-regulated genes. Also, many
of the up-regulated transcription factors appear to be either
responsive to or modulate responses to the phytohormones
abscisic acid, ethylene, salicylic acid, brassinosteroids and
gibberellins.

RGL2-mediated transcriptome overlaps with

transcriptomes of dormant wild-type seeds

Since germination is a complex process mediated by a
vast number of cues, a large number of differentially
regulated genes likely represent secondary responses due
to the arrest of germination, rather than a direct effect
of RGL2 function. We therefore aimed to narrow down
our gene lists by performing cross-comparisons with
other available microarray data related to seeds, germi-
nation, gibberellins and DELLA proteins. One data set,
generated by Cao et al. [47], contains gene expression
profiles of germinating seeds and developing flowers,
respectively, of wild type cv. Landsberg erecta (Ler), gal-
3, and the gal-3 rga gai rgll rgl2 quintuple mutant,
identifying both DELLA-dependent as well as DELLA-
independent or partially dependent genes. Another study
identified direct target genes of RGA in seedling shoots
[49]. We also compared our data with the list of differ-
entially regulated genes in seeds of the comatose (cts-1)
mutant, compared to dormant (D) and after-ripened
(AR) seeds of wild type cv. Landsberg erecta (Ler) [50].
COMATOSE (CTS) encodes for a peroxisomal ATP
binding cassette transporter, which is required for seed-
ling establishment and survival just before radicle pro-
trusion, downstream of RGL2; thus, cts-I mutant seeds
remain “forever dormant”. Lastly, PHYTOCHROME
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INTERACTING FACTOR 3-LIKES (PILS), encoding for a
bHLH transcription factor, is a key negative regulator of
germination [51], and directly interacts with DELLA
proteins [34]. Therefore, we also compared our data set
with direct target genes of PIL5 that were identified by
both Chromatin Immunoprecipitation-chip (ChIP-chip)
and microarray data [52].

Despite various differences between these data sets, most
importantly the experimental set-up (Affymetrix ATHI1 vs.
Agilent 4x44k array), we observed a considerable overlap of
gene expression profiles (Additional file 3). Of our RGL2-
UP list, 89 genes (35%) overlap with at least one of these
data sets, 58 of which are up-regulated in dormant seeds as
identified by Carrera et al. [50], whereas 146 genes are
unique for our data. Likewise, 177 genes (50%) of RGL2-
DOWN genes were identified in at least one other data set,
110 of which are down-regulated in dormant seeds [50],
with 177 genes being unique for our experiment. This not
only validates the quality of our data, but also indicates the
physiological state in which seeds appear to be arrested due
to RGL2 action. Twelve of the genes that have been identi-
fied as direct target genes of PIL5 [52] can also be found in
our data (six genes in RGL2-UP, six in RGL2-DOWN). In
total, we found 75 and 17 down- and up-regulated genes,
respectively, that were identified as DELLA-dependent
transcripts in seeds [47]. Interestingly, some of these (three
genes in RGL2-UP, six genes in RGL2-DOWN) appear to
be DELLA targets in both flower buds and seeds. Thus,
these genes likely represent direct targets of RGL2. Lastly,
three of the genes directly targeted by RGA in seedling
shoots [49] can also be found in our data, including GIB-
BERELLIN 20-OXIDASE (GA200x) and GIBBERELLIN
INSENSITIVE DWARF1b (GID1b). We therefore deter-
mined the expression levels of some of the genes that are
likely direct targets of RGL2 in imbibed seeds of gal-3 rga-
t2 and gal-3 rga-t2 rgl2-1 (Figure 2). The as yet uncharac-
terised gene At2¢45210 of the SMALL AUXIN UPREGU-
LATED RNA (SAUR)-family, which appears to be a
DELLA target gene in both flowers and seeds, is expressed
at much higher levels in imbibed seeds of the gal-3 rga-t2
mutant, indicating that it could be up-regulated by RGL2.
We also confirmed the expression of the PIL5 target gene
ALPHA EXPANSIN 8 (AtEXPA8) and the related
AtEXPA3, as well as the DNA-binding with one finger
(Dof)-type transcription factor Dof2.1, all of which are
down-regulated in the presence of RGL2. The observed
expression levels are consistent with our microarray data,
which further supports the hypothesis that these genes
could be directly regulated by RGL2.

Several cis-elements are abundant in promoters of
RGL2-regulated genes

We further analysed our data, aiming to understand
how transcriptional regulation by RGL2 is coordinated.
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Putative DELLA-targets in imbibed seeds
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Figure 2 Relative expression levels of known DELLA target
genes in seeds. Seeds were stratified in water, and RNA was
extracted after five days. Expression levels of known DELLA-targets
were determined by gRT-PCR in imbibed seeds of gal-3 rga, relative
to Tubulin (TUB), and compared to gal-3 rga rgl2-1. Asterisks indicate
a significant difference in expression levels (p<0.05). RQ = relative

quantity of transcript.
o

For this, we identified motifs that are over-represented
in the promoter regions of differentially regulated
genes. Promoter regions (-1,000 to +200) of the
RGL2-regulated genes, were used for ab initio detection
of putative cis-elements using the Dragon Motif Builder
algorithms. Motifs with occurrences of 20% or higher
were matched with known promoter elements in the
TRANSFAC, PLACE and AGRIS databases. This way,
we identified 14 motifs in promoters of up-regulated
(Table 1) and nine in promoters of down-regulated
genes (Table 2). In promoters of both RGL2-UP and
RGL2-DOWN genes, gibberellin response element
(GARE)-like motifs, which are associated with GAMYB-
type transcription factors, are the most significantly
enriched motifs. Furthermore, motifs associated with
the auxin signalling intermediate AUXIN RESPONSE
FACTORI (ARFI) are significantly enriched in promo-
ters of up-regulated genes, with three out of the 14
motifs detected belonging to this category. Interestingly,
three out of the 14 motifs detected in RGL2-UP are
associated with transcription factors of the Dof-type
(‘DNA-binding with one finger’), two of which (AAAAG
element and TAAAG element) are present in more than
35% of the promoters analysed.

To further evaluate the biological significance of our
ab initio promoter motif prediction, we tested the Dof-
recognised motifs for binding by the RGL2-complex
in vivo. These motifs will henceforth be referred to as
Mporl (AAAAG element), Mpy2 (TAAAG element) and
Mpo3 (AAGAA element). We generated reporter con-
structs containing three tandem copies of the consensus
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Table 1 Cis-elements enriched in promoters of RGL2-up-regulated genes

Consensus Putative Associated type %* TICC  e-value
sequence cis-element’ of transcription
factor

TTTTTCAA Pyrimidine box-like / PE1/AT-hook element-like / GT element-like GAMYB / PF1, GT1 / GT3b 46 1453 2e-005

AAAAAAAAAG  AAAAG element / PE1/AT-hook element-like Dof1, Dof4, Dof11, Dof16 / PF1 42 1902 0e+000
AATAAAGA TAAAG element Dof4, Dof11, Dof16 37 1450  0e+000
TCTCTCTTT GAGA element-like / TCA-1 binding site GAGA-binding factor BBR / TCA-1 32 1700 2e-005

TATTTGTTT GARE-like / AuxRE-like GAMYB / ARF1 31 16.08  0e+000
TTAGTTTT Myb box-like MYB1 29 1503 2e-005

TTTGTTTTC Pyrimidine box-like/GARE / GT element-like / AuxRE-like GAMYB / HD PR2 / ARF1 27 1623 0e+000
TTTCTTTG TCA-1 binding site TCA-1 (tobacco nuclear protein 1) 26 16.00 0e+000
TGCTTCTC CAMTA3 binding site / AuxRE-like / IDE1 CAMTA3 / ARF1 26 1344 3e-005

(iron-deficiency-responsive element 1)

AAAAAAATG AT hook/PE1 element-like PF1/ DBP 23 1645 2e-005

CTTATAT TATA-box TBP 21 1510 0e+000
CAAGAATG AAGAA motif Dof2 20 1403 0e+000
GATTTTGTT GARE-like GAMYB 20 1605  3e-005

AAGACAAA GARE-like GAMYB 20 1600 0e+000

'Homology with motifs identified in Arabidopsis and other plant species (TRANSFAC, PLACE and AGRIS databases).

2Percent occurrence in critical promoters relative to background sequences.
3Total Information Content.

Promoter motifs identified in promoters of RGL2-UP, with consensus sequence, name and associated transcription factors.

sequence of each motif 5’ of the minimal 35S promoter
to drive the expression of GFP (Figure 3B) and trans-
fected Arabidopsis mesophyll protoplasts derived from a
358:RGL2-GR gal-3 rga-t2 rgl2-1 transgenic line. These
plants constitutively express RGL2 fused to the rat glu-
cocorticoid-receptor, which allows for inducible nuclear
translocation by treatment with dexamethasone (DEX).
This system was described as a ‘potent tool in examining
transcriptional activation” and has been successfully used
before [30,53]. Without treatment, plants of this trans-
genic line bear no difference to those of the triple

mutant gal-3 rga-t2 rgl2-1. Upon DEX-treatment,
RGL2-GR fusion protein can enter the nucleus, which in
the intact plants reverts both flower development and
seed germination to the gibberellin-deficient phenotype
(to resemble the double mutant gal-3 rga-t2), indicating
that the fusion protein is functional (Figure 4). After
transfection, protoplasts were either treated with (1)
0.01% ethanol (MOCK), (2) DEX in 0.01% ethanol, to
induce RGL2 translocation into the nucleus, or (3) DEX
plus gibberellic acid (GAj3), which will promote the
degradation of RGL2. Thus, if the selected promoter

Table 2 Cis-elements enriched in promoters of RGL2-down-regulated genes

TIc3

Consensus Putative of Associated type %? e-value
sequence cis-element’ of transcription
factor

TCCAAAAA AT-hook/PE1 element-like / L-box/UV-B responsive element-like PF1 38 14.52 2e-005

GTTTTTTTT GARE-like / AT-hook/PE1 element-like GAMYB / PF1 34 18.00 0e+000
TATAACAA MYB box-like / GARE-like GAMYB 33 14.51 0e+000
TTTATTTTA Box lll-like GT-1 32 17.13 2e-005

AAATTTCA GT element-like GT-1 30 15.01 0e-+000
TITCTTTG TCA-1 (tobacco nuclear protein 1) binding site / T-box-like TCA-1 23 16.00 2e-005

AGAAAGTG phyA-induced motifs / Sucrose Responsive Element (SURE)-like 23 15.00 0e+000
AATTATTTA TATA-box TBP 21 16.58 2e-005

ATTATGAA JASE1/JASE2-like AP2/ERF (jasmonate inducible) 20 15.00 2e-005

"Homology with motifs identified in Arabidopsis and other plant species (TRANSFAC, PLACE and AGRIS databases).

2Percent occurrence in critical promoters relative to background sequences.
3Total Information Content.

Promoter motifs identified in promoters of RGL2-DOWN, with consensus sequence, name and associated transcription factors.
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elements are involved in RGL2-mediated transcriptional
regulation, we expected to observe changes in GFP-
signal intensity; upon DEX-treatment, GFP-signal should
increase compared to that observed in MOCK-treated
transfected protoplasts, whereas protoplasts treated with
DEX plus GAj3 should not exhibit different intensities of
GFP. Indeed, we were able to observe a significant
increase in GFP-intensity in protoplasts containing con-
structs with two of the three Dof-binding motifs tested
(Figure 3A), both with respect to maximum as well as
average intensity of fluorescence within a given proto-
plast (Figure 3C). This increase of GFP-intensity indi-
cates a transcriptional activation by RGL2 (as a complex
with other proteins) that is dependent on the presence
of these Dof-binding motifs. Interestingly, highest GFP-
induction was observed with Mp¢1, which occurs at the
highest frequency (42%) in our data. Collectively, these

results indicate that the predicted motifs in our analysis
are indeed cis-regulatory elements involved in RGL2-
mediated regulation of germination.

RGL2 directly regulates several genes affecting various
physiological aspects to inhibit germination

To confirm if a selected few genes from our microarray
dataset are directly regulated by RGL2, we performed a
Chromatin Immunoprecipitation (ChIP)-quantitative
real-time PCR (qRT-PCR) analysis using the 355::RGL2-GR
gal-3 rga-t2 rgl2-1 transgenic line. Chromatin fragments
were isolated from flower buds of 4- to 5-week-old plants
3h after treatment with 10pM DEX, using monoclonal
anti-GR antibodies. Chromatin isolated in the same man-
ner from Mock-treated flower buds served as control.
Since DELLA proteins do not directly bind to DNA, we
used two steps of cross-linking during tissue fixation. First,



Stamm et al. BMC Plant Biology 2012, 12:179
http://www.biomedcentral.com/1471-2229/12/179

Page 7 of 16

biological replicates. Error bars indicate SD. dai — days after imbibition.

Figure 4 RGL2 tagged with GR is biologically functional. Flower development and seed germination phenotype of gal-3 rga-t2 rgl2-1 35S:
RGL2-GR without (A, E) and with (B, F) DEX-treatment. Without DEX-treatment, RGL2-GR fusion protein is held in the cytoplasm, thus unable to
perform its function; the flower phenotype therefore resembles the triple mutant gal-3 rga-t2 rgl2-1 (C), and seeds readily germinate upon
imbibition (E, G). Upon DEX-treatment, RGL2-GR can enter the nucleus and regulate transcription; the flower phenotype is reverted to the double
mutant gal-3 rga-t2 phenotype with sterile flowers with stunted petals and stamens (D), and germination is significantly delayed and inhibited
(F, G). Two sepals of one flower each have been removed in (B) and (D) to reveal the short petals and stamens. Germination was scored in three
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we performed a protein-protein cross-linking using disucci-
nimidyl glutarate (DSG) [54], after which we cross-linked
protein with DNA using formaldehyde, followed by chro-
matin isolation. We tested the efficiency of our protein
pull-down by Western Blot, on which we observed a single
band for GR-tagged RGL2 (Figure 5A). This not only indi-
cates that we were able to specifically pull down RGL2, but
also highlights the efficiency of our additional cross-linking,
since no signal from RGL2-GR can be detected post
binding. As a further control for our experimental set-
up, we isolated RNA from flower bud tissue 4h after
DEX-treatment, and determined expression levels of
putative RGL2 target genes identified from our microar-
ray analysis (Figure 5B). Overall, the expression changes
of the putative target genes tested overlap with those
observed in seeds earlier. However, the changes in
expression levels appear to be more moderate compared
to those seen in imbibed seeds, with Dof2.1 not showing
any change in expression upon DEX-treatment.

For each putative RGL2-target promoter, we designed
primers to amplify approximately 90 to 250 bp frag-
ments within the region 1,000 bp upstream of the tran-
scription start site (TSS) (Figure 5C). In isolated
chromatin, we determined the enrichment of those pro-
moter fragments over ACTIN2 (ACT?2), relative to the
control, by qRT-PCR. Overall, we observed a 4- to
6.5-fold enrichment of specific promoter fragments
(Figure 5C). From the promoters of downregulated genes
tested, both EXPA3 and EXPAS8 appear to be bound by
the complex involving RGL2; however, the promoter of
EXPA8 shows a significantly higher enrichment of all

fragments tested, compared to EXPA3. Promoter frag-
ments of the Dof-type transcription factor Dof2.1 did not
show any significant enrichment, which correlates with
the lack of transcriptional response in this tissue
(Figure 5B). Among promoters of up-regulated genes, the
promoter of At2¢45210, an as yet uncharacterised gene
of the SMALL AUXIN UPREGULATED RNA (SAUR)-
protein family, shows a strong enrichment.

Selected RGL2-target genes play a role in the regulation
of germination in response to gibberellin and abscisic
acid

We selected At2g45210, ATHB2 and ATHBS as represen-
tative RGL2 target genes in an attempt to further validate
our microarray data. At2¢g45210 is a member of the
SAUR-gene family of unknown function. It appears as a
DELLA-target in both flowers and seeds, and our ChIP
data indicate that it is a direct target gene of RGL2.
ATHB2 and ATHBS were chosen as representative homeo-
box transcription factors that are likely downstream of
RGL2 function. ATHB2 appears as up-regulated gene in
our microarray only at lower stringency (p<0.05), but the
expression change in seeds of gal-3 rga-t2 rgl2-1 vs. gal-3
rga-t2 could be confirmed (Additional file 4). On the other
hand, ATHBS appears to be down-regulated in seeds with
stabilised RGL2. Both genes have been characterised pre-
viously, with ATHB2 being one of the key transcription
factors involved in the regulation of shade avoidance [55],
and ATHBS5 playing a role in the abscisic acid-mediated
repression of germination and seedling root growth [56].
However, no data are available regarding the regulation of
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Figure 5 RGL2-GR directly binds to the promoters of various genes. (A) Western Blot using anti-GR antibody on samples at various stages of
the protein-chromatin isolation; IN, input, PB, post binding, E, eluted chromatin/protein complex. (B) Relative expression of putative RGL2-/DELLA-
target genes in flower buds of gai-3 rga-t2 rgl2-1 355:RGL2-GR 4h after DEX-treatment, relative to Tubulin (TUB). Asterisks indicate a significant
difference in expression levels compared to the control (p<0.05). (C) ChIP-gRT-PCR analysis of selected target gene promoters. Promoter regions
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RQ = relative quantity.
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germination by ATHB2, or the molecular mechanism by
which ATHBS increases abscisic acid sensitivity in seeds.
We were therefore intrigued to explore the possibility of
their involvement in gibberellin-mediated germination
control.

Significantly higher transcript levels were detected for
these three genes in both dry and imbibed seeds, com-
pared to any other tissue of mature plants tested
(Figure 6A), suggesting that they could indeed play a
role in seed development, maturation and/or germina-
tion. Interestingly, expression of At2¢45210 is higher
than that of ATHB2 and ATHBS in all plant tissues
tested, and showed a more than 18-fold increase from

flower buds (up to developmental stage 13) to open
flowers (stage 14).

We obtained T-DNA insertion lines for the three
genes, which showed low or no expression of the tar-
geted gene (Figure 6B-D). Germination responses in
these mutants were analysed to confirm their involve-
ment in RGL2-, thus gibberellin-mediated germination
regulation. Germination rates were examined in
response to paclobutrazol (PAC), a gibberellin biosynth-
esis inhibitor, as well as to abscisic acid, which opposes
gibberellin action in germination (Figure 7). As controls,
we analysed germination responses of both wild type
and the gal-3 rga-t2 rgl2-1 mutant. The loss of function
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Figure 6 Relative expression levels of ATHB2, ATHB5 and
At2g45210 are high in seeds. Relative expression levels of the
RGL2 target genes ATHB2, ATHB5 and At2g45210 in various tissues of
wild type plants as determined by qRT-PCR, relative to Tubulin (TUB),
compared to the expression in rosette leaves (A). All three genes
appear to be highly expressed in seed tissues, suggesting a role in
the regulation of seed/embryo development or maturation. In
addition, At2g454210 is highly expressed in flowers, suggesting
additional functions in flower development. (B-D) Expression levels
of ATHB2, ATHB5 and At2g45210 in dry seeds of respective T-DNA
insertion lines. RQ = relative quantity of transcripts.

of RGL2 in this triple mutant does not only rescue the
non-germinating phenotype of the gal-3 rga-t2 mutant
(Figure 1), but also renders these seeds insensitive to
PAC (Figure 7). However, their germination responses to
abscisic acid did not differ significantly from those of
wild type. Germination of at2¢g45210 seeds was more
severely inhibited than the wild-type seeds by all treat-
ments, indicating that this mutant is hypersensitive to
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both PAC and abscisic acid with respect to germination.
The effect of PAC on seed germination of athb2 and
athb5 mutants, on the other hand, was not significantly
different from that of the wild type. However, athb2 and
athb5 mutant seeds differed in their germination
response to abscisic acid; at a low concentration (1uM),
germination of athb2, but not athb5, is more strongly
inhibited than germination of wild-type seeds. However,
at higher concentrations of abscisic acid tested, germina-
tion of both mutants is inhibited to a greater extent than
that of the wild type. The increased sensitivity to abscisic
acid of the athb2 and athb5 mutant seeds further
prompted us to test whether expression of either gene is
responsive to abscisic acid treatment. We therefore
determined the relative expression of ATHB2 and
ATHBS in gal-3 rga-t2 rgi2-1 and gal-3 rga-t2 seeds that
were imbibed in water or abscisic acid (Additional file 4).
Interestingly, the transcript levels of the two genes do
not differ between the water- and abscisic acid-treat-
ments. In the presence of RGL2, ATHB2 is expressed
at a significantly higher level, while ATHBS shows
lower transcript levels.

Discussion

RGL2-mediated arrest of germination likely induces a
state of secondary dormancy

Due to its immense significance for agriculture germina-
tion is one of the most extensively studied fields of plant
physiology. Yet, the molecular mechanisms underlying
the regulation of germination and dormancy are still lar-
gely unknown. In this study, we aimed to elucidate some
of the downstream events of the DELLA protein RGL2
in the suppression of germination. Our microarray ana-
lysis showed that in non-germinating seeds with stabi-
lised RGL2 protein, genes associated with various stress-
responses are enriched among up-regulated genes, along
with gibberellin-responsive genes. This is in line with
previous transcriptome analyses indicating a high repre-
sentation of genes related to abscisic acid and stress
responses in dormant seeds. On the other hand, as
expected, genes associated with embryonic morphogen-
esis appear to be over-represented in down-regulated
genes. More valuable information, however, could be
inferred by comparing our gene lists with other available
seed- and germination-related microarray data. Overall,
the transcriptome of gal-3 rga-t2 seeds strongly resem-
bles that of dormant seeds, suggesting that seeds with
stabilised RGL2 are either unable to leave primary dor-
mancy, or that they are entering a state of secondary
dormancy upon imbibition. Thus, RGL2 could be
involved in induction or maintenance of seed dormancy.
However, we can only speculate if RGL2 maintains pri-
mary dormancy or induces secondary dormancy. None-
theless, it had been determined that gibberellins, thus
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Figure 7 Germination responses are affected in mutants of ATHB2, ATHB5 and At2g45210. Seeds of wild type and insertion lines were
surface sterilised and, without stratification, germinated on 1xMS, supplemented with 0.01% ethanol (MOCK), 1, 2 or 5 uM Paclobutrazol (PAQ), 1
or 5 UM abscisic acid (ABA). Germination was scored six days after imbibition. Seeds were deemed germinated if the radicle had visibly emerged
from the seed coat. Statistical differences were analysed using a two-tailed t-test, and significant differences are indicated by one and two
asterisks indicating p-values of p<0.05 and p<0.01, respectively.

RGL2, act late in phase II of the germination process. At
this stage seeds have already left primary dormancy, thus
have committed to germination. Based on our data, we
propose that RGL2 function causes seeds to enter a state
of secondary dormancy, in part by directly arresting
embryonic growth.

According to our data, RGL2 also seems to positively
regulate the expression of a number of transcription fac-
tors of MYB-, AP2/ERF-, bHLH- and HD-Zip-types,
which are involved in various responses to phytohor-
mones as well as developmental stages. For example,
ATHB4 has previously been characterised as a regulator
of shade avoidance, being strongly up-regulated by far
red light, and modulating the responses to auxins, bras-
sinosteroids and gibberellins in seedlings [57]. MYB111
was shown to be mainly expressed in cotyledons of seed-
lings, and it plays a role in flavonol accumulation [58].
Two transcription factors have previously been shown to
be involved in seed development or germination; WOX2
regulates apical embryo patterning during seed

development [59,60], whereas WRKY40, which is
strongly up-regulated by abscisic acid, is a transcrip-
tional repressor in abscisic acid and abiotic stress
responses [61]. It is tempting to speculate that RGL2
controls far more aspects of seed/embryo development
and germination than previously thought, since we
observed up-regulation of numerous transcription fac-
tors in our microarray analysis. However, the exact tran-
scriptional network governed by RGL2 action, and the
relationship between these transcription factors and
RGL2 function remains to be further elucidated.
DELLAs have been shown to physically interact with a
number of bHLH-type transcription factors, leading to
the hypothesis that interaction with bHLH-type of tran-
scription factors is the main underlying molecular
mechanism for DELLA function [32-34]. Importantly, it
was shown that DELLAs directly interact with PIL5, an
inhibitor of seed germination [52]; it is therefore not sur-
prising to find several of its direct target genes in our
data. For example, PHYTOCHROME INTERACTING
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FACTOR3-LIKE2 (PIL2) is 3.4-fold up-regulated in our
data. It belongs to a light-responsive bHLH transcription
factor family, and has been shown to be involved in seed
germination responses to red/far red light [62]. Interest-
ingly, PIL2 was also shown to physically interact with
RGL2 [34], indicating that RGL2 might be intricately
involved in the light-dependent phytochrome-mediated
regulation of germination. In RGL2-DOWN, EXPANSIN
A8 (EXPAS) and CYSTEINE PROTEINASEI (CPI), both
more than 3.5-fold downregulated, overlap with PIL5
direct targets, amongst others. CPI belongs to a group
of cell wall proteins involved in cell wall modulation and
cell growth [63]. Expansins are a group of cell-wall mod-
ulating enzymes, many members of which have been
shown to be responsive to cold-, abscisic acid- and
gibberellin-treatment [reviewed in: 42]. Thus, both genes
are involved in weakening cross-links of cell wall com-
ponents, which allows cell elongation. Therefore, they
are considered to be at the “end” of the signalling cas-
cade that leads to cell growth. More importantly, both
EXPA8 and CPI have also been identified as DELLA-
dependent transcripts [47], further indicating that they
could be direct target genes of RGL2.

RGL2-mediated transcriptional regulation should involve
the interaction with various classes of transcription
factors

To obtain a better understanding of the regulatory net-
work underlying RGL2 function in the repression of
seed germination, we performed an ab initio promoter
motif detection in promoters of differentially regulated
genes. We identified several motifs that are overrepre-
sented in our data. In promoters of both up- and down-
regulated genes, we detected a number of GAREs,
motifs that are typically bound by transcription factors
of the GAMYB-type. GAMYB transcription factors
respond to gibberellin signalling, and activate transcrip-
tion of gibberellin-responsive genes [64,65]. This sug-
gests that our microarray data are indeed enriched for
genes involved in the gibberellin-mediated regulation of
germination, corroborating the quality of our data. It
furthermore allows us to hypothesise that RGL2 could
interact with GAMYB transcription factors to regulate
transcription. Since GARE-like motifs can be found in
both RGL2-UP and RGL2-DOWN, this transcriptional
regulation is likely mediated by other proteins that form
complexes with RGL2. Further investigations into
RGL2-interacting proteins are required to clarify this. In
addition, motifs associated with the auxin signalling-
related transcription factor ARF1 appear to be enriched
in up-regulated genes. This allows us to hypothesise
that RGL2-dependent signalling pathway could also
interact with auxin signalling in the regulation of
embryonic growth.
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Furthermore, we observed a strong enrichment of
motifs associated with Dof-type transcription factors in
the promoters of up-regulated transcripts. Using a pro-
toplast assay, we could confirm that these motifs are
indeed involved in the RGL2-mediated transcriptional
activation of target genes in planta. It is therefore
tempting to speculate that RGL2 might also interact
with Dof transcription factors to activate transcription.
However, we cannot exclude the possibility that RGL2
binds to and inhibits competitors or inhibitors of Dof
proteins, thus allowing Dof proteins to bind to their tar-
get promoters and induce transcription, a similar sce-
nario as was reported for DELLA action in the jasmonic
acid signalling pathway [36]. Dof proteins are a family of
plant-specific transcription factors with some 36 mem-
bers in Arabidopsis, many of which have been implicated
in the regulation of germination. For example, the Dof
zinc finger protein Dof Affecting Germinationl (DAGI)
and DAG2 have been shown to possess opposing roles
in the regulation of germination, with DAGI inhibiting
germination by mediating PIL5 activity as well as
directly affecting gibberellin biosynthesis [66,67].
Another Dof transcription factor, Dof6, was shown to
negatively regulate germination by affecting abscisic acid
signalling in seeds [68]. It is therefore likely that Dof
proteins play crucial roles in the gibberellin-mediated
regulation of germination, and that the enrichment of
promoter motifs recognised by Dof transcription factors
in our data is of biological significance. It also suggests
that either Dof transcription factors themselves or their
inhibitors could be binding partners of RGL2. It has
been reported that all Dof proteins, likely due to the
high similarity of their DNA binding domains, recognise
similar target sequences, containing a CTTT consensus
core [69]. It was therefore proposed that specificity with
regards to spatiotemporal expression and/or interaction
with other proteins confers specific functions to each
Dof protein [67]. In seeds, it is thus possible that the
expression of Dof target genes is specified to phase II of
germination through RGL2-action; to shed more light
on this complex process of germination, it would be of
great interest to identify which specific Dof proteins are
involved in the RGL2-mediated repression of germina-
tion. Generally, DELLA proteins have been reported to
interact with the bHLH class of proteins [32-34] to affect
transcription. Our results show that RGL2 likely inter-
acts with various other classes of transcription factors to
mediate its response.

RGL2 regulates the expression of various genes to inhibit
germination both directly and indirectly

Based on our ChIP-qRT-PCR analyses designed to further
understand the molecular events downstream of RGL2,
we selected a few genes that were likely direct targets.
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DELLA proteins lack a DNA binding domain, and are
thought to regulate transcription through binding to other
proteins, most of which are still unknown. We therefore
employed a ‘double’ cross-linking, using DSG and formal-
dehyde consecutively to capture the whole protein com-
plex bound to chromatin. Previous ChIP assays with
DELLA proteins were reported to yield only subtle enrich-
ment (1.3- to 3.5-fold) of target promoter fragments [49];
here, we were able to achieve a significantly higher enrich-
ment (4- to 6.5-fold). This suggests that the application of
DSG is a promising method of identifying chromatin
regions bound by a protein complex in plants, even if only
one of the proteins is known, as has been shown in human
cell culture systems [54].

In our data, the RGL2-complex appears to bind to
promoters of both EXPA3 and EXPAS8, however, promo-
ter fragments of EXPA8 appear more strongly enriched
than those of EXPA3. These different levels of enrich-
ment could be due to different binding affinities of the
RGL2-complex to these promoters; it could also indicate
different binding partners of RGL2 in the complex that
binds to DNA. The stronger enrichment of the EXPAS8
promoter is in line with our expression analysis showing
a more subtle down-regulation of EXPA3 in flower buds
of the inducible gal-3 rga-t2 rgl2-1 35S:RGL2-GR
mutant. Previous studies had also shown that EXPAS8
expression is more strongly gibberellin-inducible than
EXPA3 [42]. Furthermore, EXPA8 appears to be a
DELLA-target gene in both flowers and seeds [47]. We
therefore propose that the RGL2-complex directly
downregulates EXPAS8 expression in both flower devel-
opment and seed germination; thus, RGL2 inhibits both
developmental responses by directly constraining cell
elongation growth.

Our data further show that the RGL2-complex appears
to bind directly to the promoter of a member of the
SAUR gene family, At2¢g45210, whose expression is up-
regulated in our microarray data. This corroborates
further the “updated” gibberellin signalling model [70],
which includes not only transcriptional silencing
through sequestering of transcription factors by DELLA
proteins, but also transcriptional activation by sequester-
ing inhibitors of transcription factors.

Our observation that seed germination in the loss-of-
function mutant of Az2g45210 exhibits hypersensitivity
to abscisic acid and PAC compared to the wild type indi-
cates a possible role for At2¢g45210 in promoting seed
germination. However, its expression is up-regulated by
RGL2, an inhibitor of seed germination, and was found
to be high in all dormant states of seeds (primary and
several secondary dormancy states) analysed by Cadman
et al. [71]. This apparent inconsistency of results needs
further investigation of this gene’s function in seed ger-
mination and dormancy. It is possible that it is not
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directly involved in the inhibition or promotion of seed
germination per se. Additionally, we cannot exclude the
possibility that its expression is controlled by several
other factors not considered here. This is in fact a likely
scenario, since its expression pattern only partly overlaps
with that of RGL2; it is relatively high in all wild-type tis-
sues tested, whereas RGL2 expression is restricted to
imbibed seeds and flower buds [25].

We further investigated the role in the regulation of ger-
mination of two homeobox genes, ATHB2 and ATHBS,
which were identified in our microarray as up- and down-
regulated by RGL2, respectively. Both genes have been
studied with respect to their roles in other developmental
stages; however, no or little data are available to determine
their functions in the regulation of seed germination.
Interestingly, our seed germination assays appear to reveal
different roles for ATHB2 and ATHBS in germination;
while the inhibition of gibberellin biosynthesis with PAC
does not result in a germination response different to that
of wild type in either mutant, low concentrations of absci-
sic acid appear to inhibit seed germination more strongly
than that of wild type in athb2, but not athb5 . However,
at high concentrations of abscisic acid, both mutant seeds
appear more sensitive to its inhibitory effect. This could
indicate that ATHB2 is involved in the abscisic acid-
mediated regulation of germination, independently of gib-
berellin. A similar conclusion could be drawn for the role
of ATHBS in the regulation of seed germination; however,
the increase in sensitivity of seed germination to abscisic
acid is not as high as in athb2. Further germination assays
using several intermediate concentrations of abscisic acid
would help to determine the range of sensitivity. Interest-
ingly, our data further indicate that expression levels of
either ATHB2 or ATHBS are not affected by abscisic acid
treatment. This suggests that the regulation of these two
genes is downstream of RGL2, but upstream of the absci-
sic acid signalling pathway. However, further studies need
to be performed, for example, crossing the loss-of-
function mutants with various mutants of abscisic acid
biosynthesis or signalling, in order to place either gene in
the genetic network of gibberellin and abscisic acid signal-
ling. Nevertheless, our results indicate that both these
homeobox genes affect seed germination.

Conclusions

Taken together, our data reveal that the role of RGL2 in
the inhibition of germination is complex. We show that
RGL2 downregulates the expression of genes encoding
cell wall modifying enzymes, viz.,, CPI and EXPAS, with
at least EXPA8 being directly regulated. Thus, RGL2
directly constrains cell elongation growth to inhibit ger-
mination. Our microarray data also indicate that various
types of transcription factors are differentially regulated
by RGL2, suggesting that RGL2 regulates several aspects
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of seed germination in addition to cell elongation
growth, including responses to several phytohormones
and light. Our promoter analysis further indicates that
RGL2 interacts with various proteins to regulate tran-
scription, including GAMYB, ARF1 and Dof transcrip-
tion factors. Lastly, we investigated germination
responses of three selected target genes to PAC and
abscisic acid. We show that sensitivity of germination to
at least one of these treatments is increased in these
mutants, which not only indicates that all of these genes
are in some way involved in the regulation of germina-
tion, but also validates the quality and reliability of our
data. However, more work needs to be done to under-
stand the mechanism of regulation of germination, and
to shed more light on the genetic network underlying
the complex process of seed germination in which RGL2
is but one player.

Methods

Plant materials, plant transformation and growth
conditions

Arabidopsis thaliana accessions used in this study were
either Columbia (Col-0) or Landsberg erecta (Ler).
Plants were grown in a growth chamber with a 16-h-
light/8-h-dark cycle, at 23°C and 75% RH for generation
of transgenic plants and seed collection. Plant transfor-
mation was performed as described by Clough and Bent
[72] using Agrobacterium tumefaciens strain GV3101:
pMP90.

All gibberellin-related mutants described here are in
Ler background; gal-3 rga-t2 and gal-3 rga-t2 rgl2-1
were described earlier [30]. The inducible transgenic
plants gal-3 rga-t2 rgl2-1 355::RGL2-GR were generated
by transforming gal-3 rga-t2 rgl2-1 plants with the bin-
ary vector harbouring the 35S:RGL2-GR cassette. Inser-
tion lines for At2g45210 (SALK_142329), ATHB2
(SALK_106790C) and ATHBS (SALK_122765) were
obtained from the ABRC seed stock, and are in Colum-
bia (Col-0) background. Homozygous plants were identi-
fied by genotyping with primers designed using the T-
DNA primer design tool (http://signal.salk.edu/tdnapri-
mers.2.html; Additional file 5).

For germination assays, seeds were surface sterilised in
75% ethanol and 15% commercial bleach, followed by at
least five rinses with sterile water. Aseptic seeds were
placed on 1xMS medium, pH 5.7 with 0.5% Gelrite, sup-
plemented with either of the following: 0.01% ethanol
(MOCK), 10uM gibberellic acid 3 (GA3), 1uM, 2uM or
5uM paclobutrazol (PAC), 1uM or 5puM abscisic acid,
10uM dexamethasone (DEX). To analyse germination
inhibition by DEX of the inducible gal-3 rga-t2 rgl2-1
358:RGL2-GR mutant, aseptic seeds were vacuum-
infiltrated with 30puM DEX prior to being placed on MS
plates. All plates were incubated at 22°C with a 16-h-
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light/8-h-dark cycle. Germination was scored up to six
days after imbibition. Seeds were deemed germinated if
the radicle had visibly protruded through the seed coat.

Microarray experiments and data analysis

Total RNA was isolated from seeds imbibed in water at
4°C in the dark for five days, according to Vicient and
Delseny [73], with slight modifications. For each isola-
tion 50mg (dry weight) seeds were used. Crude RNA
was purified by extractions with chloroform, phenol,
phenol:chloroform:isoamyl alcohol (25:24:1) and chloro-
form:isoamyl alcohol (24:1), once each. After precipita-
tion, RNA was dissolved in 30 to 50ul water.

Total RNA was sent to Genotypic Technology [P] Ltd.,
Bangalore, India for microarray analysis (Project No.
GT-537_E), including RNA quality control using Bioana-
lyser, reverse transcription and labelling, single colour
hybridisation onto Agilent Arabidopsis 4x44k Array,
preliminary data analysis with GeneSpring GX version
10.0 and Excel, data normalisation using Percentile Shift
Normalisation and Normalisation to Specific Samples.
Microarray data were deposited in the Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/projects/
geo), accession number GSE40485.

Chromatin immunoprecipitation

Chromatin Immunoprecipitation (ChIP) was performed
using flower buds of 3-4-week-old gal-3 rga-t2 rgl2-1
358::RGL2-GR plants. Plants were sprayed with either of
the following: 0.01% ethanol (MOCK), or 10uM DEX,
and flower buds were harvested 3h after treatment. ChIP
was performed according to Kaufmann et al. [74], with
minor changes. We included an additional step of
protein-protein cross-linking using 10mM disuccinimi-
dyl glutarate (DSG) [54], prior to cross-linking of DNA-
protein complexes by formaldehyde. All centrifugation
steps were performed at maximum speed (~17,000xg).
For the detection of RGL2-GR, total extracts, flow
through and eluates prior to proteinase K treatment
were resolved under reducing conditions on 12% SDS/
polyacrylamide gel, and proteins were transferred onto
polyvinylidene difluoride (PVDF) membranes (Bio-Rad
Laboratories). PVDF membranes were blocked by incu-
bation with 5% milk powder in Phosphate-buffered sal-
ine + 0.05% Tween 20 (PBS-T) over night, followed by
incubation with monoclonal mouse anti-GR antibody
(1:1,000) at room temperature for 2h. After washing with
PBS-T, membranes were incubated with secondary anti-
body, horseradish peroxidase- (HRP-) conjugated rabbit
anti-mouse antibody (1:10,000) for 2h at room tempera-
ture. Membranes were then washed four times with
PBS-T, and immune complexes were detected on x-ray
film (Fuji medical x-ray film) using the Enhanced
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Chemiluminescence (ECL) Detection kit according to
the manufacturer’s instructions (Amersham Pharmacia).

Quantitative real-time PCR (qRT-PCR)

Comparative analysis of selected genes was performed
by qRT-PCR. Reactions were performed on cDNA, pre-
pared from RNA of various Arabidopsis tissues using
‘MAXIMA® First Strand cDNA Synthesis Kit' (Fermen-
tas), with ‘KAPA SYBR® FAST qPCR Kit’ (KAPA Biosys-
tems) using the ‘StepOne™ Real-Time PCR Systems’
(Applied Biosystems). All qRT-PCR data were generated
from biological duplicates. Relative quantification of
expression was determined using ‘StepOne Software’
(v2.1). For a list of primers, see Additional file 5.

Ab initio promoter analysis

The entire sets of up-regulated (253) and down-
regulated (354) genes, respectively, were analysed for
enrichment of promoter motifs. Sequences of promoter
regions (-1,000 to +200 nt relative to TSS) were
extracted from our in-house promoter sequence data-
base. Over-represented motifs were detected using the
Dragon Motif Builder algorithm with EM2 option [75],
and thirty motifs of 8 to 10 nucleotides were detected
each with a threshold value of 0.95. Random promoter
sequences were used for background subtraction of ran-
dom motif occurrence. Significant motifs were selected
based on a threshold occurrence of more than 20%, and
motif classes were identified by significant matches with
TRANSFAC [76], PLACE [77] and AGRIS [78,79]
databases.

Plasmid construction, protoplast isolation and
transfection

For promoter motif analysis, a minimal promoter (90bp
of CaMV 35S promoter) was amplified with Smal and
BamHI restriction sites, and cloned into pGreen (HY105
backbone) containing mGFP (cloned with Spel and
Xbal), to generate pGreen-m35S::GFP. Synthetic promo-
ter constructs containing three tandem copies of
selected promoter motifs were generated by overlapping
PCR using synthesised oligonucleotides (see Additional
file 5). The generated 126bp-fragments were cloned into
the binary vector using HindIII and Pstl restriction sites,
5" of the minimal promoter in pGreen-m35S::GFP.

Leaf mesophyll protoplasts were isolated from 3- to 4-
week-old wild-type Arabidopsis (Col-0) plants following
the protocol described in Yoo et al. [80]. For each trans-
fection, 10 to 15ug of plasmid DNA was used, and treat-
ment occurred 30min after transfection with either of
the following: 0.01% ethanol (MOCK), 10uM DEX,
10uM DEX plus 10uM GA3;. Images were acquired four
to six hours after transfection using a Carl Zeiss Axiovert
200M confocal laser microscope (http://www.zeiss.
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de/axiovert200) with excitation at 488nm. For GFP
detection, one channel was configured between 505
and 530nm. All images were recorded with the same
detection settings. Average and maximum signal
intensity of 6 to 10 selected protoplasts was deter-
mined using the Carl Zeiss LSM software (ver. 4.0).

Additional files

Additional file 1: Genes differentially regulated in seeds of ga7-3
rga-t2 vs. gal-3 rga-t2 rgl2-1. List of genes identified as RGL2-UP and
RGL2-DOWN, respectively, with a fold-change of at least 2, and a
p-value <0.01.

Additional file 2: Gene Ontology (GO) analysis of the
RGL2-mediated transcriptome in seeds. GO analysis according to
AgriGO (http://bioinfo.cau.edu.cn/agriGO/index.php), with respect to
biological process (A, C) and molecular function (B, D) in RGL2-UP (A, B)
and RGL2-DOWN (C, D).

Additional file 3: Cross-comparison of RGL2-mediated
transcriptome in seeds with other available microarrays. List of
genes differentially regulated by RGL2 in seeds that were identified in
other available microarray data sets. Overlapping genes are indicated

by +'.

Additional file 4: Relative expression levels of ATHB2 and ATHB5 in
response to abscisic acid. Seeds were stratified in water or 5uM abscisic
acid, and RNA was extracted after 12h. Expression levels of ATHB2 and
ATHBS5 were determined by gRT-PCR in imbibed seeds of gal-3 rga,
relative to Tubulin (TUB), and compared to gal-3 rga rgl2-1. RQ = relative
quantity of transcript.

Additional file 5: Primers and oligonucleotides used. List of primers
and oligonucleotides used for genotyping of T-DNA insertion lines,
gRT-PCR, ChIP-gRT-PCR, and for construction of reporter constructs
containing different promoter motifs.
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