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Abstract

Background: Grapes are a major fruit crop around the world. Heat stress can significantly reduce grape yield and
quality. Changes at the molecular level in response to heat stress and subsequent recovery are poorly understood.
To elucidate the effect of heat stress and subsequent recovery on expression of genes by grape leaves representing
the classic heat stress response and thermotolerance mechanisms, transcript abundance of grape (Vitis vinifera L.)
leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed
by quantitative Real-Time PCR validation for some transcript profiles.

Results: We found that about 8% of the total probe sets were responsive to heat stress and/or to subsequent
recovery in grape leaves. The heat stress and recovery responses were characterized by different transcriptional
changes. The number of heat stress-regulated genes was almost twice the number of recovery-regulated genes.
The responsive genes identified in this study belong to a large number of important traits and biological pathways,
including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism,
transcription factors, signal transduction, and development. We have identified some common genes and heat
shock factors (HSFs) that were modulated differentially by heat stress and recovery. Most HSP genes were
upregulated by heat stress but were downregulated by the recovery. On the other hand, some specific HSP genes
or HSFs were uniquely responsive to heat stress or recovery.

Conclusion: The effect of heat stress and recovery on grape appears to be associated with multiple processes and
mechanisms including stress-related genes, transcription factors, and metabolism. Heat stress and recovery elicited
common up- or downregulated genes as well as unique sets of responsive genes. Moreover, some genes were
regulated in opposite directions by heat stress and recovery. The results indicated HSPs, especially small HSPs,
antioxidant enzymes (i.e., ascorbate peroxidase), and galactinol synthase may be important to thermotolerance of
grape. HSF30 may be a key regulator for heat stress and recovery, while HSF7 and HSF1 may only be specific to
recovery. The identification of heat stress or recovery responsive genes in this study provides novel insights into the
molecular basis for heat tolerance in grape leaves.
Background
Most crop plants are exposed to heat stress during certain
stages of their life cycle. Heat stress, defined as the
temperature above a normal optimum, is expected to be-
come a major issue in reducing crop production in coming
years due to global warming [1]. Grape is a popular
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reproduction in any medium, provided the or
cultivated fruit throughout the world and represents one of
the most important crops with highly valued products such
as juices, liquors and wines [2]. The grape species Vitis vini-
fera makes up most of the grape production in the world.
However, grape production and quality often fluctuate due
to various environmental factors. Temperature has been
broadly considered as a major determining factor. Studies
show that crop production is severely limited by
temperature stresses around the world [3]. In many regions,
the maximum midday air temperature can reach 40°C and
above, which can destroy grape berry ripening [4]. In
addition, crop cultivation in sheltered conditions (e.g.,
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Figure 1 Venn diagram of transcripts (both identified and
unknown) that were up- or downregulated by heat stress or
recovery. The " + " and "-" indicate up- and downregulated
transcripts, respectively. A total of 1282 transcripts were significantly
(dChip, P < 0.001) affected by heat or recovery. 179: unique
upregulated transcripts by heat stress; 114: unique upregulated
transcripts by the recovery; 600: unique downregulated transcripts
by heat stress; 224: unique downregulated transcripts by the
recovery; 12: commonly upregulated transcripts by heat stress and
recovery; 73: commonly downregulated transcripts by heat stress
and recovery; 24: downregulated by heat stress but upregulated by
recovery; 56: upregulated by heat stress but downregulated by
recovery.
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greenhouses and hoop houses) is common in many regions.
These conditions can further increase temperature due to
inadequate air circulation. Studies indicated that tempera-
tures above 35°C generally reduce photosynthesis in grape
leaves [5]. Extreme temperatures may endanger berry qual-
ity and economic returns [4,6]. This is expected to get
worse with more frequent high temperature stress due to
climate change [3,7].
In the past, studies of response and adaptation of grape

to high temperatures have focused mostly on grape mor-
phological and physiological changes including photosyn-
thesis, respiration, cell membrane stability, hormone
changes and antioxidant systems [6,8-13]. With the avail-
ability of the grape genome sequence [14,15], study of the
functional genomics of grapes has become possible [3,16].
Transcriptomic analysis represents one of these major re-
search opportunities. Gene expression is tissue- and devel-
opment-specific. To date, transcriptomic studies in grapes
has been primarily focused on berry development and
water stress responses [17-29]. There are few transcrip-
tomic reports of the effect of heat stress on grape.
Transcriptomic studies of heat stress effects on Arabi-

dopsis, rice, tobacco, potato, tomato and sunflower have
been reported [30-34]. Lim et al. [30] found that accli-
mating Arabidopsis thaliana suspension cells at a mo-
derate heat enhanced heat resistance. Expression of 165
genes changed, especially those of heat shock proteins
(HSPs). With cDNA microarrays and RT-qPCR techni-
ques, Frank et al. [33] found that HSP70, HSP90, and
heat shock transcription factors(HSF) HSFA2 and
HSFA3 were important to tomato microspore resistance
to heat stress. However, data on the molecular mechan-
isms involved in heat stress responses and thermotoler-
ance in grape leaves are very limited.
Some studies have shown that the recovery process from

heat stress in plants is very important to survival [35]. The
degree of recovery from stress is a direct index of plant
heat tolerance. Thus, there should be some differences be-
tween the recovery mechanisms and the direct heat re-
sponse mechanisms in plants [36]. Gu et al. [37] found
that sucrose synthase, calmodulin, certain peptides, and
aquaporin genes in Populus were transcriptionally-
activated only during recovery from salt stress.
In this study, we used oligonucleotide microarrays and

quantitative Real-Time PCR (qRT-PCR) to identify genes in
grape leaves with altered transcript accumulation during heat
stress and after recovery to provide clues to the function of
these genes during heat stress and subsequent recovery.

Results
Expression and validation of probes sets responsive to
heat stress or recovery in grape leaves
Transcriptomic profiles of gene expression variation in
Vitis vinifera cv. Cabernet Sauvignon leaves in response
to heat treatment and subsequent recovery was quantita-
tively assessed using the Affymetrix Grape Genome
Array with 15,700 probe sets. Array data were averaged
for three biological replicates and filtered as described in
Materials and Methods. Using the filtering criteria, 1282
(about 8% of total probe sets) were significantly affected
by heat or recovery and were further analyzed. Heat
stress and recovery affected transcript levels in different
ways. Among those probe sets showing differential ex-
pression during heat stress (dChip, P < 0.001), 247 were
upregulated, 697 were downregulated, while 150 were
induced and 353 were repressed after recovery compared
to their corresponding control levels (Figure 1). A total
of 12 probe sets were commonly upregulated by heat
stress and recovery, whereas 179 and 114 were specific-
ally induced by both treatments, respectively. A total of
73 probe sets were commonly downregulated by both
treatments, whereas 600 and 224 were specifically
repressed by heat stress and recovery, respectively.
Moreover, 24 probe sets were repressed by heat stress
but induced by recovery, and 56 probe sets were upregu-
lated by heat stress and downregulated by recovery.
Cluster analysis also indicated that some genes were up-
or downregulated under heat stress and after recovery
(Figure 2). In order to validate the results obtained with
the microarray analyses, we carried out qRT-PCR assays
on 12 cDNA sequences using gene-specific primers
(Additional file 1). The qRT-PCR profiles were analyzed
on three biological replicates. Linear regression analyses



Figure 2 Average linkage hierarchical clustering analysis of the
Log2 transformed values of fold changes of the 821 annotated
genes during heat stress and after the following recovery. HS-1,
HS-2 and HS-3 represent three replications of heat stress treatments;
RC-1, RC-2 and RC-3 represent three replications of the recovery.
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displayed highly significant correlations (r = 0.982) be-
tween qRT-PCR and microarray results for the 12 evalu-
ated genes (see Additional file 2), confirming the validity
of the microarray results.
Functional analysis of probes sets responsive to heat
stress or recovery in grape leaves
There were a large number of genes which were respon-
sive to heat stress or recovery that do not match any
genes with known functions. Eight hundred and twenty-
one probe sets were assigned to annotated genes and
ESTs in PLEXdb (http://www.plexdb.org). Functional
categories of these probe sets based on MIPS (Munich
Information Center for Protein sequences) are shown in
Figure 3. Furthermore, we compared the common probe
sets between heat stress and recovery, and analyzed
probe sets unique to both treatments, based on func-
tional classification. The changes of some genes such as
HSPs were similar to those in previous studies on micro-
array analysis of heat stress in rice, Arabidopsis, tomato,
barley and potato [30,31,33,38-41].
Comparative analysis of common responsive probe sets
between heat stress and subsequent recovery
There were 40 annotated genes that were upregulated by
heat treatment, but were downregulated following recov-
ery. They are listed in groups according to their putative
involvement in different cellular events (see Additional file
3). Sixty percent of them were HSPs/molecular chaper-
ones and may be critical to heat tolerance. The genes of
high and middle molecular HSPs included HSP62.6,
HSC71.5, HSP70, HSP 101, HSP80.1, low molecular HSPs
genes included CPN10, HSP11.1, HSP15.7, HSP16.1,
HSP17.5, HSP17.6, HSP18.3, HSP18.6, HSP22, HSP25.7,
HSP37.1 and HSP40. Interestingly, gene HSF30 was upre-
gulated 11-fold by heat stress, but downregulated more
than 10-fold following recovery compared with the corre-
sponding controls. In addition, genes related to cell rescue
including Hin1, Stil and galactinol synthase changed.
Three calmodulin-related proteins that suppress posttran-
scriptional gene silencing in plants were also involved in
the process. Also affected by heat stress were genes of
ethylene-responsive transcriptional co-activator-like protein,
metabolism-associated enzymes, 3-hydroxy-3-methylglu-
taryl coenzyme A (acetyl-CoA pathway) and ER1(pyridoxin
biosynthesis protein), development -related enzymes, and
ripening regulated protein.
There were a total of 10 annotated genes upregulated

by heat stress and subsequent recovery (see Additional
file 4). HSP20 showed a larger degree of up-regulation
by heat stress than by recovery. The other genes were
related to metabolism, transcription, cell rescue and
transposable elements.
Additional file 5 shows 19 genes which were downregu-

lated by heat stress but upregulated during subsequent re-
covery. Genes related to cell rescue included peroxidase
42 and alcohol dehydrogenase 7. A number of genes were
related to metabolism; for example, genes involved in
starch biosynthesis (ADP-glucose pyrophosphorylase large
subunit 1), polysaccharide degradation (beta-galactosidase
BG1), and polyphenol oxidase (tyrosine metabolism).
Aquaporin and triose phosphate were affected and are
related to transport regulation. In addition, the affected
gene F14J22.4 is involved in signal transduction. No genes
in the regulatory factor categories were identified.
Additional file 6 shows 53 genes that were downregu-

lated by heat stress and subsequent recovery. Twelve of
these genes were related to cell rescue including stress
responses. Two Class IV chitinase transcripts were down-
regulated about 30-fold by heat treatment, but only down-
regulated 3-fold after the recovery. Other downregulated
genes were involved in metabolism, signal transduction,
transcript regulation and cell transport. Secondary metab-
olism genes that were downregulated included stilbene
synthase, flavonol 3-O-glucosyltransferase 2, caffeic acid
O-methyltransferase. Regulatory genes including WRKY
transcription factor-b, Myb-related transcription factor
MybB1-2, SPF1 protein (transcription activation), and
NAC domain protein NAC1 were also downregulated.

Analysis of unique probe sets responsive to heat stress in
grape leaves
In Additional file 7, a total of 78 upregulated probe sets
identified as unique to the heat stress response are listed.
Stress-responsive genes affected included those for one
salt-inducible protein, one wound-induced protein, a

http://www.plexdb.org


Figure 3 Functional classification of heat stress and recovery–responsive transcripts. Transcripts with a mean absolute expression ratio of
at least 2.0 (linear scale) and a P<0.001 in a t-test for significance were classified into the categories shown, based on shared putative function
and/or common structural motifs. HS heat stress; RC recovery.
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dehydroascorbate reductase, and a cytosolic ascorbate
peroxidase (APX). There were nine HSPs/molecular cha-
perones influenced, including HSP21 which was upregu-
lated 43-fold. Metabolism genes affected included
tetrahydropicolinate succinylase, pectinesterase, homo-
cysteine S-methyltransferase 2, putative ripening-related
protein sterol 4-alpha-methyl-oxidase and adenine phos-
phoribosyl transferase. Four genes involved in signal
transduction were affected including those for GTP-
binding, a ADP-ribosylation factor-like protein, a recep-
tor associated protein (transmembrane signal transduc-
tion) and strubbelig receptor family 3. Regulatory genes
responding included genes for zinc finger protein-like,
Myb-related protein, and triptychon. Metabolism genes
affected included those for fatty acid biosynthesis.
There were 600 downregulated probe sets uniquely re-

sponsive to heat stress (Figure 1), of which 412 were
identified (see Additional file 7). Stress response genes
included those for chitinase, pathogenesis-related pro-
tein, osmotic, and cold stress response proteins. A total
of 129 genes related to primary and secondary metabol-
ism were downregulated by heat treatment. The tran-
script level of 13 genes involved in respiration and
photosynthesis declined. Transcription regulatory genes
that were down-regulated included those for zinc finger
protein, pathogenesis-related gene transcriptional activa-
tor PTI5, Myb-related transcription factor VlMYBB1-2,
ethylene response factor ERF3a, bHLH106, and MYC
transcription factor. Down-regulated genes involved in
transport regulation included cation, carbohydrate,
amino acid, protein and nucleotide transporters.
Analysis of unique responsive probe sets to recovery
from heat stress
There were 72 upregulated probe sets unique to the re-
covery response (see Additional file 8). Stress genes that
were upregulated included adenylyl-sulfate reductase
precursor, Fe-SOD, late embryogenesis abundant protein
D-29, and putative pathogenesis-related protein. Upre-
gulated genes involved in protein fate only included U-
Box protein and aspartyl protease family protein, but no
HSPs were observed. There were 27 genes related to me-
tabolism that were upregulated, involving carboxylate
metabolism, biosynthesis of phenylalanine, phosphate
metabolism, polysaccharide degradation, and fatty acid
biosynthesis. There was only one signal transduction
gene, a receptor protein kinase and a protein ralf-like 34
that were upregulated. There were 17 transporter genes
upregulated after the recovery, including a nitrate trans-
porter, a tonoplast intrinsic protein and several ABC
transporters. Transcript regulatory genes upregulated in-
cluding a squamosa promoter binding-like protein, a
Myc-like anthocyanin regulatory protein, a putative Zinc
finger protein, and a translation initiation factor IF2.
In addition, 137 downregulated probe sets were unique

to the recovery response (see Additional file 8). Stress- re-
sponsive proteins that were downregulated were mainly
defence proteins. Downregulated genes involved in protein
fate included HSPs, HSFs (HSF1, HSF7), and protein kin-
ase domain-containing protein. Downregulated genes
related to metabolism numbered 34, and were involved in
biosynthesis of glutamine, stilbenes, flavonoids and metab-
olism of proline and carbohydrates. Some downregulated
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genes were related to Ca2+ mediated signal transduction,
and some were regulatory genes including NAC domain
proteins, WRKY transcription factors, and Zinc finger
DNA-binding protein.
Discussion
High temperature disturbs cellular homeostasis in plants
and can lead to severe retardation of growth and develop-
ment and even death. Plants exposed to heat stress exhibit
a characteristic set of cellular and metabolic responses.
Based on the results detailed above, the discussion focuses
on the response of grape leaves to heat stress and subse-
quent recovery from the following aspects.
HSPs and antioxidant enzymes
One typical response to heat stress is an accelerated
transcription of a set of stress or protein fate-related
genes, such as those encoding HSPs, which are the main
constituents of the heat shock response [1]. The major
HSPs belong to five structurally distinct classes: Hsp100,
Hsp90, Hsp70, Hsp60 and small HSPs (sHSPs) [42]. In
this study, heat stress increased the expression of various
HSPs. The transcript level of these HSPs decreased to
the control level or even lower after the subsequent re-
covery (see Additional files 3 and 7). Under heat stress,
many proteins in the cell are subject to denaturation,
and HSPs function as molecular chaperones to provide
protection. After the recovery, these HSPs are degraded.
Moreover, a large amount of HSPs in cells resulted in
the decline of transcript level of HSPs genes [43]. Wang
et al. [44] reported that the expression of protein HSP21
was induced by heat stress in grapevine leaves, and was
lower than that of the control after the recovery. In
plants, sHSPs form a more diverse subfamily than other
HSPs/chaperones with respect to sequence similarity,
cellular location and function. The sHSPs are not them-
selves able to refold non-native proteins, but have a high
capacity to bind non-native proteins, possibly through
hydrophobic interactions, and to stabilize and prevent
non-native aggregation, thereby facilitating their subse-
quent refolding by ATP-dependent chaperones such as
the DnaK system or ClpB/DnaK. Increasing evidence
suggests strong correlation between sHSP accumulation
and plant tolerance to stress [45]. Chloroplast and mito-
chondrial sHSPs are considered to play an important
role in heat tolerance [46,47]. In this study, HSP22
located in mitochondria was highly expressed under heat
stress and was downregulated after recovery. HSP21
located in the chloroplast was highly expressed (43-fold)
by heat stress, but its transcription level declined to the
control level after the following recovery (see Additional
file 7). This result shows that some sHSPs may have im-
portant effects on heat tolerance of grapevines.
Among the other HSPs, over expression of HSP101 in
Arabidopsis had a positive effect on growth after recov-
ery [36]. It was recently found that an HSP101
homologue in Arabidopsis was involved in conferring
thermotolerance to chloroplasts during heat stress [48].
Genetic analysis in Arabidopsis indicated that HSP101
interacts with the sHSP chaperone system to re-
solubilize protein aggregates after heat stress [49]. Re-
cently, it was demonstrated that the transcript level of
HSP101 increased in maturing tomato pollen grains in
response to heat stress [33,50]. In the present study,
HSP101 in grape leaves was upregulated by heat stress,
exhibiting a 9-fold elevated expression, but it was down-
regulated 6-fold after the subsequent recovery. HSP70
has essential functions in preventing aggregation and in
assisting refolding of non-native proteins under both
normal and stress conditions [51]. Some family members
of HSP70 are consistently expressed and are often re-
ferred to as HSC70. These members are often involved
in assisting the folding of de novo synthesized polypep-
tides and the import/translocation of precursor proteins.
In this study, the expression of HSC70 was induced by
heat stress and declined after the subsequent recovery,
in agreement with previous results.
In heat stress studies, increasing attention has being

paid to the generation of reactive oxygen species (ROS)
and the cellular antioxidant defense systems. ROS levels
are controlled by a network of enzymes and metabolites,
including superoxide dismutases (SOD), ascorbate per-
oxidase (APX), guaiacol peroxidase (GPX) and dehy-
droascorbate reductase (DHAR). APX plays a pivotal
role in ROS metabolism. It catalyzes the reduction of
hydrogen peroxide to water by using ascorbate as a spe-
cific electron donor [52]. APX appears to be regulated
by HSFA2 [53]. Previous studies also indicated that it is
involved in survival from high light stress [54]. The
results of the present study showed that expression of
APX, peroxidase 42 and DHAR were upregulated by 5-,
3.27- and 3.18-fold, respectively, indicating that these
genes may have an important role in grape leaves in re-
sponse to heat stress.

Metabolism
Temperature is one of the most active environmental
factors affecting all plant metabolic activities, including
amino acid and carbohydrate metabolism [55]. Secondary
metabolites are involved in resistance against heat shock
[56]. In this study, galactinol synthase transcript level
increased significantly (about 50-fold) in response to heat
stress and declined during recovery. Heat shock induced
the production of sugars including raffinose and galacti-
nol [57]. The raffinose family of oligosaccharides has
been implicated in the scavenging of hydroxyl radicals
[58], and in protecting liposomes from desiccation
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through direct sugar–membrane interactions in soybean
[59]. Galactinol synthase catalyzes the first step in the
synthesis of raffinose polysaccharide, and is also regu-
lated by HSFA2 in Arabidopsis, linking heat shock pro-
teins and raffinose metabolism [60]. Weston et al. [61]
reported that expression of AtGolS1 was observed even
at optimal temperature, and was upregulated during heat
stress. Several other probe sets representing genes related
to carbohydrate metabolism were regulated by heat
stress in our experiment, such as invertase, UDP-glucose
dehydrogenase, 6-phosphate dehydrogenase, sucrose
synthase, amylase and trehalose-6-phosphate synthase/
phosphatase (see Additional files 3 and 7). These
enzymes are important in sugar metabolism, which were
downregulated by heat stress in this study. In addition,
lipid metabolism was also inhibited by heat stress, with
effects on lipase, L-asparaginase, lipoxygenase and fatty
acid hydroperoxide lyase.

Transcription factors (TFs)
HSFs play important roles in both basal and acquired
thermotolerance through binding to cis-acting regulatory
elements called heat shock element (HSEs) in the pro-
moter region of HSP genes [62]. In general, plant HSFs
are divided into three classes, HSFAs, HSFBs and HSFCs
[63]. HSF30 belongs to HSFA2 which was the dominant
HSF in thermotolerant cells [39,64] and was highly heat
shock upregulated in mature tomato microspores [33].
The transcript levels of the HSFA2 target genes (e.g.
HSP101, HSP70, HSP22, HSP17.6, and HSP15.7) were
highly correlated with those of HSFA2 in Pro35S:HSFA2
Arabidopsis plants, and the induction of HSFA2 target
genes was strongly reduced under heat stress in HSFA2
knockout Arabidopsis plants [60]. In this study, HSF30
exhibited increased expression levels (11-fold) under
heat stress and was downregulated (14.3-fold) after the
subsequent recovery corresponding to 16 HSPs (see
Additional file 3). The present results indicated that
HSF30 may also play an important regulatory role in the
thermotolerance of grape. HSF7 is an HSFb2b and was
strongly induced by heat stress in Arabidopsis, maize
and tomato [64]. However, HSF7 was weakly upregulated
(1.7-fold) by heat stress, but showed significant down-
regulation (3.7-fold) after recovery in the present study.
This indicated that HSF7 may play an important role in
reducing expression of HSPs after recovery in grape
leaves. In addition, HSF1 governs the expression of HSPs
and regulates thermotolerance [33,65]. HSF1 belongs to
the HSFA1a group, which was identified as a master
regulator of thermotolerance in tomato [64]. The syn-
thesis of members of HSP100, HSP90, HSP70, HSP60
and sHSPs under heat stress in the HSF1-RNAi strains
of Chlamydomonas was dramatically reduced or com-
pletely abolished [66]. In the present study, HSF1
showed similar sign of change as HSF7. Therefore, HSF7
and HSF1 may play important roles in the recovery
process from heat stress in grape leaves.
Qin et al. [67] reported that ethylene-responsive tran-

scriptional co-activator (ERTCA) gene is upregulated
more than 8-fold in all heat treated wheat leaves. Over-
expression of ERTCA enhanced heat stress tolerance of
Arabidopsis [68]. Heat stress induced expression of
ERTCA rapidly in the sensitive genotype of tomato [38].
In the present study, the strong induction of ERTCA ex-
pression by heat stress in grape leaves provided another
piece of evidence for its role in heat tolerance. Many
other transcription factor genes were also affected by
heat stress and recovery in grape leaves, although their
roles in heat tolerance are not clear. Interestingly, the
majority of heat response transcription factors genes
were responsive to the heat treatment. Most of them
were downregulated. Basic leucine zipper (bZIP) tran-
scription factors play a role in plant pathogen responses,
light signaling, and ABA and abiotic stress signaling
[69]. Our microarray data revealed that bZIP transcrip-
tion factors were heat-regulated. Some were upregulated,
such as Zinc finger protein-like, some were downregu-
lated, such as B-box type Zinc finger-containing protein.
GATA-type Zinc finger protein was upregulated only by
the recovery treatment (see Additional file 8). Plant tran-
scription factors WRKYs have been reported in both bi-
otic and abiotic stress responses [70]. In this study, three
WRKY transcription factors were downregulated by heat
stress, and two WRKY transcription factors were down-
regulated by the recovery (see Additional files 7 and 8).
These results suggested that several WRKY factors could
be involved in the heat response of grape leaves. Our
data indicated that expression of 3 transcription factors
with NAC domain genes were also heat–regulated.
Plant-specific NAC family transcription factor has a con-
served NAC domain at the N-terminal of the protein and
has been implicated in plant development [71]. It was re-
cently reported that several NAC transcription factors
were also involved in biotic and abiotic stress response
[72].

Signal transduction components
In our study, 4 genes for receptor-like kinases (RLKs)
were regulated by heat stress (see Additional file 7).
RLK1 is induced by wounding, pathogen attack, and sali-
cylic acid [73]. Recent work indicated that RLK1 plays
an important role in abscisic acid (ABA) signal transduc-
tion [74]. Our results suggested that heat signal trans-
duction in grape leaves shared, at least in part, some
common pathways with other biotic, abiotic and ABA
stress signaling through these RLKs. Protein phosphoryl-
ation and dephosphorylation have been reported in heat
signal transduction. Indeed, protein kinases and
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phosphatases with altered expression formed the largest
group of genes. In addition, many protein phosphatases
showed differential expression, suggesting that protein
post-translation modification occurred during the heat
response of grapevine leaves.
Calcium is a universal signaling molecule in both ani-

mals and plants, and the transient increase of Ca2+ level
during heat stress is well-documented in plants [11,75,76].
Heat shock triggered cytosolic Ca2+ bursts, which is trans-
ferred by Ca2+ binding proteins (CBP) such as calmodulin
(CaM), CaM-related proteins, Ca2+-dependent protein
kinases (CDPK), and calcineurin B-like protein (CBL), and
then unregulated the expression of HSPs, due to the de-
pendence of the final step in HSF- mediated HSP expres-
sion on a Ca2+ signal [77,78]. In the present analysis,
candidate genes encoding the components of calcium- or
calmodulin-mediated signal pathways, including calnexin,
calmodulin, and CDPKs, were also heat- or recovery-regu-
lated, suggesting a role of Ca2+-mediated signals in the
heat stress response. Plant survival after severe environ-
mental stress largely depends on the efficiency of recovery
mechanisms. Among the genes activated after recovery,
we found a calmodulin gene. qRT-PCR indicated a 4.28-
fold induction of calmodulin transcript accumulation after
the early response to salt stress [79].

Conclusion
The data presented here provides genome-wide expres-
sion profiles of grape leaves under heat stress and subse-
quent recovery. Affymetrix Grape Genome Array and
qRT-PCR techniques were used to identify heat stress-
and recovery-regulated genes which represented classic
heat stress responsive and thermotolerance mechanisms.
The present study highlighted the significant contribu-
tion and fundamental roles of transcriptional control in
stress responses in grape leaves. We found that about
8% of total probe sets were responsive to heat stress and
subsequent recovery in grape leaves. Heat stress and re-
covery responses displayed differential gene expression
changes. The number of heat stress-regulated genes was
almost twice that of recovery-regulated genes. The re-
sponsive genes identified in this study belong to a large
number of important factors and biological pathways, in-
cluding those for cell rescue (i.e., antioxidant enzymes),
protein fate (i.e., HSPs), primary and secondary metabol-
ism, transcription factors, signal transduction and devel-
opment. Of particular interest, HSPs especially sHSPs,
APX and galactinol synthase, may be very important to
thermotolerance of grape leaves; HSF30 may be a key
regulator for heat stress and recovery;, and, HSF7 and
HSF1 may mainly function after recovery. These results
provide novel insight into the grape leaf response to heat
stress and have great implications for further studies on
gene function annotation and molecular breeding.
Methods
Plant materials and treatments
Stem cuttings of ‘Cabernet Sauvignon’ (Vitis vinifera L.)
were rooted in pots containing a mixture of 4 peat moss:
6 perlite (V/V) and grown in a greenhouse under mist
conditions. When the cuttings were rooted, they were
repotted into larger pots, and grown for about 10 weeks
in a greenhouse at 70–80% relative humidity. During the
daytime, temperature was at most 25°C and the max-
imum photosynthetic active radiation (PAR) was about
1,000 μmol m-2 s-1. During night time, the temperature
was maintained above 18°C. Young grapevines with
identical growth (10 leaves) were acclimated for two
days in a controlled environment room (70 - 80% rela-
tive humidity, 25/18°C day/night cycle and PAR at
800 μmol m-2 s-1) and divided into two groups. On the
following day (the first day of the experiment, Day 1),
one group of grapevines was kept at 25/18°C day/night
in the controlled environment room as the control. The
other group was treated at 45°C in another controlled
environment room (except for temperature, the other
conditions were the same as the control) from 9:00 am
to 14:30 pm. The stressed grapevines were then allowed
to recover at 25°C rapidly (from 45°C to 25°C for at
about 15 min). Then all conditions were the same as the
control until 9:30 am on day 2. Leaf samples of the treat-
ment and control were taken at 14:30 pm on Day 1 and
9:00 am on day 2 for transcriptomic analyses. Three in-
dependently replicated experiments were executed.

RNA extraction, amplification, labeling and hybridization
Total RNA were extracted from grape leaves using Tri-
zol reagent (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions, and digested with DNase I
at 37°C for 15 min to remove any contaminating DNA.
The RNA was cleaned up with RNeasy Kit (Qiagen,
Hilden, Germany) and the quantities and qualities were
determined by spectrophotometry and 1% formaldehyde
denaturing gel electrophoresis. The samples with bright
bands of ribosomal 28S to 18S RNA in a ratio >1.5:1
were used for microarray analysis. The Affymetrix Gene-
Chip Vitis vinifera (Grape) Genome Array, which con-
tains 15,700 probe sets to cover 14,000V. vinifera
transcripts and 1,700 transcripts from other Vitis spe-
cies, was used for microarray analysis. Hybridization,
data capture, and analysis were performed by CapitalBio
Corporation (Beijing, China), a service provider author-
ized by Affymetrix Inc. (Santa Clara, CA). Briefly, 200 ng
of total RNA was used for cDNA synthesis, and produce
biotin-tagged cRNA with MessageAmpTM Premier
RNA Amplification Kit (Ambion). A 10 μg fragmented
cRNA, with control oligo B2 and eukaryotic hybridization
controls (bioB, bioC, bioD, cre), was hybridized to each
GeneChip array at 45°C for 16 h (Affymetrix Gene Chip
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Hybridization Oven 640) according to the manufacturer’s
instructions. After hybridization, the GeneChip arrays
were washed, and then stained with streptavidin phycoery-
thrinonan (SAPE) with an Affymetrix Fluidics Station 450
followed by scanning with an Affymetrix GeneChip Scan-
ner 3000 7 G.

Microarray data processing
Microarray image files (CEL) were loaded into a DNA-
Chip Analyzer (dChip) software package [80]. The
model-based expression values were calculated in dChip,
followed by normalization via the program default
method (Invariant Set Normalization). An unpaired two-
group comparison for all probe sets was performed.
Genes were determined to have altered expression levels
in the treated samples versus control samples based on
the following criteria: (1) P-value < 0.001; (2) Fold change
Treatment/Control >2 or <0.5. The lower confidence
bound (LCB) of the 90% confidence interval of the fold
changes was used [81]; (3) An absolute difference be-
tween the means of the expression levels of the two
groups was greater than 50; (4) Present calls in both
samples are larger than 20%. The reliability of the com-
parison criteria was assessed by checking the FDR (False
Discovery Rate) when permuting samples 200 times.
Genes that satisfied all of the above criteria were chosen
for further analysis. The gene annotation and functional
categories were performed using data at PLEXdb
(http://www.plexdb.org/) and based upon Deluc et al.
[82]. All data have been submitted to the PLEXdb, and
the accession number is VV40.

qRT-PCR
Total RNA extraction was the same as that used for
microarray analysis described above. The total RNA was
treated with DNase I (Promega) to avoid DNA contam-
ination. One microgram of RNA was reverse transcribed
using the Superscript II reverse transcriptase (Invitro-
gen) with an oligo(dT)15 primer according to the manu-
facturer’s instructions (Tiangen Biotech, Beijing, China).
qRT-PCR experiments were conducted using Real Mas-
ter Mix (SYBR Green) (Tiangen Biotech, Beijing, China).
Reactions were carried out on a MX 3000 multicolor
real-time detection system. The following standard ther-
mal profile was used for all PCR experiments: 94°C for
2 min; 40 cycles of 95°C for 15 s, 56°C for 18 s and 68°C
for 20 s. Fluorescence signals were captured at the end
of each cycle, and the melting curve analysis was per-
formed from 68°C to 95°C. Gene-specific primers were
designed using the Primer5 software (see Additional file
1). The amplification of 18S rRNA gene sequence
(GQ849399) was used as the internal control to
normalize all the data [83,84]. Analyses of qRT-PCR data
used the classic (1 + E)-ΔΔCT method (CT is the threshold
cycles of one gene, E is the amplification efficiency).
ΔCT is equal to the difference in threshold cycles for tar-
get (X) and reference (R) (CT,X-CT,R), while the ΔΔCT is
equal to the difference of ΔCT for control (C) and treat-
ment (T) (ΔCT,T-ΔCT,C). The amplification system (e.g.,
primer and template concentrations) was properly opti-
mized, and the efficiency was close to 1. So the amount
of target, normalized to an endogenous reference and
relative to a calibrator, is given by:
Amount of target =2-ΔΔCT.

Additional files

Additional file 1: Gene-specific primers for qRT-PCR.

Additional file 2: Linear correlation analysis (r = 0.982) between
qRT-PCR and microarray results for 12 genes. X; log2 fold change
value from microarray data; Y: log2 fold change value from qRT-PCR data.

Additional file 3: Genes upregulated during heat stress (HS) and
downregulated after the subsequent recovery (RC) in grape leaves.

Additional file 4: Genes upregulated during heat stress (HS) and
after the subsequent recovery (RC) in grape leaves.

Additional file 5: Genes downregulated during heat stress (HS) and
upregulated after the subsequent recovery (RC) in grape leaves.

Additional file 6: Genes downregulated during heat stress and
after the subsequent recovery in grape leaves.

Additional file 7: Genes upregulated or downregulated unique to
heat stress in grape leaves.

Additional file 8: Genes upregulated or downregulated unique to
the recovery in grapevine leaves.
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