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Abstract

proteins.

both genomes, probably due to functional constraints.

Background: The intrinsically unstructured state of some proteins, observed in all living organisms, is essential for
basic cellular functions. In this field the available information from plants is limited but it has been reached a point
where these proteins can be comprehensively classified on the basis of disorder, function and evolution.

Results: Our analysis of plant genomes confirms that nuclear-encoded proteins follow the same trend than other
multi-cellular eukaryotes; however, chloroplast- and mitochondria- encoded proteins conserve the patterns of
Archaea and Bacteria, in agreement with their phylogenetic origin. Based on current knowledge about gene
transference from the chloroplast to the nucleus, we report a strong correlation between the rate of disorder of
transferred and nuclear-encoded proteins, even for polypeptides that play functional roles back in the chloroplast.
We further investigate this trend by reviewing the set of chloroplast ribosomal proteins, one of the most
representative transferred gene clusters, finding that the ribosomal large subunit, assembled from a majority of
nuclear-encoded proteins, is clearly more unstructured than the small one, which integrates mostly plastid-encoded

Conclusions: Our observations suggest that the evolutionary dynamics of the plant nucleus adds disordered
segments to genes alike, regardless of their origin, with the notable exception of proteins currently encoded in

Keywords: Chloroplast, Intrinsically protein disorder, Plant genome, Gene transfer, Evolution

Background

A relevant fraction of genomes encode for proteins with
structural disordered regions. Intrinsically protein dis-
order refers to segments or to whole proteins that do
not fold into well-defined regular three-dimensional
structures in isolation (i.e. not bound to other mole-
cules) [1,2]. This disorder covers local flexible loops,
extended domains, molten globule domains and folded
domains with flexible linkers [3]. Thus, proteins might
be either entirely disordered or partially disordered,
characterised by regions spanning just a few (<10) con-
secutive disordered residues (loops in otherwise well-
structured proteins) or long stretches (>30) of contigu-
ously disordered residues. The presence of protein dis-
order is thought to confer dynamic flexibility to
proteins, allowing transitions between different
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structural states [4]. This increased flexibility is advanta-
geous to proteins that recognise multiple target mole-
cules such as DNA, RNA, other proteins or small
ligands [3,5]. It is predicted that between 30% and 60%
of proteins contain stretches of 30 or more disordered
residues, with multi-cellular eukaryotes having much
more predicted disorder than unicellular eukaryotes [6].
There is evidence that the unstructured state, common
to all living organisms, is essential for basic cellular func-
tions [5,7]. Whole-cell NMR experiments demonstrate
that intrinsic disorder can exist in vivo [3,8] and there-
fore this state does not result merely from the failure to
find the correct conditions for folding or ligand binding.
Despite their lack of a well-defined three dimensional
(3D) structure, these proteins carry out basic functions,
mostly associated with regulatory processes in the cell,
including transcription, translation, cellular signal trans-
duction, protein phosphorylation, the storage of small
molecules, and the regulation of the self-assembly of
large multi-protein complexes such as the ribosome, in
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which interactions with multiple partners and high-
specificity / low-affinity interactions are often required.
The functional diversity provided by disordered regions
complements that of ordered protein regions [9-11]. It
has been also reported the importance of disordered
interfaces in the modulation of cellular regulatory re-
sponse, which participate in subtle regulation by switch-
ing its specificity for different binding partners [12].

In plants, the available information about intrinsic dis-
order in proteins is rather limited compared to other
eukaryotic organisms and concerns basically to Arabi-
dopsis thaliana, which was the first complete genome
sequenced. Particularly, it has been pointed out that late
embryogenesis abundant (LEA) proteins, with chaperone
activity, and dehydrin proteins, lack a stable three-
dimensional structure being probably fully disordered
[13-15]. These proteins are associated with abiotic stress
tolerance, particularly with cold stress and dehydration.
The computational prediction of disorder by Dunker
et al. [1] did not reveal notable disorder differences
among the proteome of A. thaliana and those of other
eukaryotes. However, currently it is not known whether
this scenario is general for all plant proteomes. Add-
itionally, another overlooked aspect is the comparison of
the degree of disorder in organelle and nuclear pro-
teomes. Evolutionary analysis of A. thaliana, cyanobac-
terial and chloroplast genomes have revealed that many
genes were transferred from plastids to the nucleus dur-
ing plant evolution [16]. In particular, it has been esti-
mated that in A. thaliana approximately 18% of the total
protein-coding genes were acquired from the cyanobac-
terial ancestor of plastids.

At present computational analysis are considered cru-
cial and indispensable for the identification and
characterization of unstructured proteins [2,17]. Several
methods have been developed to predict intrinsic dis-
order from amino acid sequences, such as DisEMBL
[18]; GLOBPROT?2 [19]; DISOPRED2 ([20,21]; IUPred
[22]; PONDR VL-XT [23-25], among others. Among
these we decided to use the DISOPRED2 software,
which has achieved specificities of 0.95 at the residue
level in four successive Critical Assessment of Techni-
ques for Protein Structure Prediction experiments
(CASP6-9), and has been shown to be the best predictor
of long disordered regions in CASP9 [26,27].

Here we report the disorder analysis of proteins from 8
vascular plants, 1 bryophyta and 3 chlorophyta encoded
in either plastid, mitochondrial or nuclear genomes by
using the DISOPRED2 method. In order to gain bio-
logical and evolutionary insights, we focus on the subset
of chloroplast genes which moved to the nucleus during
plant evolution. It is observed that originally chloroplast-
encoded proteins acquired disorder after their genes
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moved to the nucleus. In contrast, proteins still encoded
in the chloroplast chromosome barely become disor-
dered. Finally, in order to further evaluate these findings,
we review the incorporation of disorder to chloroplast
ribosomal subunits, one of the most representative
transferred gene clusters, in comparison to their bacter-
ial counterparts.

Results

Analysis of disorder and occurrence of amino acids in
protein sequences

We have analyzed the occurrence of protein disorder in
12 complete plant proteomes (see Materials and Meth-
ods). Chloroplast (ca. 85 proteins in average), mitochon-
drial (ca. 64 proteins in average) and nuclear (ca. 25,000
proteins in average) proteomes were separately analyzed
and the occurrence of disordered regions of different
length (L) was calculated. In plant nuclear proteomes
the percentages of predicted disordered segments with
L>30, L>40, and L>50 were determined (full detail in
Additional file 1: Table S1). The data showed in average
a range of disorder ranging from 40 to 56%, 26 to 44%
and 19 to 33%, respectively. Figure 1 summarizes the
data corresponding to predicted to-be-disordered seg-
ments with L>30. The highest percentages of disorder
were found in Zea mays (56.2%), Glycine max (53.3%),
Physcomitrella  thaliana (52.6%), Micromonas  sp.
RCC299 (52.9%) and Ostreococcus tauri (52.5%). In gen-
eral, no statistically significant differences between vas-
cular plants (8) and bryophyta (1) and chlorophyta (3)
species were found (X* values of 2.367 for bryophyta
and 0.060 for chlorophyta, see Additional file 2: Table
S2). Nonetheless Physcomitrella patens had the lowest
percentage, 38.2%, a value close to those found in Ar-
chaea and bacteria. It is also worth mentioning that no
obvious differences were observed between monocots
and eudicots.

Chloroplast (2 - 13%) and mitochondrial (2 - 19%)
proteomes clearly exhibit much less disorder than nu-
clear ones (Additional file 1: Table S1). In chloroplasts
for L > 30, Micromonas sp displays the lowest amount of
disorder (2%) and perhaps surprisingly Vitis vinifera
showed values (4.6%) close to those found in microalgae.
Concerning mitochondria, the lowest percentage (2.3%)
was found in Ostreococcus tauri.

In an attempt to validate our disorder predictions, we
searched in the Protein Data Bank (PDB) for homolo-
gous proteins to those of A. thaliana identified as intrin-
sically disordered proteins in our analysis, as explained
in Materials and Methods. This was a very limited valid-
ation effort, since it was only possible to recover data for
70 sequences. Nevertheless, we found that 49/70 (61/70
if we consider terminal sequences partially aligned to
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predicted disordered regions) contained segments with
unresolved 3D-structure.

The distribution of disordered segments of L > 30 along
complete protein sequences was calculated, splitting pro-
teins in N-terminal (40 aa), C-terminal (40 aa) and in-
ternal regions. The results in Table 1 indicate that in
nuclear proteomes the disordered regions are slightly
more abundant in the internal regions of proteins (50 -
65%) compared with the extremes of the protein se-
quence (14 - 30%), being the N-terminal part (20 - 31%)
more disordered than the C-terminal one (14 - 20%).
This distribution differs to that calculated for chloro-
plasts and mitochondria; in organelles the results indi-
cate a more similar occurrence of disorder in the internal
regions (21 - 41% in chloroplasts, and 28 - 46% in mito-
chondria) compared with the terminal regions (15 - 44%
in chloroplasts and 24 - 41% in mitochondria). This sce-
nario was common for all the plant proteomes studied
with the exception of the chloroplast from C. reindhartii,
where the disorder distribution was similar to that
observed in the nuclear proteome (i.e., the internal part
was more disordered than the terminal regions).

Amino acid frequencies in disordered proteins were also
analyzed. The amino acid residues Ser, Pro, Gln, Lys and
Glu are over-represented in intrinsically disordered regions
from nuclear proteomes. In contrast, the amino acid resi-
dues with lowest frequencies were Trp, Cys, Tyr, Phe, lle,
Leu and Val (Additional file 3: Figure S1A). In chloroplasts

and mitochondria some differences were observed: Lys and
Met showed higher frequencies, being Ser and Pro less
abundant (Additional file 3: Figures S1B and S1C).

Disorder in proteins encoded by plastidic genes in the
nucleus

Intrinsic disorder was investigated in proteins believed
to be originally encoded in chloroplast genomes, which
were subsequently transferred to the nuclear genome in
the course of evolution. With this aim we retrieved from
the PLAZA database (for details see Materials and
Methods) all Arabidopsis thaliana protein-coding genes
within the nuclear genome with a plastid origin as
reported in Martin et al. [16]. The analysis revealed that
in A. thaliana 147 of 298 total proteins (49.3%) contain
L >30 segments disordered. The analysis for the rest of
plant proteomes was done with the transferred nuclear
genes identified by homology (see Materials and methods).
We found that disordered proteins were 84 of 253 (33.2%)
in Carica papaya, 72 of 203 (35.5%) in Glycine max, 122
of 480 (25.4%) in Populus trichocarpa, 107 of 404 (26.5%)
in Vitis vinifera, 118 of 311 (37.9%) in Oryza sativa, 106 of
286 (37.1%) in Sorghum bicolor, 78 of 202 (38.6%) in Zea
mays, 112 of 379 (23.6%) in Physcomitrella patens, 76 of
191 (39.8%) in Chlamydomonas reindhartii, 62 of 144
(43.1%) in Micromonas sp. RCC299, 56 of 150 (38.9%) in
Ostreococcus tauri. The lowest disorder was calculated for
Physcomitrella  patens (23.6%) and the highest for
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Table 1 Distribution of disordered segments with L>30 in protein sequences from plant proteomes

Proteomes AT CcP PT 'A% os SB M GM PP CR MCR oT

Nuclear

proteomes

N-terminal (40 aa) 25512/ 24444/ 34479/ 24524/ 42303/ 29680/ 29628/ 40313/ 31926/ 13158/ 9566/ 8069/
97853 80869 126754 92151 148406 115497 114125 167551 130425 63766 46371 33395
2607%  3022%  27.20%  2661%  2850% < 25.70% = 25.96% 24.06% 2448%  20.63% 2063%  24.16%

Internal part 56422/ 40528/ 68242/ 51256/ 79257/ 66199/ 65801/ 100443 / 76575/ 41269/ 30027/ 19871/
97853 80869 126754 92151 148406 115497 114125 167551 130425 63766 46371 33395
5766%  50.11%  5384%  5562%  5340% 5732%  57.66% 59.95% 5871%  64.72% 64.75%  59.50%

C-terminal (40 aa) 15919/ 15897/ 24033/ 16371/ 26846/ 19618/ 18696/ 26795/ 21924/ 9339/ 6778/ 5455/
97853 80869 126754 92151 148406 115497 114125 167551 130425 63766 46371 33395
1627%  1966%  1896%  17.76%  1809%  1698%  16.38% 15.99% 1681%  14.64% 14.62% 16.33%

Chloroplast

proteomes

N-terminal (40 aa) 46 /138 50/154 66/170 49/156 66/ 151 49/118 64/148 48/141 52/145 36/205 29/76 33/96
3333%  3247%  3882%  3141%  4371%  4152%  43.24% 34.04% 3586%  17.56% 38.15%  34.37%

Internal part 55/138 63/154 55/170 63/156 33/151 28/118 38/148 56/141 51/145 137/205 20/76 33/96
39.85%  4091%  3235%  4038%  2185%  2373%  25.67% 39.72% 3517%  66.83% 2631%  3437%

C-terminal (40 aa) 37/138 41/154 49/170 44/156 52/151 41/118 46/148 37/141 42/145 32/205 27/76 30/96
2681%  2662%  2882%  2820%  3443%  3474%  31.08% 26.24% 2896%  1561% 3552%  31.25%

Mitochondrial

proteomes

N-terminal (40 aa) 85/ 236 - - 497143 37/129 22/74 147/ 364 - 25/ 71 5/20 21/62 18/50
36.02% 3426%  2868%  29.73%  40.38% 3521%  25.00% 33.87%  36.00%

Internal part 78/ 236 - - 46/143 587129 34/74 124/ 364 - 25/71 7720 22/62 14/50
33.05% 3217%  4496%  4594% = 34.06% 3521%  35.00% 3548%  28.00%

C-terminal (40 aa) 73 /236 - - 48 /143 34/129 18/74 93/ 364 - 21/71  8/20 19/62 18/50
30.93% 3357%  2635%  2432% @ 25.55% 29.58%  40.00% 30.64%  36.00%

Arabidopsis thaliana (49.3%). As illustrated in Figure 2A,
the acquisition of disorder by transferred proteins is not
uniform across plant species. In 125 out of 226 ortholo-
gous groups of transferred genes there are instances where
a protein contains long disordered segment in some spe-
cies but not in others.

The percentages of disorder in transferred proteins
seem to follow the same trend observed for overall dis-
order in the corresponding proteomes. In order to fur-
ther validate this observation we plotted the disorder
frequencies of nuclear proteins for L >30 versus the fre-
quencies of disorder in proteins originally encoded by
chloroplast genes and currently placed in nuclear gen-
omes (Figure 2B). The Pearson correlation obtained was
r=0.826. However, when we plotted the frequencies of
protein disorder in the chloroplast for L>30 versus the
disorder frequencies of transferred chloroplast genes
(Figure 2C), the obtained correlation coefficient was in-
significant (r = 0.0154).

Martin et al. [16] reported that some genes encoding
for cyanobacterial proteins and identified in the plant nu-
clear genome still conserve a copy in the chloroplast gen-
ome. We have found that this group of proteins has a
much lower percentage of disorder (ca. 7%) than those
that have lost their original chloroplast sequences (20 -

52%). In the case of A. thaliana our results revealed that
a group of 47 nuclear-encoded proteins maintain putative
orthologous copies in the chromosome of the chloroplast.
In particular we found that these nuclear proteins corres-
pond to 27 chloroplastic non-disordered proteins, indicat-
ing that some of them might be paralogues. For instance,
this is the case of the chloroplast NAD(P)H-quinone oxi-
doreductase subunit 2B (AtCg01250), the NAD(P)H de-
hydrogenase (AtCg01090), the RNA polymerase beta’
subunit (AtCg00180) or the second-largest subunit of
DNA-dependent RNA polymerase (AtCg00190). In
addition, ribosomal proteins L14 (AtCg00780), L22
(AtCg00810), S8 (AtCg00770) and S19 (AtCg00820),
which are among the most conserved ribosomal proteins
and bind directly to 23S and 16S rRNAs, respectively, are
included in this group [28-30] (Additional file 4: Table
S3). As mentioned above, these conserved proteins barely
acquire disorder. The scheme in Figure 3 summarizes the
protein transfer scenario from chloroplast to nucleus in A.
thaliana.

We have further grouped transferred intrinsically disor-
dered proteins in gene clusters (Figure 4), reminiscent of
the ancestral bacterial operons, finding that the fts, inf,
acc, psa, rpl and ycf gene clusters encode more frequently
for disordered proteins (40 - 58% of disorder). These
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Figure 2 Disorder frequencies in chloroplast and nuclear proteomes. A) Heatmap of 226 proteins transferred from plastid to nucleus (X-
axis) in 12 analysed plant genomes (Y-axis). Colour scale goes from blue (order) to red (disorder); magenta is shown in cases were not all
members within a group of paralogous genes encode disordered proteins. Absent orthologues are painted in grey. RUBISCO small subunit is
marked with an asterisk. B) Scatter plot of disorder frequencies in complete plant nuclear proteomes (X-axis) versus disorder frequencies in the
nuclear proteome fraction with chloroplast origin (Y-axis). C) Linear plot of disorder frequencies in complete plant chloroplast proteomes (X-axis)
versus disorder frequencies in the nuclear proteome fraction with chloroplast origin (Y-axis). A protein is considered disordered if it contains a
contiguous stretch of predicted disordered residues of L 230 amino acids.

genes are involved in cell division, translational initiation
and acetyl-CoA carboxylase pathways, or photosystem I,
large ribosomal subunits. In contrast, the atp, chl, ndh,
men, pet, psb and rps gene clusters, which encode for
ATP synthase subunits, protochlorophyllide reductase,
NADH-plastoquinone oxidoreductase subunits, succinyl
or naphtoate synthase, cytochrome bg/f, photosystem II
subunits and ribosomal small proteins, contain less disor-
dered proteins (8 - 25% of disorder). These observed dif-
ferences do not appear to be related to protein length, as
the average length of intrinsically disordered proteins was
found to be 390 aa, a similar value to that of non-
disordered proteins (391 aa).

Gene ontology annotations of disordered proteins of
plastidic origin

In order to put in perspective the previous observations
we investigated the annotated function of disordered pro-
teins in the 12 plant species studied by using the Gene
Ontology (GO). In the course of this examination a pro-
tein was considered disordered if it contained a contigu-
ous stretch of predicted disordered residues of L=>30
amino acids. The analysis revealed that disordered pro-
teins encoded in nuclear genes assumed to be of plastidic
origin were enriched in 29 biological processes (P), 39 cel-
lular components (C) and 13 molecular functions (F) GO
categories with corrected p-values < 10E-5 (see Additional
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file 5: Table S4). As to the cellular component, we found
that these proteins were mainly associated to “plastid”
(4.60E-43) and “chloroplast” classes, which supports our
homology-based selection of chloroplast-transferred
genes. The most significant association among specific
biological processes was with “cellular nitrogen compound
biosynthetic process” (1.10E-13), including cofactor, het-
erocycle and tetrapyrrole biosynthetic processes. Finally, a
few molecular functions were found to be associated to
these disordered proteins, such as “structural constituent
of ribosome” (8.01E-09) and “ATPase activity” (4.35E-06).
These reported corrected p-values are relative to A. thali-
ana, which is probably the best-annotated plant genome
for its role as a model organism. Altogether, these results
suggest that disordered transferred proteins as a whole are
not strongly linked to any one function. Moreover,
nuclear-encoded genes still maintaining a copy in the plas-
tid chromosome were mainly associated to GO cellular
components “ribosome” (5.43E-30) and “ribonucleopro-
tein complex” (2.24E-26). Among biological processes,
they were mainly associated to “gene expression” (5.35e-
36) including “translation” (2.61E-25), “transcription”
(5.97E-14) or “RNA biosynthesis” (9.8E-11). Finally, at the
level of molecular function, these proteins were found to
be annotated as “structural constituent of ribosome”
(2.95E-32), “structural molecule activity” (1.56E-28),
“DNA-directed RNA polymerase activity” (2.18E-15) or
“NADH dehydrogenase activity” (2.45E-7) (Figure 3).

We also reviewed the annotated function of non-
disordered proteins of chloroplast origin and the

results were more compelling, as this set of proteins is
more homogeneous (see Additional file 6: Table S5).
Among biological processes, several translation-related
annotations were considerably associated, such as
“ribosome biogenesis” (1.28E-31). These agree well
with the most significant cellular component found,
which “cytosolic large ribosomal subunit” is (1.05E-46).
In addition, the strongest association found at the level
of molecular function was “structural constituent of
ribosome” (4.59E-45).

0.6 4

0.4 4 258

1 445
0.3 1

0.2

f (frequency disorder)

0.1 4

128 263
19
160|
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Figure 4 Distribution of disordered proteins in the fraction of
the nuclear genome with plastidic origin, in terms of gene
clusters. The number of proteins grouped in each gene cluster is
given in each bar.




Yruela and Contreras-Moreira BMC Plant Biology 2012, 12:165
http://www.biomedcentral.com/1471-2229/12/165

Additionally, the functions of intrinsically disordered
nuclear-encoded proteins were also analyzed (data not
shown). Among biological processes the most notable
annotations were related to “regulation”, including “regu-
lation of nucleobase” (1.96E-267), “regulation of nitrogen
compound” (2.48E-266), “regulation of macromolecule
biosynthetic process” (5.94E-265) or “regulation of RNA
metabolic process” (9.61E-265). At the level of cellular
component, significant associations were found with “nu-
cleus” (7.63E-162), “membrane-bound organelle” (5.78E-
144) and “organelle” (8.79E-129). These annotations cor-
respond well with those of molecular function categories,
such as “nucleic acid binding transcription factor activity”
(1.19E-260), “nucleic acid binding” (1.38E-250) or “DNA
binding” (2.23E-209). Overall, these functional classes
match those reported for eukaryotes in general [5].

Disorder in ribosomal proteins

An in-depth analysis of chloroplast ribosomal proteins
was performed with the aim of better understanding
the evolution of protein disorder in plants. These pro-
teins were selected for three reasons: i) they are the lar-
gest gene cluster transferred to the nuclear genome; ii)
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they are part of a highly conserved and essential cellular
system, and iii) they were highlighted in the GO anno-
tation study described above. The idea was to compare
A. thaliana (eudicot) and O. sativa (monocot) proteins
with their orthologues in prokaryotic ribosomes (4 Ar-
chaea, 3 Gram +, 4 cyanobacteria, 7 eubacteria and 4
proteobacteria). For details see Materials and Methods
and Additional file 7: Tables S6A and S6B. We have cal-
culated that 30% and 65% of these proteins are intrin-
sically disordered in chloroplast 30S and 50S subunits,
respectively. The data show that protein disorder is not
uniform across bacteria species. There are instances
where a protein contains long disordered segment in
some species but not in others. It is worth mentioning
that no differences were found between the two plant
species.

Figures 5A/C and 5B/D colour ribosomal proteins that
were predicted to be disordered in our analysis, (and
observed experimentally in some cases as described in [3],
in at least one prokaryote (top) and one plant chloroplast
(bottom) genome, respectively. It can be observed that the
disorder degree of the small (30S) subunit does not in-
crease in chloroplast ribosomes (Figure 5B). On the

IDP =8

N

L28 IDP =21

Figure 5 Distribution of disordered proteins on the bacterial (A,C) and chloroplast (B,D) ribosome (mapped over PDB entries 1JOO,
1VQ8, 3BBN and 3BBO, respectively). Panels A and B correspond to the 30S subunit, C and D to the 50S. Disordered proteins in bacterial
ribosomal subunits are highlighted in pale yellow, pale blue, light blue, dark blue, orange, green, magenta and pink. Their chloroplast orthologues
in Arabidopsis thaliana are marked in the same colour. Additional proteins found to be intrinsically disordered in chloroplast 30S and 50S subunits
are highlighted in red. Numbers following S and L identify small and large subunit proteins, respectively. The disordered protein L7/L12 in the
chloroplast 50S subunit is not marked because of it is absent in the structural data retrieved from the PDB. The average number of intrinsically
disordered proteins (IDP) calculated for each ribosomal subunit is written below (for details see in Additional file 7: Table S6). The three-
dimensional cartoons were drawn using PyMol 1.4.1 (Schrodinger LLC).
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contrary, the disorder increases notably in the chloroplast
large (50S) subunit (Figure 5D). An interesting feature that
might explain this finding is that the majority of
L-proteins are nuclear encoded (33/42) being this ratio
lower (12/22) in the case of S-proteins. Interestingly, in
certain plant genomes (i.e,, O. sativa, S. bicolor, Z. mays, P.
trichocarpa, V. vinifera, G. max, P. patens) it was found
that some ribosomal proteins are encoded by both nuclear
and plastid genes, and in the majority of cases the result-
ing protein products are identical.

In the small subunit, we found that chloroplast pro-
teins S10, S11, S13 and S20 have acquired disorder with
respect to their prokaryotic orthologues, but have also
lost disordered segments observed in bacteria (for in-
stance in S2, S3 and S18). Note that plant S10, S13 and
S20 protein sequences are much longer than their pro-
karyotic counterparts (see in Additional file 8: Table S7),
and this might explain the gain of disordered segments.
Opverall, there is not a clear net gain of disorder in this
subunit (see in Additional file 7: Table S6A). Within the
large subunit, L1, L6, L7/L12p, L9, L11, L13, L17, L18,
124, 127, 128, L34, L35 and L36 proteins gain disorder
in the chloroplast. With the exception of L36, all these
are nuclear-encoded.

Discussion

The analysis of 12 plant proteomes reveals a similar oc-
currence of disordered proteins to that found in other
eukaryotic organisms [1]. Therefore, there is no clear
separation among animals, yeast and plants in terms of
the total amount of predicted disordered segments. Nor
clear differences were observed among different plant
species belonging to bryophyta, chlorophyta and vascu-
lar plant, or among eudicots and monocots.

The amino acid composition of disordered segments in
plants corresponds well with that reported for other
eukaryotes [3,5,11], which can be defined by a low fre-
quency of bulky hydrophobic residues, which normally
form the core of a folded protein, and high frequency of
polar residues contributing to net charge. The minor pres-
ence of cysteine residues within disordered regions was
also a characteristic feature observed in either chloroplast,
mitochondrial or nuclear proteins, which fits well with
other predicted disordered protein profiles [5]. This find-
ing supports that these features in disordered protein
regions are stable during evolution. On the other hand,
the distribution of disordered regions along the complete
protein sequence was slightly higher in the internal parts
than in the terminal parts of proteins. This feature was
common for all the plant proteomes investigated and no
differences were found among different species. This ob-
servation differs from the data obtained from protein 3D
structures from the Protein Data Bank [31]. These authors
reported that the fraction of disordered residues is more
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abundant in the terminal parts (72%), constituted by 40
residues near to the N-terminal and the C-terminal com-
pared with the middle part (all other residues).

Interestingly, a survey of chloroplasts and mitochondria
revealed significant differences concerning the occurrence
of disordered regions when compared with the nuclear
genome. The percentages calculated in these organelles
are in the order of magnitude of those determined in Ar-
chaea and bacteria [1]. These data are in agreement with
the bacterial origin of genes coding for these proteins. We
also observed differences concerning the distribution of
disordered regions in the protein chain.

It has been suggested that between 800 and 2,000
genes in the Arabidopsis thaliana genome might come
from cyanobacteria, with a majority of proteins included
in the functional category of biosynthesis and metabol-
ism [32-35]. Furthermore, the analysis of 15 sequenced
chloroplast genomes revealed 117 nuclear-encoded pro-
teins that are also still present in at least one chloroplast
genome [16]. Based on these reports we evaluated the
degree of disorder in both nuclear-encoded proteins,
which were transferred from the plastid to the nuclear
genome, and those transferred to the nucleus that also
still conserve a copy in the chloroplast genome. Our
results indicate that transferred proteins acquired dis-
order with a frequency similar to that of nucleus-
encoded proteins. During evolution, organelles export
their genes to the nucleus, but many of these proteins
are imported to the chloroplast, with the help of transi-
ent peptides and protein-import machinery, to carry out
their function. This gain of disorder can be hypothesized
to be an advantage during the import-pathway across a
double-membrane barrier. However, these disordered
segments are not preferentially associated to transient
peptides localized in the N-terminal region. Indeed, they
were found to be slightly more abundant in the internal
region of the protein chain. Moreover, those transferred
protein coding-genes that maintain a copy in the chloro-
plast genome exhibit much lower disorder than those
that have lost the plastid copy, similar to proteins
encoded by chloroplast or bacterial genes. This fact
might be revealing a selection pressure during evolution.
These proteins are mainly involved in translation, tran-
scription or RNA biosynthesis, being structural constitu-
ents of the ribosome and the ribonucleoprotein
complex. The disorder in proteins encoded by ancient
chloroplast genes but currently in the nucleus follows
the order bryophyta<vascular plants < chlorophyta. In
this context, the data suggest that the level of disorder
introduced into plastid proteins that have moved to the nu-
clear genome has increased during evolutionary time, but
further investigations will be necessary to clarify this issue.

The gain or loss of disorder in transferred proteins
might be to some extent a stochastic process, since
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orthologous copies found in different plant species do
not necessarily conserve disordered segments, despite
presumably carrying out similar functions. This observa-
tion is in agreement with the finding that gene transfer
events from the chloroplast to the nuclear genome occur
much more frequently than generally believed, contrib-
uting significantly to genetic variations [35]. In this re-
spect it is also noted that disorder distribution in
ribosomal proteins among bacterial species appears ra-
ther at random (Additional file 7: Table S6).

Non-folding unstructured proteins and regions might
be expected to change more rapidly during evolution
than structured proteins because buried amino acid
residues are highly constrained while disordered regions
are not constrained by the structure [11]. It is believed
that disordered proteins do not exist as a single struc-
ture but rather as a conformational equilibrium of
states, which interconvert into each other over a range
of time scales. This feature can be an evolutionary ad-
vantage for adaptation, for instances, under stress con-
ditions. Additionally, intrinsically disordered proteins
could be more susceptible to proteolytic degradation
in vitro. The classical PEST hypothesis states that the
presence of segments rich in Pro, Glu(Asp) and Ser/Thr
flanked by Arg/Lys residues in proteins correlates with
a short lifetime in the cell [36,37]. Accordingly, the fact
that a group of proteins related to the ribosome biogen-
esis preserved its ordered character when transferred to
the nucleus could be explained by this critical role
within the protein synthesis machinery which should be
maintained.

On the other hand, around 25% of chloroplast ribosomal
proteins transferred to the nucleus are predicted to be in-
trinsically disordered in our analysis. In this respect it has
been argued that flexibility favours the structural assembly
of components of large complexes such as those involved
in ribosome and therefore such characteristic should be
prevalent in certain ribosomal proteins [38]. Moreover,
RNA-binding proteins usually contain unstructured
regions as is the case of the ribosomal protein L5, which is
reported to be associated with 5S rRNA [39]. Our results
also indicate that intrinsic disorder is a well-conserved
character in some ribosomal proteins. This is the case of
L4 and L15, predicted to contain unstructured segments
in all the bacterial and plant proteomes analysed. Riboso-
mal protein L4 is localized near the peptidyl transferase
center of the bacterial ribosome [40] and displays signifi-
cant RNA chaperone activity [41]. The L15 protein is
involved at later stages during assembly [41].

The comparison of disorder between bacterial and
chloroplast ribosomal proteins unveiled a disorder in-
crease in the chloroplast large 50S subunit, where pro-
teins are in average 55 residues longer, as previously
reported by Yamaguchi and Subramanian [42], and the
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majority are produced by nuclear genes. This finding
contrasts with the data obtained with the whole prote-
ome, which show no differences in length between disor-
dered and non-disordered proteins. In the case of the
small 30S subunit such differences were not so clear,
probably due to the higher content of chloroplast-
encoded proteins, which most of them are predicted to
be non-disordered. These results support our hypothesis
that proteins encoded in the nuclear genome are more
likely to stochastically acquire disorder. On the other
hand, however, we cannot preclude that differences in
rRNA composition between chloroplast (23S, 5S and
4.5S) and bacterial (23S and 5S) large 50S ribosomal
subunit could also explain the gain of disorder observed
in this subunit [43,44].

Differences in the genetic machinery between plastids
(prokaryotic) and nucleus (eukaryotic) could also help to
explain our observations. When plastid genes reach the
nucleus they move from a genetic apparatus that is com-
pact, operon-harbouring and intron-poor, to one that is
more complex, operon-splitting and intron-rich [45].
While the gain of disorder is thought to be advantageous
or neutral in many cases, there must be selective pres-
sures that put restrictions to this apparently random
process, as is the case of the chloroplast RUBISCO small
subunit protein, a nuclear-encoded protein with a plastid
origin, which was found to be ordered in most of the
plant proteomes investigated (see Figure 2).

The comparison of 3D structures of bacterial and
chloroplast ribosomal subunits revealed the localization
of the extra disordered proteins. For instance, S11 is
localized in the mRNA path, next to the intrinsically
disordered S21, which directly interacts with the 5 un-
translated region of the mRNA [46]. In the ribosomal
50S subunit, L24 and L29 are localized surrounding
the polypeptide tunnel exit site. It is worth noting that
some of these chloroplastic disordered proteins are
normally found in cyanobacteria (see in Additional
file 7: Table S6), but in some cases are unstructured in
gram-positive bacteria and not in cyanobacteria (i.e.
S9, L29 and L31). This might be related with the fact
that more Arabidopsis proteins branched with their
homologues from gram-positive bacteria (Mycobacter-
ium) than did with cyanobacteria (Prochlorococcus,
Synechocystis). This has been interpreted as if the Ara-
bidopsis lineage acquired genes specifically from gram-
positive bacteria subsequent to its divergence from the
yeast lineage [16].

Conclusions

Taken together, our chloroplast-based analyses demon-
strate that disordered segments are acquired by proteins
most probably due to the process of nuclear integration
during plant evolution. However, we observed that some



Yruela and Contreras-Moreira BMC Plant Biology 2012, 12:165
http://www.biomedcentral.com/1471-2229/12/165

parts of the ancestral chloroplast and mitochondria
organelles present in eukayotic cells are being preserved
from acquiring disordered segments, probably due to
functional constraints and evolutionary pressure.

Methods

Proteomic and GO databases

Chloroplast, mitochondrial and nuclear complete plant
proteomes, and the Gene Ontology (GO) annotations
for Arabidopsis thaliana (AT), Carica papaya (CP),
Chlamydomonas reindhartii (CR), Oryza sativa (OS),
Populus trichocarpa (PT), Physcomitrella patens (PP),
Sorghum bicolor (SB), Vitis vinifera (VV) were retrieved
from PLAZA v.1, and Glycine max (GM), Micromonas
sp. RCC299 (MRC), Ostreococcus tauri (OT) and Zea
mays (ZM) from PLAZA v.2 (http://bioinformatics.psb.
ugent.be/plaza/).

Gene transfer analysis

Based on the data reported in Martin et al [16] the
protein-coding genes in sequenced chloroplast genomes
and identified nuclear homologues in A. thaliana (AT)
were retrieved using the tools available in (http://bioinfor-
matics.psb.ugent.be/plaza/). The corresponding homolo-
gues were identified in C. papaya (CP), C. reindhartii
(CR), O. sativa (OS), P. trichocarpa (PT), P. patens (PP), S.
bicolor (SB), V. vinifera (VV), G. max. (GM), Micromonas
sp. RCC299 (MRC), O. tauri (OT) and Z. mays (ZM) and
retrieved from PLAZA. To identify those proteins
encoded by nuclear genes, which still maintain a homolo-
gous copy in the chloroplast genome, we used BLAST bi-
directional best hits, taking either the chloroplast protein
or the nuclear protein as query.

Ribosomal protein sequences from bacteria Pyrococcus
furiosus (Pyf), Methanobacterium sp. (Meb), Methano-
caldococcus  jannaschii (Mtj); Archaeoglobus fulgidus
(Af), Mycoplasma pneumoniae (Myc), Bacillus subtilis
(Bas), Mycobacterium tuberculosis (Myt), Nostoc puncti-
forme (Nos), Prochlorococcus marinus (Pro), Synechocy-
sistis sp. PCC 6803 (Syn); Symechococcus sp. (Sych),
Borrelia burgdorferi (Bob), Chloroflexus aggregans (Chla),
Chlorobium chlorochromatii (Chlb); Treponema palli-
dum (Trep), Chlamydia pneumoniae (Chlp), Clostridium
hathewayi (Clos); Aquifex aeolicus (Aqa), Rickettsia pro-
wazekii (Rip), Heliobacter pylori (Hep), Haemophilus
influenzae (Hai), Escherichia coli (Ec) were retrieved
from NCBI (www.ncbi.nlm.nih.gov). This set of prokar-
yotes is chosen for analysis in the work of Martin et al.
(2002). The corresponding homologues in A. thaliana
and O. sativa were retrieved using the tools available in
(http://bioinformatics.psb.ugent.be/plaza/) and UniProt
(http://www.uniprot.org).
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Predictor of intrinsic order and disorder

DISOPRED2 v2.42 [21] disorder predictions were per-
formed for all protein sequences annotated in 12 plants,
including proteins encoded in organelle genomes when
available, and 22 bacteria. All input sequences, plus the
reference database uniref90, were low-complexity filtered
with PFILT and scanned with 3 iterations of blastpgp
with an E-value cutoff of 0.001.

A limited benchmark of disorder predictions in plant
proteins

A computational experiment was carried out to estimate
the quality of DISOPRED2 disorder predictions with
plant protein sequences. The proteome of A. thaliana
was compared to the contents of the Protein Data Bank
as of February 7, 2012, looking for related structures. A
total number of 70 crystallographic structures with
>70% of sequence identity and resolution <2 A were
retrieved and used as a gold standard. Putative disor-
dered segments of at least 30 residues were validated if
aligned to residues reported in SEQRES records but ab-
sent in ATOM records, following the approach of the
DISOPRED developers [20].

Gene ontology (GO) analysis

Perl module GO:TermFinder v0.86, obtained from CPAN
(http://search.cpan.org/dist/GO-TermFinder/), was used
to estimate the enrichment in GO terms associated to sets
of disordered proteins. GO mappings for all 12 proteomes
were obtained from PLAZA and enrichments calculated
with default parameters, with a false discovery rate of 1%.
It must be noted that GO annotations retrieved from
PLAZA for most genomes contained obsolete GO terms.
The exact numbers found with respect to the official gen-
e_ontology.1_2.0bo release were: A. thaliana (350), C. pa-
paya (0), C. reindhartii (1405), O. sativa (2824), P.
trichocarpa (5200), P. patens (3055), S. bicolor (1814), V.
vinifera (1491), G. max (539), Micromonas sp. RCC299
(49), O. tauri (35) and Z. mays (344).

Additional files

Additional file 1: Table S1. Distribution of predicted to-be-disordered
segments with L = 30, L = 40 and L = 50 in chloroplast, mitochondrial
and nuclear plant proteomes.

Additional file 2: Table S2. Statistical comparison of disorder content
using Chi square tests (A) and Student's t tests (B).

Additional file 3: Figure S1. Distribution of amino acid residues in
disordered proteins in the plant proteomes. Nuclear (A), chloroplast (B),
and mitochondrial (C) proteomes.

Additional file 4: Table S3. Nucleus-encoded proteins with a putative

orthologous copy in the chloroplast from Arabidopsis thaliana. ' ATC
refers to proteins encoded by chloroplast genes.

Additional file 5: Table S4. Selection results for Gene Ontology (GO)
categories in intrinsically disordered proteins encoded by chloroplast
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genes and transferred to nuclear genome. A) biological process (P) GO
categories; B) cellular components (C) GO categories; C) molecular
function (F) GO categories.

Additional file 6: Table S5. Selection results for gene ontology
categories in non-disordered proteins encoded by chloroplast genes and
transferred to nuclear genome. A) biological process (P) GO categories; B)
cellular components (C) GO categories; C) molecular function (F) GO
categories.

Additional file 7: Table S6. Distribution of intrinsically disordered
proteins in small (A) and large (B) ribosomal subunits from bacteria and
plant chloroplast.

Additional file 8: Table S7. Protein length of ribosomal proteins from

bacteria and plant chloroplasts.
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