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Jasmonic acid is involved in the signaling
pathway for fungal endophyte-induced volatile
oil accumulation of Atractylodes lancea plantlets

Cheng-Gang Ren and Chuan-Chao Dai’

Abstract

Background: Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its
relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are
largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces
antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research
how JA interacted with other signal molecules in volatile oil production.

Results: Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is
required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and
nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation
could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-
carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H,O, inhibitors diphenylene
iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-
aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was
significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous
H,O, could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by
the fungus through H,O,-dependent pathways. With fungal inoculation, the H,O, scavenger DPI/CAT could inhibit

JA generation, but IBU could not inhibit H,O, production, implying that H,O, directly mediated JA generation.
Finally, JA generation was enhanced when SA production was suppressed, and vice versa.

Conclusions: Jasmonic acid acts as a downstream signaling molecule in NO- and H,O,-mediated volatile oil
accumulation induced by endophytic fungus and has a complementary interaction with the SA signaling pathway.

Keywords: Atractylodes lancea, Endophytic fungi, Volatile oil, Jasmonic acid, Medicinal herb

Background

Atractylodes lancea, a member of the Compositae fam-
ily, is a traditional Chinese medicinal plant [1,2]. Volatile
oils from A. lancea show antimicrobial activities as well.
These oils comprise active secondary metabolites, in-
cluding the characteristic components atractylone, -
eudesmol, hinesol, and atractylodin [3]. Secondary meta-
bolites, such as terpenes, flavonoids, and alkaloids, are
believed to be involved in plant responses to many biotic
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and abiotic stresses [4-6]. Another plant defense re-
sponse is the activation of multiple signaling events
[7,8]. For example, jasmonic acid (JA) biosynthesis by
plants is induced by pathogen infection and elicitor
treatment [9], and salicylic acid (SA) is involved in acti-
vating distinct sets of defense-related genes [10], such as
those that encode pathogenesis-related (PR) proteins
[11]. Also, many signaling molecules have been revealed
to be involved in secondary metabolism [12-14].
Endophytes can coexist with their hosts and have great
potential to affect the hosts’ metabolism [15]; their effects
on plant accumulation of medicinal components have
received much attention recently [16,17]. Unlike patho-
gens, endophytic fungi do not cause strong hypersensitive
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reactions in the host. But long-term colonization can in-
duce various kinds of metabolites to accrue in hosts
[17,18]. How endophytic fungus-host interactions affect
the accumulation of plant secondary metabolites is an in-
triguing issue.

Jasmonic acid is a well-characterized plant signaling
molecule that mediates plant defense responses [19] by
responding to microbial infection and elicitor treatment
[20]. Kunkel et al.. [21] found that fungal elicitor caused
rapid increases in JA production, secondary metabolite
biosynthetic gene expression, and secondary metabolite
accumulation in many plants. Exogenous JA application
enhanced gene expression of secondary metabolite bio-
synthetic pathways, while the fungal elicitor-induced sec-
ondary metabolite accumulation could be abolished by
JA synthesis inhibitors [13]. Most plant defense responses
are regulated by many signal molecules, and “cross-talk”
among multiple signaling pathways is important in plant
cell signal transduction networks [21]. An increasing
number of studies have shown that these signals do not
function entirely independently; rather, they are influenced
the magnitude or amplitude of various other signals [22].

Although interactions between SA- and JA-mediated
signaling pathways have been reported to enhance the
expression of plant defense-related genes, studies on
interactions between JA and multiple signaling pathways
(nitric oxide, hydrogen peroxide, and SA) in mediating
plant secondary metabolite accumulation are rare. In
this work, we report that JA acts as a downstream signal
of nitric oxide (NO)- and hydrogen peroxide (H,O,)-
mediated volatile oil accumulation in A. lancea plantlets
induced by endophytic fungus Gilmaniella sp. AL12.
Furthermore, we reveal an unusual complementary rela-
tionship between JA and SA in mediating the biosyn-
thesis of medicinal plant secondary metabolites.

Methods
Plant materials and treatments
Meristem cultures of Atractylodes lancea (collected in
Maoshan, Jiangsu Province, China) were established
according to Wang et al. [22]. The explants were surface
sterilized and grown in MS medium [23] supplemented
with 0.3 mg/L naphthaleneacetic acid (NAA), 2.0 mg/L
6-benzyladenine, 30 g/L sucrose, and 10% agar in
150 mL Erlenmeyer flasks. Rooting medium (1/2 MS)
contained 0.25 mg/L NAA, 30 g/L sucrose, and 10%
agar. All media were adjusted to a pH of 6.0 before being
autoclaved. Cultures were maintained in a growth cham-
ber (25/18°C day/night, with a light intensity of 3400 Im/
m” and a photoperiod of 12 h) and subcultured every
four weeks. Thirty-day-old rooting plantlets were used
for all treatments.

Reagents used as specific scavengers or inhibitors,
including ibuprofen (IBU), nordihydroguaiaretic acid
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(NDGA), 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimida-
zoline -1-oxyl-3-oxide potassium salt (cPTIO), paclobu-
trazol (PAC), catalase (CAT), diphenylene iodonium
(DPI), and 2-aminoindan-2-phosphonic acid (AIP), were
purchased from Sigma-Aldrich (St. Louis, MO, USA).
All exogenous signaling molecules and inhibitors were
filtered using 0.22 pm diameter microporous membranes
before use. Unless stated otherwise, inhibitors were ap-
plied 1 d before the application of signaling molecules or
fungal inoculation.

Fungal culture and treatments

The endophytic fungus AL12 (Gilmaniella sp.) was iso-
lated from A. lancea, cultured on potato dextrose agar,
and incubated at 28°C for five days [24]. Thirty-day-old
plantlets were inoculated using 5-mm AL12 mycelial
disks. An equal size of potato dextrose agar was used as
a control. All treatments were conducted in a sterile en-
vironment and replicated at least three times to examine
reproducibility.

Measurement of H,0, and NO

Thirty-day-old plants were incubated with fungal mycelia
disks with or without inhibitors and were harvested 18 d
later for determination of NO or H,O,. Inhibitors were
1.25 mmol L™ ¢PTIO, 525 mKat L™ CAT or 3 mmol
L' DPL

The generation of H,O, by A. lancea plantlets was
measured by chemiluminescence in a ferricyanide-
catalyzed oxidation of luminol according to Schwacke
and Hager [25], with modification. Leaf samples (1 g)
were ground with 5 ml double distilled water. The hom-
ogenate was centrifuged at 13,000 g for 10 min, then
100 pL supernatant, 50 pL luminol (5-amino-2,3-dihy-
dro-l,4-phthalazinedione), and 800 pL phosphate-buffered
saline were mixed in a cuvette. The reaction was initiated
with 100 pL Kj[Fe(CN)g]. To compare independent
experiments, we used H,O, as an internal standard. Fifty
microliters of HyO, (1 uM, freshly prepared) was added to
the assay mixture containing 750 pL potassium phosphate
buffer. One unit of H,O, was defined as the chemilumin-
escence caused by the internal standard of 1 uM H,O, per
gram fresh weight.

The generation of NO was monitored using a NO de-
tection kit (Nanjing Jiancheng Bio-engineering Inst.,
Nanjing, China) according to the manufacturer’s instruc-
tions. Leaf samples (1 g) were ground with 5 ml of
40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (pH 7.2) and the homogenate was centrifuged at
14,000 g for 10 min. The supernatant was used for the
NO assays. One unit of NO was defined as the absorb-
ance variation caused by the internal standard of 1 uM
NO per gram fresh weight.
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At least 15 plantlets were assayed for each time point,
and all treatments were performed in triplicate.

Measurement of SA

Thirty-day-old plants were incubated with fungal myce-
lia disks with or without inhibitors and were harvested
18 d later for determination of SA. Inhibitors were
1 mmol L™ PAC or 2.5 mmol L™ AIP.

Salicylic acid was extracted followed the method of
Verberne et al. [26], with some modifications. Five grams
of whole plantlets was ground in liquid nitrogen and
extracted in 2 ml methanol by sonication. After centrifu-
gation at 14,000 g for 5 min, the supernatant was rotary
evaporated, and the residue was resuspended in 250 pl
of 5% trichloroacetic acid. The mixture was re-extracted
with 800 pl acetic acid ester: cyclohexane (1:1 v/v). Fi-
nally, the organic phase was rotary evaporated until dry,
dissolved with 600 pl HPLC mobile phase (methanol: 2%
acetic acid: H,O, 50:40:10, v: v: v), and filtered with a
0.22-pm microporous membrane for determination.

The SA samples were quantified by HPLC using a
reverse-phase column (Hedera Packing Material Lichro-
spher 5-C18, 4.6 x 250 mm, 5 pum, Bonna-Agela Tech-
nologies, Wilmington, DE, USA). The mobile phases
flow rate was 1 ml min". Salicylic acid was detected at
217 nm at 25°C [14].

Extraction and determination of volatile oils and JA
Thirty-day-old plantlets of Atractylodes lancea were
incubated with 5-mm mycelial disks or PDA disks (con-
trol). Inhibitors (0.1 mmol L™ IBU or NDGA) were
added 1 d before fungal inoculation for JA determination.

Volatile oils were extracted from whole plantlets of A.
lancea, including leaves and rhizomes (0.8—1.6% oil con-
tent in leaves, 2.2-3.4% in rhizomes), according to
Zhang et al. [27]. The volatile oils were dried with an-
hydrous sodium sulfate and stored in dark glass bottles
at 4°C for gas chromatograph (GC) analysis.

Following Juergen et al. [28], JA was extracted by
grinding plant material (1 g) frozen in liquid nitrogen
and extracting with H,O: acetone (30:70, v:v). Samples
were store in dark glass bottles at —21°C for GC analysis.

GC determination was carried out using an 1890 series
GC (Hewlett-Packard, Palo Alto, CA) equipped with a flame
ionization detector. A DB-5 ms (30 m x 0.25 mm x 0.25 pm)
column (Agilent, Santa Clara, CA, USA) was used with the
following temperature program: column held at 60°C for
1 min after injection, increased by 10°C/min to 190°C, held
for 2 min, increased by 5°C/min to 210°C, held for 2 min,
increased by 10°C/min to 220°C, and held for 8 min. Nitro-
gen was used as carrier and the flow rate was 4 ml/min. Four
main components of the volatile oils, atractylone, hinesol,
[B-eudesmol, and atractylodin, were quantitatively analyzed
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according to the method of Fang et al. [29]; their retention
times were 14.57, 15.24, 16.21, and 22.18 min, respectively.

Real-time quantitative RT-PCR analysis

Total RNA was extracted from leaves as described by Dong
and Beer [30]. First-strand ¢cDNA was synthesized from
1 pg of total RNA (PrimeScript RT Reagent Kit, Takara,
Dalian, China). Real-time qPCR was performed using the
DNA Engine Opticon 2 Real-time PCR Detection System
(Bio-Rad, Hercules, CA, USA) and SYBR green probe
(SYBR Premix Ex Taq system, Takara). The constitutively-
expressed gene EFla used as an internal positive control.
The gene-specific primers used to amplify EFla were 5'-C
AGGCTGATTGTGCTGTTCTTA-3" and 5 -TGTGGCA
TCCATCTTGT-3" (241 bp product) and for alHMGR
were 5'-GGTGAGAAAGGTCCTGAAA-3" and 5'-CATG
GTAACGGAGATATGAA-3’ (154 bp). The GenBank ac-
cession numbers of the a/[HMGR and EFla genes are
EF090602.1 and X97131, respectively.

The thermocycler program was as follows: 90 s at 95°C;
40 cycles of 30 s at 95°C, 30 s at 57°C, and 30 s at 72°C;
and 5 min at 72°C. To standardize the data, the ratio of the
absolute transcript level of the a/HMGR genes to the abso-
lute transcript level of EFla was calculated for each sample
of each treatment.

Statistical analyses

Data were compiled using Microsoft Excel (Redmond,
WA, USA). The values were represented as mean + SD
of three replicates for each treatment. Student’s t-test,
one-way ANOVA, and Duncan’s multiple range test
were used to identify significant differences (SPSS ver.
13.0, SPSS Inc., Chicago, IL, USA).

Results

Dependence of JA in fungus-induced volatile oil
accumulation

The JA contents of the plantlets increased significantly
after endophytic fungus inoculation (Figure 1A), indicat-
ing that the fungus may trigger JA biosynthesis in the
plantlets. Concurrently, the total amount of volatile oils
increased significantly (Table 1). Both IBU and NDGA
are inhibitors of the octadecanoid pathway that synthe-
sizes JA and are usually applied in plant systems as JA-
specific inhibitors [13]. To investigate whether JA was
involved in the fungus-induced volatile oil accumulation,
IBU and NDGA were applied; as shown in Figure 1B,
both inhibitors suppressed not only the fungus-induced
JA generation, but also the fungus-triggered volatile oil
production. The results suggested that JA was important
for fungus-induced volatile-oil synthesis in A. lancea
plantlets. However, volatile oils in the A. lancea plantlets
treated with both fungus and JA inhibitors could still ac-
cumulate, compared with the control, even though JA
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Figure 1 Endophytic fungus-induced volatile-oil accumulation is dependent on JA generation. Thirty-day-old plantlets of Atractylodes
lancea were incubated with 5-mm mycelial disks or PDA disks (control). (A) Jasmonic acid production at 2-day intervals. Asterisks indicate
significant differences from the control (0 d) (t-test; *, P <0.05; **, P <0.01). (B) Effects of JA inhibitors on endophytic fungus-induced volatile-oil
accumulation after 18 d. Inhibitors (0.1 mmol L' IBU or NDGA) were added 1 d before fungal inoculation. Values are means of three independent

experiments. Bars with different lower-case letters were significantly different (one-way ANOVA, Duncan’s multiple range test, P <0.05).

generation was lower than control (Figure 1B), implying
that fungus-induced volatile oil synthesis is not solely
dependent on the JA signaling pathway.

JA acts as a downstream signal of NO and H,0, pathway

Previous results showed that JA is not the sole signaling
pathway involved in fungus-induced volatile oil synthe-
sis; NO, H,O,, and SA are also known to mediate this
process in A. lancea plantlets [22]. To investigate a pos-
sible relationships between JA and one or more of these

other pathways, A. lancea plantlets were treated with
the NO-specific scavenger cPTIO, the membrane
NADPH oxidase inhibitor DPI/CAT, the SA inhibitor
PAC/AIP, IBU, and fungal inoculation. The NO scaven-
ger ¢cPTIO could inhibit JA production in inoculated
plantlets, but IBU could not inhibit NO production
(Figure 2A), showing that JA may act as a downstream
signal of NO. Exogenous H,O, could reverse JA sup-
pression, implying that JA is mediated by NO though
H,0, in endophyte-induced volatile-oil accumulation. In



Table 1 Accumulation of volatile oils by Atractylodes lancea over time

Components  Treatment 0 day 4 day 6 day 8 day 10 day 12 day 14 day 16 day 18 day 20 day
Atractylone (ug/q) Fungus 463+141a 423+0.74a 524+094a 441£067a 497 £0.56a 864+ 1.19b 1348 £1.54c 23.53+2.76d 2843 +1.54d 15.13+£0.93c
Control 463+127a 4.92+1.02a 397+042a 52+055a 3.15+0.75a 3.92+048a 431+039 4.71+044a 5.17+063a 56+052a
Hinesol (ug/qg) Fungus 3817+432a  40.12+382a 41.6+493a 40.85+5.63a 5442+423b  65.15+5.28c 7872+663d  10442+823e 128 +9.42f 52.15+445b
Control 38.17+536a 3231+352a 38.63+3.78a 35.62+3.29 4381+4.22a 46.95+3.04a 37.13+6.27a 46.21+3.23a 469+3.32a 5022 £524a
B-Eudesmol (ug/g)  Fungus  80.72+1137a  856+601a 9223+£643a  9663+648b 10475+£6.12c 10475+606c 11658+6.19d 11962+6.25e 123.83+£807e  99.65+4.18C
Control 80.72£10.75a 78.7+832a 81.27 £853a 88.51+7.95a 93.18+828a 94.67 +8.05a 98.38 +5.04a 96.42 £ 8.15a 85.1+8.18a 94.77 £7.84a

Atractylodin (ug/g)  Fungus
Control
Total (ug/q) Fungus

Control

98.32+1453a

9832+1275a
221.84+31.63a
221.84+30.13a

10924+ 113%a 111.23+1295a 11897 +12.74a 12553 +17.85a

110.7£1061a 1142+776a 11542+823a 121.9+£10.28a
239.19+21.88a 250.3+2525a 260.86+2552b 289.67+28.76¢
22663 +£2347a 23807+2049% 244.75+19.77a 262.04+23.53a

131.52+12.34a
11147+1271a
310.06 +24.87d
257.01£24.28a

13764+1531b 152.34+1292b 171.63+12.04b 1834+1239c
1168+1007a 1185+£1063a 121.1+£10.75a 134.1+£10.68a
34642+2967e 39991 +30.15f 451.89+31.07 g 350.33+21.95e
256.62+2177a 26584+2245a 25827 +22.85a 284.69+2428a

Thirty-day-old plantlets were incubated with 5-mm mycelia disks or with an equal size of potato dextrose agar (control). Data are mean + standard deviation (SD) of triplicate samples. Within each row, values followed
by different lower-case letters were significantly different (one-way ANOVA, Duncan’s multiple range test, P <0.05).
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Figure 2 Interactions between JA and NO or H,0, signaling pathways induced by endophytic fungus. Thirty-day-old plantlets of
Atractylodes lancea were incubated with 5-mm mycelia disks with or without inhibitors and were harvested 18 d later for determination of JA and
NO or H,0, concentrations. (A) Interactions between JA and NO pathways. Inhibitors were 1.25 mmol L™ cPTIO, 0.1 mmol L' IBU, or 15 mmol L
H,0-. (B) Interactions between JA and H-0,. Inhibitors were 3 mmol L' DPI, 5.25 mKat L' CAT, 0.1 mmol L' IBU, 1T mmol L' PAC, or 2.5 mmol L
" AIP. All inhibitors were added 1 d before fungus inoculation. Values are means of three independent experiments. Bars with different lower-case
letters were significantly different (one-way ANOVA, Duncan's multiple range test, P <0.05).

addition, the H,O, inhibitor DPI/CAT could inhibit JA
production, but IBU could not inhibit H,O, production
with inoculation (Figure 2A). The one-way dependence
of JA on H,O, confirmed that H,O, was the intermedi-
ary factor between JA and NO.

Paclobutrazol is an effective SA biosynthesis-related
benzoic acid hydroxylase (BA2H) inhibitor [31] that also
inhibits gibberellin biosynthesis [32]. Therefore, we also
used AIP, a specific SA biosynthesis-related phenylalan-
ine ammonialyase (PAL) inhibitor [33,34], to confirm
that SA generation was suppressed. Interestingly, PAC

and AIP could abolish the suppression of JA by DPI/
CAT with fungus inoculation (Figure 2B). This result
implied that the SA and JA signaling pathways were
closely linked in endophyte-induced volatile-oil accumu-
lation in A. lancea plantlets.

Complementary interactions between JA and SA in
fungus-induced volatile-oil accumulation

To further investigate the relationship between JA and
SA, gradient concentrations of the JA-inhibiter IBU and
the SA-inhibitors PAC and AIP were applied. As shown
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Figure 3 Complementary interaction between JA and SA signaling pathways induced by endophytic fungus. Thirty-day-old plantlets of
Atractylodes lancea were incubated with 5-mm mycelia disks and 0.1, 1, or 3 mmol L' IBU; 3 mmol L' DPI; or 0.1, 1, or 2.5 mmol L' AIP and

3 mmol L' PAC. Plants were harvested 18 d later to determine JA and volatile oil levels. Inhibitors were added 1 d before fungus inoculation. (A)
Interactions between JA and SA pathways. (B) Volatile oil production. Values are means of three independent experiments. Bars with different
lower-case letters were significantly different (one-way ANOVA, Duncan’s multiple range test, P <0.05).

in Figure 3, the fungus-induced JA level of the plantlets SA levels in plantlets were inhibited by 0.1, 1, and
decreased gradually as IBU concentration increased, but 2.5 mmol L' AIP and by 3 mmol L' PAC, whereas JA
both SA accumulation and volatile oil content were was enhanced significantly (Figure 3A). Volatile oil accu-
enhanced as well, although the amounts did not exceed mulation was enhanced by 2.5 mmol L' AIP and
those obtained with fungal inoculation alone. Similarly, 3 mmol L' PAC (Figure 3B). The results suggested that
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Figure 4 Expression levels of HMGR genes and sesquiterpenoid accumulation responses to JA signaling pathway. (A) Expression levels
of EF1a and HMGR genes in response to JA determined by real-time gPCR and semi-gPCR analysis. Thirty-day-old plantlets of Atractylodes lancea
were incubated with 5-mm mycelia disks; 0.01, 0.1, or 1 mmol L' JA; or 1 mmol L IBU and harvested 18 d later for total RNA extraction and PCR
analysis. Values are means + SE (n=3). Asterisks indicate significant differences (t-test; *, P <0.05; **, P <0.01). (B) Effects of JA on sesquiterpenoid
accumulation. Plantlets were harvested after 18 d and evaluated for atractylone, B-eudesmol, and hinesol content. Values are means+ SE (n=3).
Bars with different lower-case letters were significantly different (one-way ANOVA, Duncan’s multiple range test, P <0.05).

JA may have a complementary interaction with SA to
mediate fungal endophyte-induced volatile-oil accumula-
tion. However, combining IBU and paclobutrazol could
not completely inhibit volatile oil synthesis. We added
the H,O,-inhibitor DPI/CAT to IBU and paclobutrazol,
which reduced volatile-oil accumulation to the level of
the control. The results suggested that H,O,, SA, and JA
may work simultaneously in fungus-induced volatile-oil
synthesis in A. lancea plantlets.

Dependence of fungus-induced sesquiterpenoid
production on JA production

The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase
(HMGR) catalyzes the conversion of HMG-CoA to mevalo-
nate, which is the key step in the terpenoid biosynthesis
pathway in plants [35,36]. We further investigated the pos-
sible mediating role of JA on HMGR gene expression. The
results showed that exogenous JA could strongly stimulate
HMGR gene expression (Figure 4A). Three sesquiterpenoid
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components of A. lancea volatile oils, atractylone,
B-eudesmol, and hinesol, were all induced by JA and sup-
pressed by IBU with fungal inoculation (Figure 4B).

Discussion

Secondary metabolite accumulation is a common plant
response to biotic or abiotic environmental stress, and
secondary messengers are widely employed to mediate
the accumulation of plant secondary metabolites. This
work demonstrated that the fungus Gilmaniella sp. can
induce JA production and promote the accumulation of
volatile oils in host plantlets. As an important signal
molecule, JA plays key roles in regulating the induction
of volatile oils by the endophytic fungus. The specific
inhibitors IBU and NDGA could block the JA signaling
pathway and reduce the accumulation of related meta-
bolites. Our previous study showed that NO, H,0O,, and
SA acted as signal molecules to mediate the accumula-
tion of volatile oils in suspension cells of A. lancea
caused by endophytic fungal elicitor [22]. Thus, the pos-
sible relationships between JA and other known signal-
ing pathways in the accumulation of secondary
metabolites were further investigated.

Cross-talk between different signal transduction path-
ways, as opposed to single signaling pathways, mediates
gene expression and the production of secondary meta-
bolites during plant defense responses [37,38]. Hydrogen
peroxide has been reported to be a possible upstream
signal for NO production in mung bean plantlets [39].
Nitric oxide also can mediated fungal elicitor-induced
taxol biosynthesis in Taxus chinensis suspension cells
through reactive oxygen signaling pathways, stimulate
SA accumulation in tobacco cell cultures, and induce
PAL expression via an SA independent pathway [31,40,41].
Moreover, our previous work demonstrated that NO med-
iates volatile oil accumulation induced by the fungus
through SA- and H,O,-dependent pathways. Hydrogen
peroxide can enhance SA production but does not act as
upstream signal molecule [22]. The present work showed
that endophytic fungus-induced JA was directly mediated
by H,O, and acted as a downstream signal molecule for
both H,O, and NO pathways.

In our study, JA had an unusual complementary inter-
action with the SA signaling pathway. Jasmonic acid is

commonly postulated to act antagonistically on the SA
signaling pathway and on the expression of SA-dependent
genes [42,43]. Other studies have shown that SA is a
potent suppressor of JA signaling pathways and JA-
dependent defense gene expression in various pharmaco-
logical and genetic experiments [44,45]. In addition, both
JA and SA are important signaling molecules in plant
defense responses, such as the activation of distinct sets of
defense-related genes and the development of systemic
acquired resistance [21,46]. Our results showed that when
JA biosynthesis was suppressed by the inhibitor IBU, accu-
mulation of SA was enhanced to compensate for the loss
of JA-mediating function in fungus-triggered volatile-oil
production. Similarly, JA production/signaling could sub-
stitute for the SA pathway when SA accumulation was
impaired.

Conclusions

The value of medicinal herbs relies mainly on the accu-
mulation of active pharmaceutical ingredients; low yield
is the main challenge to producing high-quality herbs. In
this work, we demonstrated that JA acts as a down-
stream signaling molecule in NO- and H,O,-mediated
volatile oil accumulation induced by endophytic fungus
and has a complementary interaction with the SA signal-
ing pathway and clarified that HMGR gene expression
was significantly stimulated by JA along with increasing
sesquiterpenoid components. This information will help
to better understand the relationships between fungal
endophytes and their host plants. Furthermore, it also
suggests strategies to improve the quality of medicinal
herbs.
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