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Abstract

dietary fibre, gluten-free and low in fat and starch.

nutritional properties.

Background: In legumes, seed storage proteins are important for the developing seedling and are an important
source of protein for humans and animals. Lupinus angustifolius (L), also known as narrow-leaf lupin (NLL) is a grain
legume crop that is gaining recognition as a potential human health food as the grain is high in protein and

Results: Genes encoding the seed storage proteins of NLL were characterised by sequencing cDNA clones derived
from developing seeds. Four families of seed storage proteins were identified and comprised three unique a,
seven B, two vy and four & conglutins. This study added eleven new expressed storage protein genes for the
species. A comparison of the deduced amino acid sequences of NLL conglutins with those available for the
storage proteins of Lupinus albus (L.), Pisum sativum (L.), Medicago truncatula (L.), Arachis hypogaea (L) and Glycine
max (L) permitted the analysis of a phylogenetic relationships between proteins and demonstrated, in general,
that the strongest conservation occurred within species. In the case of 7S globulin (B conglutins) and 2S sulphur-
rich albumin (8 conglutins), the analysis suggests that gene duplication occurred after legume speciation. This
contrasted with 11S globulin (o conglutin) and basic 7S (y conglutin) sequences where some of these sequences
appear to have diverged prior to speciation. The most abundant NLL conglutin family was B (56%), followed by a
(24%), 8 (15%) and y (6%) and the transcript levels of these genes increased 10° to 10° fold during seed
development. We used the 16 NLL conglutin sequences identified here to determine that for individuals
specifically allergic to lupin, all seven members of the B conglutin family were potential allergens.

Conclusion: This study has characterised 16 seed storage protein genes in NLL including 11 newly-identified
members. It has helped lay the foundation for efforts to use molecular breeding approaches to improve lupins, for
example by reducing allergens or increasing the expression of specific seed storage protein(s) with desirable
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Background

The genus Lupinus from the legume family (Fabaceae)
comprises between 200 and 600 species, of which only a
few have been domesticated. Lupinus angustifolius (L.),
also known as narrow-leaf lupin (NLL) is a grain legume
crop that is gaining recognition as a potential human
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health food as the grain is high in protein and dietary
fibre, gluten-free and low in fat and starch and thus has
a very low Glycaemia Index [1]. Like other legumes,
lupin crops are an asset for sustainable cropping in rota-
tions with cereal and oil seed crops. They act as a dis-
ease break, allow more options for control of grass
weeds and as nitrogen-fixing legumes, reduce the need
for fertilizers, enrich the soil for subsequent crops [2].
Recently considerable interest has been directed towards
legume seed proteins, with studies demonstrating
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nutritional, nutraceutical and health benefits [3,4]. With
increased awareness in many societies of the escalating
incidence of obesity and the associated risk of diabetes
and cardiovascular disease, NLL is an excellent candi-
date as a healthy food.

The major proteins in legume seeds are storage pro-
teins defined as any seed protein that accumulates in
significant quantities, has no known function during
seed development, and is rapidly hydrolysed upon ger-
mination to produce a source of N and C for the early
stages of seedling growth [3,5]. Seed storage proteins
have beeen classified into four families, termed 11§ glo-
bulin (also known as o conglutin, legumin, legumin-like
and glycinin), 7S globulin (also known as  conglutin,
vicilin, convicilin and vicilin-type), 7S basic globulinalso
known as y conglutin) and 2S sulphur-rich albumin also
known as & conglutin). For simplicity, in this study we
will refer to the lupin seed storage proteins as a, f3, y
and 6 conglutins.

Specific nutritional and pharmaceutical attributes have
being assigned to lupin conglutins [3]. White lupin
(L. albus) y conglutin has structural similarity with xylo-
glucan-specific endo-beta-1,4-glucanase inhibitor pro-
teins (XEGIPs) and Triticum aestivum xylanase inhibitor
(TAXI-1) [6], and is able to bind to the hormone insulin
and to the insulin-like growth factor, IGF-1 and IGF-II
[7,8], and may be able to play a pharmaceutical role
similar to the hypoglycaemic drug metformin [8]. NLL
grain has satiety properties, because food enriched with
lupin seed protein and fibre significantly influences sub-
sequent energy intake [9]. Furthermore, bread enriched
with NLL protein and fibre may help reduce blood pres-
sure and the risk of cardiovascular disease [10,11].

As seen with the majority of edible legume grains,
seed proteins from lupin species can cause allergy in a
small percentage of the population [12]; ‘lupin allergy’
occurs either separately or together with peanut allergy
or allergy to other legumes [12,13]. Peanut-lupin cross
allergy has been reported in which IgE antibodies that
recognise peanut allergens also cross react with NLL
conglutins [14,15]. One study has proposed that all
lupin conglutin families are candidate allergens [16].
However, other studies have found that o and y conglu-
tins are the main allergens from white lupin [17] whilst
patients who were allergic specifically to NLL and not
peanut had serum IgE that bound B conglutins [18].

Here we analysed NLL seed ESTs at the molecular
level through the construction and sequencing of a
c¢DNA library made from seed mRNA isolated at the
major filling stage. We identified ESTs from genes
belonging to each of the four conglutin families. In total
16 members were identified, eleven of which had not
been described previously. These NLL conglutins are in
addition to conglutins identified from the only other
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characterized lupin, L. albus for which nine conglutin
sequences have been deposited in GenBank [19]. The
NLL conglutin sequences were compared to each other
and to other legume seed storage proteins providing an
insight into the evolution of these proteins in grain
legumes. We also examined the specific gene expression
profiles of the NLL conglutin genes and demonstrate
that the expression of each is increased significantly dur-
ing seed filling. This comprehensive identification of the
NLL conglutins opens up the gateway to better charac-
terise lupin molecular biology, physiology, biochemistry
and nutrition.

Results

Isolation of new NLL conglutin genes

A cDNA library was constructed from NLL seed at
20-26 DAA (days after anthesis), which coincided with
the major seed-filling stage. Three unique o, seven f3,
two vy and four & conglutin sequences were identified
after sequencing 3017 ESTs. Previously identified NLL
conglutins are ALPHA3 [Genbank:ACN39600.1],
BETA1 [Genbank:ACB05815.1], BETA7 [Genbank:
ABR21771.1], GAMMA1 [Genbank:AAB53771.1] and
DELTA2 [Genbank:CAA37598.1]. In addition to these
five sequences there is another B conglutin [Genbank:
ABR21772.1] that has identity to BETA1 between
amino acids 1-445, but is truncated as it contains a
premature stop codon. In this study we identified a
further 11 new conglutin sequences consisting of two
o, five B, one y and three & conglutin sequences.
Within each family the sequences were aligned using
the CLC Genomics Workbench 3 software [20] as
shown in Figure 1 and 2. Among the o conglutin pro-
teins, ALPHA2 [Genbank:HQ670407] and ALPHA3
[Genbank:HQ670408] were the most closely related
and ALPHA1 [Genbank:HQ670406] was more diver-
gent than ALPHA2 and ALPHA3 (Figure 1A). The
seven BETA sequences [BETA1 Genbank:HQ670409,
BETA2 Genbank:HQ670410, BETA3 Genbank:
HQ670411, BETA4 Genbank:HQ670412, BETA5 Gen-
bank:HQ670413, BETA6 Genbank:HQ670414, BETA7
Genbank:HQ670415] showed a high degree of identity
with conservation often occurring in hydrophilic
domains that were enriched in the amino acids Glu,
Gln and Arg (Figure 1B). GAMMA1l [Genbank:
HQ670416] and GAMMA?2 [Genbank:HQ670417]
share more identity with sequences from L. albus than
between themselves (Figure 2A). DELTA1 [Genbank:
HQ670418], DELTA2 [Genbank:HQ670419] and
DELTA3 [Genbank:HQ670420] shared close alignment,
but DELTA4, [Genbank:HQ670421] which appeared to
contain a number of deletions relative to the other §
sequences did not share homology in its 3’ domain
(Figure 2B).
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Figure 1 NLL Conglutin Sequence Alignment. Deduced amino acid alignment using CLC Genomics Workbench 3 software [20] of L.
angustifolius (A) ALPHA [ALPHAT Genbank:HQ670406; ALPHA2:Genbank:HQ670407; ALPHA3:Genbank:HQ670408] and (B) BETA [BETA1 Genbank:
HQ670409, BETA2 Genbank:HQ670410, BETA3 Genbank:HQ670411, BETA4 Genbank:HQ670412, BETAS Genbank:HQ670413, BETA6 Genbank:
HQ670414, BETA7 GenbankHQ670415].
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GAMMA1 MARNMAHILHILVISLSYSFLFVSSSSQDSQSLYHNSQPTSSKPNLLVLPVQEDASTGLHWAN IHKRTPLMQVPLLLDLNGKHLWVTCSQHYSSSTYQAP 100
GAMMA2 - - - v cvecrenens SLSCSFLFVLSSSQDSQSLHYPLPTSSSKPSLLVLP IQQDASTGLHWAN | HKRTPLMQVPVLLDLNGKHLWVTCSYHYSSSTYQAP 86

120 140 180 180 200

| I I I I
GAMMA1 FCHSTQCSRANTHQCFTCTDSTTTRPGCHNNTCGLLSSNPVTQESGLGELAQDVLAIHSTHGSKLGPMVKVPQFLFSCAPSFLAQKGLPNNVQGALGLGQ 200
GAMMAZ FCHSTQCSRANSHQCFTCTDSATTRPGCHNNTCALMTSNPVTQEAGFGELAQDVLP IHSTHGSKLGPMVKVLQFLFSCAPSFLAQKGLPNNIQGALGLGH 186

220 240 260 280 300
| | 1 I 1

GAMMA1 AP ISLQNQLFSHFGLKRQFSVCLSRYSTSNGAILFGDINDPNNNNY IHNSLDVLHDLVYTPLTISKQGEYFIQVNAIRVNKHLYIPTKNPFISPSSTSYH 300
GAMMA2 AP ISLPNQLFSHFGLRRQFTMCLSRYPTSNGAILFGDIYDPNNN-YIDNSVEVLLDMVYTPLGISLQGEYLMQVSAIRVNKHIVVPTKNPSMLSSN- --H 282

320 30 360 380 400
| | 1 I 1

GAMMA1 GSGEIGGALITTTHPYTVLSHSIFEVFTQVFANNMPKQAQVKAVGPFGLCYDSRKISGGAPSVDL | LDKNDAVWRISSENFMVQAQDGVSCLGFVDGGVH 400
GAMMA2 GDSRIGGVMITTTNPYTILHHSIYEVFTQVFANNIPKQAQVEAVGPFGLCFDSKKISGGIPNVEFVMDSPDDVWR | SEENLMVQAQNGVSCLGFVDGGMH 382

o o
GAMMA1 ARAGIALGAHHLEENLVVFDLERSRVGFNSNSLKSYGKTCSNLFDLNNP 443
GAMMA2 TRTEIALGAHQLEENLVVFDFAKSRVEFNSNPLKSHGKTCANLFDLNNA 431

B
20 40 0 8 100
| 1 1 I 1
DELTA1 MAKLTILIALVAALVLVVHTSAFRSSEQSCKRQLQQVNLRHCENHIDQRIQQQQEEEEDRARKLRG IKHV I LRHKSSQE - SEESEELDQCCEQLNELNSQ 99
DELTA3 MAKLTILIALVAALVLVVHTSAFRSSEQSCKRQLQQVNLRHCENH IDQRIQQQQEEEEDRARKLRG I KHV1LRHKSSQE - SEE - - - LDQCCEQLNQLNSQ 96
DELTA2 MAKLTILIALVAALVLVVHTSAFQSSKQSCKRQLQQVNLRHCENH|AQRIQQQQEEEEDHALKLRG IKHVILRHRSSQEYSEESEELDQCCEQLNELNSQ 100
DELTA4 MARLTILIAFVAALVLVVHTSAFRD-EQSCKKQLQ- -« - - HSEKH---«cseeuns QEDCFPR- - - IKNVIGRSGSSGKKSEK - - - LGQCCE I LSDL - SE 76
1?0 1:0
DELTA1 RCQCRALQQIYESQSEQCEGRQQEQQLEGELEKLPRICGFGPLRRCNINPDEE* 153
DELTA3 RCQCRALQQ I YESQSEQCEGRQQEQQLEGELEKLPRICGFGPLRRCN INPDEE* 150
DELTA2 RCQCRALQQ|YESQSEQCEGSQQEQQLEQELEKLPRTCGFGPLRRCDVNPDEE* 154
DELTA4 GCQCRALQPVME - - -KYCYB-ccccceocucnccncncnanaacaancnaas EAK*® 97

Figure 2 NLL Gamma and Delta Conglutin Sequence Alignment. Deduced amino acid alignment using CLC Genomics Workbench 3 software
[20] of L. angustifolius (A) GAMMA [GAMMAT1 Genbank:HQ670416, GAMMA2 Genbank:HQ670417] and (B) DELTA [DELTAT GenbankHQ670418,

DELTA2 Genbank:HQ670419, DELTA3 Genbank:HQ670420, DELTA4 Genbank:HQ670421] conglutins. Amino acids labelled blue represent those
with the highest conservation among NLL congluting sequences, while those labelled red represent those with the least conservation. Dashes

have been inserted to optimize alignment.

Comparison of NLL conglutins to other legume sequences
Seed storage protein homologues from Glycine max
(soybean), Pisum sativum (pea), Arachis hypogaea (pea-
nut), Medicago truncatula and Lupinus albus (white
lupin) that had BLAST sequence alignment scores
greater than 200 when compared to any of the 16 NLL
conglutin protein sequences were identified from the
NCBI non-redundant protein database. These sequences
were compared to each other within each family using a
distance based method from the CLC Genomics Work-
bench 3 software [20]. Members of each family were
identified from all plant species examined with the fol-
lowing exceptions: there were no M. truncatula 11S glo-
bulin or 2S sulphur-rich sequences, no peanut 7S basic
globulin sequences and no pea 7S basic globulin or 25
sulphur-rich sequences. The number of protein
sequences identified for each species may not accurately
represent the final number of members in each group.
In some cases, they may under-represented as some
genes may lack homology to the NLL conglutins used in
this analysis, or are yet to be identified.

Alternatively, they may be over-represented as two or
more proteins may be derived from the same gene via
processing [21]. Figure 3 presents the phylogenetic rela-
tionship between seed storage protein families from the
six legume species studied. For simplicity all the
sequences were renamed with the species initials,

followed by a number. The corresponding accession
numbers are listed in Table 1.

While most 11S globulin protein sequences showed
the highest homology with other members in the same
species, there were exceptions; for example, the NLL
ALPHALI is more homologous to sequences from white
lupin (Lal) and peanut than to NLL ALPHA2 or
ALPHAS3 (Figure 3A). In general, 7S globulin sequences
showed greatest identity within species (Figure 3B). For
example all NLL B conglutin-like sequences were more
homologous to each other than to 7S globulin sequences
from other legume species. This was also the case for
soybean, M. truncatula and peanut. The pea seed sto-
rage protein phylogenetic relationship was more compli-
cated, with three of the four groups being more
diverged from each other than from seed storage pro-
teins from other legumes. In the case of basic 7S
sequences, the soybean basic 7S sequences were species
specific with the exception of Gm5, which shared simi-
lar sequence identity with all basic 7S sequences. How-
ever this was not seen with white lupin and NLL where
GAMMAI1 [Genbank:HQ670416] and GAMMA?2 [Gen-
bank:HQ670417] were more similar to Lal and La2 [22]
than each other (Figure 3C). Furthermore, the basic 7S
Mtl sequence was more homologous to white lupin,
NLL and soybean sequences than other basic 7S
sequences from M. truncatula. The 2S sulphur-rich
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Figure 3 Seed Storage protein Phylogenetic Relationships. Phylogenetic relationships between Arachis hypogaea (Ah), Glycine max (Gm),

Medicago truncatula (M), Lupinus albus (La), and Pisum sativum (Ps) conglutin-like sequences and L. angustifolius (A) 11S globulin (o conglutin),
(B) 7S globulin (B conglutin), () basic 7S (y conglutin) and (D) 2S sulphur-rich albumin (8 conglutin) deduced amino acid sequences. L.
angustifolius conglutins are boxed for easy recognition. Identification and accession number for each protein are listed in Table 1.
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Table 1 Arachis hypogaea (Ah), Glycine max (Gm), Medicago truncatula (Mt), Lupinus albus (La), and Pisum sativum (Ps)
identification and accession numbers used in Figure 3

ALPHA homologues

BETA homologues

GAMMA homologues

DELTA homologues

»ART [gi[112380623|gb|ABI17154.1]
» Ah2 [gi|47933675|gb|AAT39430.1]
»Ah3 [gi]752531811sp|Q647H2.1]

» Ah4 [gi[37789212|gb|AAR02860.1]
» AR5 [gi|21314465|gb|AAM46958.1]

»Ah6 [gi|52001221]gb|AAU21491.1]
»AR7 [gi|199732457|gbJACH91862.1]

» ARS8 [gi|9864777|gb|AAGO1363.1]
» A9 [gi|5766986119b|AAWS6067.1]

»AR10 [gi|118776570|gb|
ABL14270.1]

»Ah11 [gi|224036293|pdb|3C3V]

»Ah12 [gi[3703107|gb|AAC63045.1]
»Ah13 [gi[5712199|gb|AAD47382.1]
»Ah14 [gi|22135348|gb|AAMO3157.1]

»AR15 [gi[118776572|gb)|
ABL14271.1]

»Ah16 [gi|52001225|gbJAAU21493.1]
»Gm1 [gi[121278|sp|P11828.1]

»Gm2 [gi121276|sp|P04776.2|

»Gm3 [gi[225651]prf]|1309256A]
»Gm4 [g1|279229711dbj[BAC55937.1]
»Gm5 [gi|18615emb|CAA26723.1]

»Gm6 [4i127922973]dbj|BAC55938.1]
»Gm7 [qi[15988117|pdb|1FXZ]
»Gm8 [gi[42543705|pdb|1UD1]

»Gm9 [gi[42543702|pdb|1UCX]

»GM10 [gi[99909]pir||S11003]
»Gm11 [gi|121277]sp|P04405.2]
»Gm12 [gi|18609]emb|CAA26575.1]

»Gm13 [gi[254029113|gb]
ACT53400.1]

»Gm14 [gi[254029115|gb]|
ACT53401.1]

»Gm15 [gi|255224|gb|AAB23212.1]

»GM16 [4i[223649560/gb)|
ACN11532.1]

»GM17 [gi[4249568|dbj|BAA74953.1]
»Gm18 [gi|121279]5p|P02858.1]

»GM19 [gi|10566449|dbj|
BAB15802.1]

»Gm20 [gi[33357661]pdb|10D5|
»Gm21 [gi[225440prfl|1303273A
»Gm22 [gi[1699711gb|AAA33965.1]

»AR1 [gi|1168390|sp|P43237.1]
» Ah2 [gi|46560478|gb|AAT00597.1]
»Ah3 [gi[1168391]sp|P43238.1]
» Ah4 [gi|46560476|gb|AAT00596.1]
» AR5 [gi[46560472|gb|AAT00594.1]

» A6 [gi|46560474|gb|AAT00595.1]
»Gm1 [gi[15425631]dbj|BAB64303.1]

»Gm2 [9i68264913|dbj|BAE02726.1]
»Gm3 [gi[32328882|dbj[BAC78524.1]

»Gm4 [4i/99673611dbj|BAA74452.2]

»Gmb5 [gi[111278867|gb|
ABH09130.1]

»Gm6 [gi[121286|sp|P11827.1]
»Gm7 [gi|51247835|pdb|1UIK]
»Gm8 [gi[74271743|dbj|BAE44299.1]
»Gmo [gi|14245736|dbj|BAB56161.1]

>Gm10 [gi[121281]sp|P13916.2]

»Gm11 [gi]15425633|dbj|
BAB64304.1]

»Gm12 [9i[68264915|dbj|
BAE02727.1]

»Gm13 [gi|214656311pdb|11PK]
»Gm14 [gi[21465628]pdo|11PJ)

»Gm15 [gi[63852207|dbj|
BAD98463.1]

»Gm16 [gi[51247829]pdo|1UL]
»Gm17 [gi121282]sp|P25974.1]

»Gm18 [gi[255636348|gb]|
ACU18513.1]

»Gm19 [gi]15425635/dbj|
BAB64305.1]

»Lal [gi|89994190]emb]|CAI84850.2]
»La2 [gil46451223|gb|AAS97865.1]
*La3 [gi|779943511gb|ABB13526.1]
*Mt1 [gi|87162569]|gb|ABD28364.1]

»Mt2 [gi|87162566|9b|ABD28361.1]

»Mt3 [gi[87162572|gb|ABD28367.1]
»Mt4 [gi[87162570|gb|ABD28365.1]

»Mt5 [gi[87162567|9b|ABD28362.1]

»Ps1 [gi|290784420/emb|
CBK38917.1]

»Ps2 [qi[117655|sp|P13915.1]

»Ps3 [qi[137582]sp|P13918.2]
»Ps4 [qi[227928|prf]|1713472A
»Ps5 [gi|758248|emb|CAA68708.1]

>Gm1 [gi|14549156|sp|P13917.2|
»Gm2 [gi|1401240]gb|AAB03390.1]
»Gm3 [gi|18543emb|CAA34489.1]
»Gm4 [gi[51316037]sp|Q8RVHS.1]

»Gmb5 [gi[255644718|gb)|
ACU22861.1]

»Lal [gi[11191819[emb]|
CAC16394.1]

»La2 [qil67966634|emb)|
CAC17729.2)

»Mt1 [gi[87240526|gb|ABD32384.1]
»Mt2 [gi|217073766|gb|ACI85243.1]

>Mt3 [gi|217069992|gb|AC)83356.1]

»Mt4 [qi|217071718|gb|ACJ84219.1]

»Ah1 [gi[31322017|gb|AAM78596.1]
» A2 [gil46560482|gb|AAT00599.1]
» Ah3 [gi]118776566|gb|ABL14268.1]
» Ah4 [gi|15418705|gb|AAKI6887.1]
> AR5 [gi]75114094]sp|Q647G9.1]

»Ah6 [gi[52001227|gb|AAU21494.1]
»Gm1 [gi[5902685(sp|P19594.2]

»Gm2 [gi[4097894|9b|AAD09630.1]
»Gm3 [gi[255630323|gb)|
ACU15518.1]

»Gm4 [gi[255627771]g0)|
ACU14230.1]

»Lal [gi[80221495emb]|
CAJ42100.1]
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Table 1 Arachis hypogaea (Ah), Glycine max (Gm), Medicago truncatula (Mt), Lupinus albus (La), and Pisum sativum (Ps)
identification and accession numbers used in Figure 3 (Continued)

»Lal [gi[85361412/emb|CAI83773.2]
»La2 [gi|62816184|emb]|CAI83770.1]
»La3 [gi|62816188|emb|CAI83771.1]
*Ps1 [gi[4218520[emb|CAA10722.1]

*Ps6 [gi]7339551]emb|CAB82855.1]
*Ps7 [gi|297170jemb|CAA47814.1]
»Ps8 [gi[42414627|emb|CAF25232.1]

»Ps9 [9i|290784430femb
CBK38922.1]

>Ps10 [gi|290784424]emb)|
CBK38919.1]

»Ps11 [gi|290784426|emb|
CBK38920.1]

»Ps12 [gi|290784428]emb|
CBK38921.1]

»Ps13 [gil42414629]emb
CAF25233.1]

»Ps14 [gi|1375811sp|P02854.1]

»Ps15 [gi|164512526]emb|
CAP06312.1]

*Ps16 [gi|164512524]emb|
CAP06311.1]

»Ps17 [gi|164512522]emb|
CAP06310.1]

>Ps18 [gi|164512532]emb|
CAP06315.1]

»Ps19 [gi|164512528]emb|
CAP06313.1]

»Ps20 [gi|137579|sp|P02855.1]

*Ps2 [gi[126168|sp|P02857.1]

»Ps3 [gi[126161]sp|P15838.1]

»Ps4 [qi[294979728|pdb|3KSC|
»Ps5 [qi[4379378/emb|CAA26720.1]

*Ps6 [gi[126170|sp|P05692.1]
»Ps7 [qi[2578438|emb|CAA47809.1]

»Ps8 [qi[282925|pir||526688
»Ps9 [gi|169124|gb|AAA33679.1]
»Ps10 [gi|223382|prf|[0801268A
»Ps11 [gi|126171]sp|P05693.1]

»Ps12 [gi|126169|sp|P14594.1]

albumin sequences shared the highest sequence homol-
ogy within each legume species (Figure 3D), although
NLL DELTAA4 is quite distinct from the other NLL §
conglutin sequences.

Changes in expression of NLL conglutins during seed
development

Sequencing of ESTs from NLL seed (20-26 DAA) identi-
fied 42% as conglutins. The EST sequencing also identi-
fied expression of other major groups of genes including
those encoding ribosomal proteins, protein translation
factors, oleosins and seed maturation proteins.

The 16 unique NLL conglutin genes were used as
reference sequences against all 3017 ESTs using the
CLC Genomics Workbench 3 software [20]. Based on
transcript levels, the most abundant conglutin family
was B (56%), followed by a (24%), 6 (15%) and y (6%).
The proportion (and total number) of ESTs correspond-
ing to a particular conglutin gene within each conglutin
family is presented in Figure 4, and this provides an esti-
mate of the relative expression levels of each conglutin
at 20-26 DAA.

Figure 5 presents the relative expression of each con-
glutin gene over the time course of NLL seed develop-
ment using specific primers for each conglutin gene.
The time points represented seeds pooled from 4-8
DAA, 9-12 DAA, 13-16 DAA, 17-20 DAA, 21-26 DAA,

27-32 DAA, 33-38 DAA and 39-44 DAA, respectively.
For each gene there was a large increase in expression
ranging from 10> to 10° fold. This increase started from
4-8 DAA and in most cases the maximum was reached
between 33 and 38 DAA.

Proteomic identification of NLL conglutins and IgE
binding conglutins

With the availability of full-length sequences for NLL
seed storage proteins derived from this work, it was pos-
sible to analyse the mass spectrometry results from the
analysis of 2D blots [18] that had been probed with
serum from individuals specifically allergic to lupin.
Here the IgE-binding spots identified originally as 8
conglutin were analysed and many could be further clas-
sified into isoforms (BETA1-7). The identies of each
spot are shown in Table 2 and Figure 6. BETA4 was the
top match for the majority (11) of these spots. Only one
spot could be unequivocally matched to BETA1, two to
BETA2, one to BETAS3, three to BETA5 and one to
BETA7, although this does not rule out that other unde-
tected beta isoforms may be present in these spots. In
addition there maybe peptide contamination from spots
that are not convincingly separated. No spots could be
matched exclusively to BETA6 as for three of the spots
it was not possible to distinguish between BETA6 and
BETAA4.
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There was evidence that a number of spots either
contained protein from more than one  conglutin iso-
form or that there are other B conglutin forms that
have not been identified in this study. As the seven P
conglutin isoforms are conserved over the whole pro-
tein (Figure 1B), no potential epitope(s) was able to be
deduced.

Three spots corresponding to GAMMAL (spots 1, 6
and 59) were identified with the peptide coverage
matching the sequence of the mature protein rather
than that of the unprocessed precursor [23]. The newly-
synthesised protein is first cleaved to remove a hydro-
phobic signal peptide and then a second time to
produce large and small subunits [23,24]. Peptides

Page 8 of 14

identified for spot 59 matched the large subunit and
spots 1 and 6 matched the small subunit which covers
the C-terminus of the deduced protein (Table 2 and
Additional file 1). There was no evidence of spots corre-
sponding to the GAMMA?2 protein. GAMMAL1 (spot 6)
showed IgE binding; however, with the higher resolution
available for this analysis, it was clear that the spot was
contaminated with BETA4 protein and this may explain
why it appeared to bind IgE.

Mass spectrometric analysis of a number of major
representative spots that did not bind IgE (spots 87-89,
99 and 100), were identified as o conglutin
with ALPHA1, ALPHA2 and ALPHAS3 being present
(Figure 6 and Table 2).

ALPHA3 (66)
27%

ALPHAI (99) 41%

ALPHA2 (74) 31%

GAMMAI (48) 86%

Beta7
(36)
6%
Beta6 (64)
11%

Betal (120) 21%

Beta2 (98) 18%

DELTA2 (25) 17%
DELTAI (94) 63%

Figure 4 EST Conglutin Expression. Pie chart of relative numbers of specific members in each L. angustifolius conglutin family. (A) ALPHA, (B)
BETA, (C) GAMMA and (D) DELTA conglutin ESTs. Total number of ESTs of each member is listed in parenthesis, followed by percentage of each
total conglutin number.
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Discussion
This study identified 16 conglutin genes belonging to four
families in NLL of which only five had been identified pre-
viously. It also significantly extended our knowledge base
of seed storage proteins in lupin in general, and allowed
useful comparisons with the other characterised species
including L. albus, for which nine members have been
identified in Genbank. Sequence alignment of the NLL
conglutins to homologous sequences from M. truncatula,
soybean, pea, peanut and white lupin illustrated that, in
general, the strongest conservation occurred within spe-
cies. In the case of § and & conglutins, our analysis sug-
gests that gene duplication occurred after legume
speciation. This was in contrast to o and y homologous
sequences where some of these sequences were likely to
have diverged prior to speciation.

The largest family in NLL was the § conglutins with
seven members, while the a, y and 6 conglutin families

ranged in size from two to four members. It remains to
be determined if there are functional differences within
each of the families. In the case of a and § conglutins,
the differences between family members often involved
insertions/deletions of repeated amino acid stretches of
predominantly glutamic acid (E), glutamine (Q), serine
(S), glycine (G) and arginine (R). These amino acids
have a low hydropathy index, suggesting that the pep-
tide regions involved are likely to be found towards the
surface of the protein.

There have been a number of studies of developmen-
tal processes in legume seeds [25]. During the cell enlar-
gement (seed-filling) phase of seed development, N
accumulation and protein synthesis rely on both sym-
biotic N, fixation and uptake of N from the soil [26].
Proteins involved in cell division are abundant during
early stages of seed development, and their level
decreases before the accumulation of the major storage
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Table 2 Identities of lupin proteins

Spot identity Spot number (identity of mixed spot)

ALPHA1 89 (ALPHAZ2), 100, 101, 104, 105

ALPHA2 87, 88,99, 114 (ALPHA3)

ALPHA3 97,109

BETA1 30

BETA2 18, 48

BETA3 45

BETA4 3, 8,43 (BETA2), 44, 50, 51, 52, 54, 55, 59
(GAMMAT), 94

BETAS 5,39, 57

BETA6

BETA7 37

Conglutin B Form not
determined

34 (BETAS, 4, 6), 38 (BETA2, 3), 42 (BETAG, 4,
1%), 56 (BETAZ2, 3), 114 (ALPHA2, 3, BETAG, 4,
3%

1,6, 59

GAMMAT

Peptide matches for each spot are listed in Additional file 1.
*although the score for this isoform is lower than the other matches there are
peptides that specifically match these forms.

proteins during seed-filling [27]. Our expression data
provides evidence that in NLL, the conglutins began to
be expressed at relatively high levels from 9-12 DAA,
and peaked between 33-38 DAA, which corresponds to
the seed filling stage [28]. While the general induction
pattern appears similar, there are small differences
between individual genes; for example ALPHA1 appears
to both increase and then decrease earlier than the
other two a genes. Whether these small variations are
important in seed development remains to be deter-
mined, although it is interesting to note that phylogen-
etically, ALPHA2 and ALPHAS3 are more closely related
to each other than to ALPHA1. The similar induction
pattern of all tested conglutin genes suggests that their
expression may be regulated by a common mechanism
and there may be a master regulator(s) to ensure overall
protein quantity within the seed is maintained. Consis-
tent with this hypothesis are the results from gene silen-
cing of soybean B-conglycinin protein (7S globulin)
which caused an increase of glycinin (11S globulin) [29].
In addition, there is likely to be fine tuning with post-
transcriptional regulation of storage protein synthesis in
response to N and S supply [30], and other environmen-
tal variations [31].

The deduced precursor proteins of NLL conglutins
each have different molecular masses and isoelectric
points (pls) but this cannot be used to predict the mobi-
lity of the processed mature proteins on a 2D [32]. This
has also been recorded for L. albus conglutins [33,34]
where 124 polypeptide spots fell into the o,  and v
conglutin familes [35]. Analysis of the peptide coverage
on the BETA spots may give some indication about the
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processing of B conglutin precursors to produce the
mature protein. Three of the largest f conglutin spots
of 48.8 kDa (spots 3, 8, 18) do not have any peptides
identified that cover the N-terminal 108 amino acids
suggesting that this region is cleaved in a similar man-
ner to that for peanut Ara hl [36]. Similarly, many of
the smaller spots contain peptides only in the region
from amino acid 410 to the C-terminus suggesting a
second site of cleavage. These observations would need
to be confirmed by N-terminal sequencing of the differ-
ent spots. It is possible that differential glycosylation or
some other modification may also contribute to the
large number of B conglutin spots, given that many
spots corresponded to the same region of a particular 3
conglutin form with only slight differences in size and
pI (e.g. spots 52, 55 and 59).

Peanut is regarded as the most severe allergenic
hazard among legume seed proteins and is the best stu-
died with respect to allergenicity. Each of the three
main peanut allergens has a homolog to lupin conglu-
tins. Thus a conglutin corresponds to Ara h3 [37,38], B
conglutin to Ara h1l [39], and § conglutin to Ara h2
[40]. In addition, each protein has the potential to have
multiple allergenic sites, for example Ara h3 contains
eight distinct epitopes and most of these differ from the
corresponding regions of other legume and tree-nut
allergens [41]. Identification of specific allergens and
their IgE binding epitopes is an important step if low-
allergen traits are developed. For example, markers have
been utilized to identify germplasm with reduced
expression of the allergenic soybean seed P34 protein
[42]. The lack of conservation of allergenic epitopes
between species, and the fact that many different pro-
teins can be allergenic makes identifying allergens across
species by comparative studies difficult, and therefore
the IgE-binding of each potential allergenic protein
must be assessed.

Individuals allergic to peanut and lupin may react to
different proteins to those that react only to lupin.
A previous study based on the limited lupin conglutin
sequences available at that time found that for indivi-
duals allergic to lupin but not other legumes,  conglu-
tin was likely to be the major allergen [18]. Our results,
which are based on the analysis of 16 NLL conglutin
proteins, confirm and extend this earlier study and show
that all B conglutin members are potential allergens,
while members from other conglutin families are unli-
kely to be contributing to lupin specific allergenicity. At
this stage it is not clear if there is a simple common epi-
tope on the B congutins responsible for this form of
allergenicity or if there are several epitopes, but it seems
likely that the different forms of B conglutin share some
common epitopes. When the epitope(s) that cause aller-
gic reactions to B conglutin has been identified, breeding
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Figure 6 ldentification of L. angustifolius seed storage proteins. Lupin flour proteins were separated by 2D-PAGE and (A) stained with
Coomassie-blue stained or (B) blotted onto a membrane, which was probed with serum from lupin-allergic individuals, to identify potentially
allergenic IgE-binding proteins. Protein spots that were either IgE-binding (spots 3 - 59, 94) or non-IgE-binding (spots 87 - 89, 97-114) were
analysed by mass spectrometry, and those for which identifications were made are enclosed by ovals, with different colours corresponding to
different proteins as shown in the figure. Sections of the gel and blot (boxes i, ii and iii) have been enlarged to show more detail, with
Coomassie-blue stained gels on the top and IgE-binding proteins on the bottom panel for each section. In the enlarged boxes i, ii and iii spots
that bind IgE are shown in black and those that do not in red. IgE binding was determined by aligning the original film and the Coomassie-blue
stained gel but for 4 spots (37, 38, 51, 57) the resolution of the gel does not give a clear image of this binding. ‘Beta?" indicates spots for which
the form of conglutin B could not be determined.

of varieties with reduced allergens may be possible. For
example, domesticated and wild lupin could be screened
for lines having reduced expression of specific allergenic
conglutins or biotechnology strategies could be
employed to reduce the levels of allergens in developing
seeds. Already techniques using RNA interference
(RNAI) to target allergen genes in peanut and tomato
are showing encouraging results [43,44] and this
approach can now be extended to NLL, for which trans-
formation systems are in place [45].

Conclusions

This study has found that L. angustifolius has at least
16 seed storage protein genes that fall into four
families. Analysis of the expression of each gene during

seed development showed that all 16 genes share simi-
lar expression patterns and are most highly expressed
33-38 days after anthesis which corresponds to the
period of maximum seed filling [28]. Comparative stu-
dies to other legumes has provided insight into the
evolution of these genes with evidence of gene duplica-
tion occurring after speciation in some cases. Lupin
seeds, like those from other grain legumes contain
allergenic proteins and our studies have identified that
all seven members of the § conglutin family are poten-
tial allergens for people specifically allergic to lupins.
These results provide opportunities to further charac-
terize lupins at many levels including at the molecular
biology, physiological, biochemical and nutritional
levels.
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Methods

Plant material

L. angustifolius (L.) cv Tanjil was grown in a growth cabi-
net at 22°C/18°C over a 14 h/12 h day/night schedule
and seeds were harvested at different stages of develop-
ment following anthesis (defined as DAA [days after
anthesis]). Seeds from a similar developmental stage were
pooled, frozen in liquid nitrogen and stored at -80°C.

cDNA library construction and EST sequencing

A cDNA library was constructed from mRNA extracted
from seeds pooled 20-26 DAA using the Invitrogen Clone-
Miner ¢DNA library construction kit based on the manu-
facturer’s recommendations (Invitrogen, Carlsbad, CA,
USA). 1.6 g of seeds yielded 15 pg mRNA. Using Invitro-
gen FastTract 2.0 Kit, 5 ug mRNA were used to synthesize
c¢DNA and 160 ng of >500 bp cDNA selected on an Invi-
trogen column and cloned into the Invitrogen gateway
vector, pDONR222. A library of ~1,000,000 clones was
produced and 50 random clones were shown to have an
average insert size of 1800 bp. 3017 bacterial clones from
the library were sent to the Genome Center, Washington
University for sequencing, with 2395 giving useful
sequence information. To identify seed storage protein
genes, the NCBI database was screened with the words
‘conglutin’, ‘legumin’ and ‘vicilin’ identifying 304
sequences. These reference sequences were then com-
pared to the NLL EST sequences using BLAST and 1036
with homology to the reference sequences were retrieved.
Using Vector NTI, the NLL conglutin ESTs were
assembled. Those which were not assembled by Vector
NTI, but demonstrated homology to one of the 304
sequences, were analysed individually by BLAST to deter-
mine the subgroup of best fit. Unique genes were identi-
fied within each family and the largest EST for each was
sequenced in its entirety. ((ALPHA1 Genbank:HQ670406;
ALPHA2:Genbank:HQ670407;  ALPHA3:Genbank:
HQ670408, BETA1 Genbank:HQ670409, BETA2 Gen-
bank:HQ670410, BETA3 Genbank:HQ670411, BETA4
Genbank:HQ670412, BETAS5 Genbank:HQ670413,
BETA6 Genbank:HQ670414, BETA7 Genbank:
HQ670415, GAMMA1 Genbank:HQ670416, GAMMA?2
Genbank:HQ670417, DELTA1 Genbank:HQ670418,
DELTA2 Genbank:HQ670419, DELTA3 Genbank:
HQ670420 and DELTA4 Genbank:HQ670421]). The
deduced amino acid sequence was determined using Vec-
tor NTI and compared by BLAST to NLL sequences in
the NBCI non-redundant database [46].

Gene expression analysis
RNA isolation and cDNA synthesis were performed using
the Purescript RNA isolation kit (Qiagen, Germantown, MD,
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USA) according to the manufacturer’s recommendation.
RNA was reverse-transcribed using MLV (Promega, Madi-
son, WI, USA) and the equivalent of 16 ng used for
qRT-PCR. An EST was identified with strong homology to
B-tubulin (Genbank Q39445) from Cicer arietinum (chick-
pea) (Additional file 2: Supplementary Figure S2), and was
used as a control for the qRT-PCR experiments. qRT-PCR
against equal amounts of total RNA demonstrated similar
expression levels of B-tubulin throughout seed development
confirming that it was a suitable reference gene for these stu-
dies (data not shown). Based on sequence homology unique
primer sets were designed against each of the conglutin
genes. Each primer set was tested against all 16 conglutin
genes (in the pDONR222 vector) to confirm specificity and
was also optimized for a specific annealing temperature
which is listed together with the primer sequences in Addi-
tional File 3: Supplementary Figure S3. BETA6 was not
included in the analysis as it was not possible to identify pri-
mers that could distinguish between BETA6 and other 3
conglutin sequences. qRT-PCR was carried out on the MyIQ
(Biorad, Hercules CA) and analysed as previously described
[47]. The results for each conglutin were normalized to the
NLL B-tubulin.

Mass spectrometric analysis of protein spots

Two dimensional gel electrophoresis of NLL cv Belara
flour proteins and western blotting with human sera to
identify potentially allergenic (IgE-binding) proteins was
previously described [18]. The gels were probed with
mixed serum from eight individuals allergic to lupin but
not peanut. The protein spots were analysed by tandem
mass spectrometry and a number of proteins were iden-
tified through peptide sequencing using Mascot MS
(Matrix Science) searches. In the current study the 16
NLL unique conglutin sequences characterised were
used to reanalyse the mass spectrometry data from Gog-
gin et al. (2008) using the same search parameters in a
Mascot MS/MS ion search [18].

Additional material

Additional file 1: Peptides identified from spots from the 2D-gel of
L. angustifolius flour proteins. Description: Protein spots were cut from
the 2D-gel and were analysed by mass spectrometry. A Mascot MS/MS
ion search of the 16 full-length conglutin proteins was used to identify
spots. The peptides identified are listed in the Table with the protein
matched, the percentage coverage, mascot score and the theoretical
molecular mass and pl of a mature protein that included these peptides.

Additional file 2: Lupin beta tubulin EST sequence. Lupin EST
sequence that showed best homology to beta tubulin Q39445 from Cicer
arietinum. Red sequences represents primer sequences designed for RT-
PCR.

Additional file 3: Conglutin Primer sequences and annealing
temperatures. Primer sequence and annealing temperature for
measuring the expression of each conglutin gene using RT-PCR.
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