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Abstract

Background: The productivity of the medicinally significant perennial herb Rehmannia glutinosa is severely
affected after the first year of cropping. While there is some information available describing the physiological and
environmental causes of this yield decline, there is as yet no data regarding the changes in gene expression which
occur when the species is continuously cropped.

Results: Using a massively parallel (Solexa) DNA sequencing platform, it was possible to identify and quantify the
abundance of a large number of R. glutinosa miRNAs. We contrasted the miRNA content of first year crop plants
with that of second year crop ones, and were able to show that of 89 conserved (belonging to 25 families) and six
novel miRNAs (six families), 29 of the former and three of the latter were differentially expressed. The three novel
miRNAs were predicted to target seven genes, and the 29 conserved ones 308 genes. The potential targets of 32
of these differentially expressed miRNAs involved in the main transcription regulation, plant development and
signal transduction. A functional analysis of the differentially expressed miRNAs suggested that several of the
proposed targets could be directly or indirectly responsible for the development of the tuberous root.

Conclusion: We have compared differential miRNAs expression in the first year crop (FP) R. glutinosa plants and
second year crop (SP) ones. The outcome identifies some potential leads for understanding the molecular basis of
the processes underlying the difficulty of maintaining the productivity of continuously cropped R. glutinosa.

Background
Rehmannia glutinosa L. is a perennial herbaceous species
belonging to the Scrophulariaceae family. Its economic
importance results from the medicinal activity present in
extracts of its tuberous roots [1]. Because of a lack of
known undesirable side effects and its relatively low
price, the species is extensively used in traditional
Chinese clinical practice. Its prime production region is
the Huai area of central China, but the climatic and
edaphic conditions in Jiaozuo (Henan province) are also
conducive for the cultivation of a high quality product.
After one season of production, however, disease build-
up (and other factors) forces the land to be cultivated
with other crops for a period of 15-20 years [2]. Even in
the absence of disease pressure, attempts to continuously

crop over several seasons have failed to overcome the
major decline in productivity, as the tubers are increas-
ingly replaced by fibrous roots, which are unable to
develop into tubers [3,4]. Much of the past research
aimed at identifying the causative factors for this contin-
uous cropping yield decline has been focused on the phy-
siological activity and autotoxicity of the root exudates
[5-7]. However, the molecular basis of the species’ sensi-
tivity to its own exudate remains unknown.
miRNAs (short RNA molecules, on average ~21

nucleotides in length) underlie a number of biological
phenomena in the animal, plant and virus kingdoms [8],
largely at the level of post-transcriptional gene regula-
tion [9-12]. As their sequences are so highly conserved
across the eukaryotes, they are believed to represent an
evolutionarily ancient component of gene regulation.
They operate via their complementarity to a stretch of
mRNA sequence, and affect the level of gene expression
by targeting the mRNA molecule for degradation.
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The short stretch of sequence present in an miRNA
means that many probably interact with a number of
independent mRNAs. Commonly, the miRNA target
sequence lies within a coding region, although there are
examples of sites lying in either the 3’ or 5’ untranslated
region [13-15]. The spectrum of functions now known to
be miRNA-regulated is very diverse [16-20] and includes
many aspects of plant growth and development [21-32].
Our hypothesis here was that miRNA activity may

underlie some at least of the the problems associated
with the continuous cropping of R. glutinosa. In order
to gain a global picture of the miRNA content of R. glu-
tinosa, we have therefore employed a high throughput
parallel sequencing platform (Solexa sequencing) able to
generate millions of short (18-30 nt) reads with a high
level of accuracy. We have applied this technology to
enable the comparative profiling of the miRNA content
of plants in their first year of cropping (FP) with those
in their second year (SP), with the intention of identify-
ing miRNAs expressed differentially in FP and SP plants.

Results and Discussion
Sequencing and annotation of R. glutinosa miRNAs
Solexa sequencing of the FP and SP miRNA libraries
yielded, respectively, 17,619,697 and 18,028,647 unfil-
tered sequence reads. Of these 19.92% (unique 39.37%)
were FP-specific, 23.82% (unique 48.17%) were SP-speci-
fic and 56.26% (unique 12.46%) were their common
respectively. The average number of occurrences of the
sequences common to both libraries was 10.5, while
that of library-specific reads was not more than 1.2
(Table 1). After discarding the low quality reads, a total
of 14,630,881 FP and 15,644,334 SP reads was retained.
These sequences represented 6,748,998 and 7,894,661
unique clean reads in FP and SP, respectively. Their size
distribution (Figure 1) showed that ~94% of the
sequences in both libraries were of length 20-24 nt, with
the modal length of 24 nt and the third peak at 21 nt,
consistent with the observed length distribution of
mature plant miRNAs [33,34].

Conserved miRNAs
Sequences homologous to non-coding sequences (rRNA,
tRNA, small nuclear RNA and small nucleolar RNA)
were identified from a search of the GenBank and the

Rfam9.1 databases. This resulted in the allocation of
0.93% of the FP and 0.63% of the SP unique miRNAs to
this category. When the remaining sequences were quer-
ied against known miRNA sequences, the outcome was
the identification of 282,063 (unique 300) and 118,011
(unique 251) hits, accounting for, respectively, 1.93% and
0.75% of the FP and SP libraries. A BLASTn search of the
genic miRNAs resulted in the identification of 89
sequences, belonging to 25 families. The extent of their
conservation across the plant kingdom was shown by an
alignment with the whole genome sequences of
A. thaliana, soybean, rice, black poplar and grape (Table
S1 in Additonal file 1). The most abundant sequences
were miR156/157, miR172 and miR165/166; the former
accounted for ~47% of all conserved miRNAs in the FP
library, while the most frequent single conserved
sequence in the SP library was miR172 (~39%) (Figure 2).
In both libraries, miR159, miR394 and miR403 were
moderately abundant. The five miRNAs miR161,
miR397, miR398, miR408 and miR822 were absent from
the SP library. It appeared therefore that the miRNA
population present in FP plants differed to some extent
from that present in SP plants.

Novel miRNAs
A distinguishing feature of miRNAs is the ability of their
pre-miRNA sequences to adopt the canonical stem-loop
hairpin structure. After removal of the conserved miR-
NAs, 13,724,517 FP (6,685,869 unique sequences) and
15,043,261 (7,845,823 unique sequences) SP sequences
were aligned with the A. thaliana genome sequence,
producing 7,341 (3,158 unique sequences) FP and 7,468
(3,269 unique sequences) SP sequences (Table 2) whose
flanking region (in A. thaliana, at least) was amenable
to secondary structure analysis. The application of a set
of strict identification criteria for potential miRNA loci
[35,36] resulted in the selection of 18 sequences (Addi-
tional file 2) across the two libraries which could be
considered as likely novel miRNAs (Table S2 in Addi-
tional file 1). Except for miR5138, their frequency of
occurrence was <40 (Table S2 in Additional file 1),
reflecting an expression level considerably lower than
that of the majority of the conserved miRNAs. When
RT-PCR was applied to these 18 sequences, six were
amplifiable from R. glutinosa cDNA template (Figure 3).

Table 1 Small RNA sequences present in both FP and SP plants, and those specific to one or other plant type

Class Unique
sequences

Percentage
Percentage (%)

Total
sequences

Percentage (%) Mean
frequency

Total reads 130,20,836 100.00% 30275211 100.00% 2.33

FP and SP Common 1,622,823 12.46% 17,033,751 56.26% 10.50

FP specific 6,271,838 48.17% 7,211,298 23.82% 1.15

SP specific 5,126,175 39.37% 6,030,162 19.92% 1.18
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Differentially expressed miRNAs
Evidence for differential expression in FP and SP plants
was sought by comparing the frequency of occurrence
of the 89 conserved and six novel miRNAs, based on a

Poisson distribution approach [37]. The 29 conserved
(11 miRNA families) and three novel miRNAs showing
the greatest degree of differential expression are listed in
Table 3. Of these 32 sequences, 12 showed a greater
than two fold difference in expression level between FP
and SP plants. Seven of them were more strongly
expressed in SP than in FP plants. The expression levels
of the most differentially expressed (17 conserved and 3
novel) miRNAs were reanalysed using qRT-PCR. This
confirmed that 14 of the former and two of the latter
sequences were indeed differentially expressed in FP and
SP plants (Figure 4), showing that frequency of occur-
rence in Solexa runs produces a reasonably accurate
prediction for expression level. Expression levels of
4 miRNAs (miR157a, miR167a, miR160a and miR5138)
in roots were measured in different times (Figure 5).
miR157a and miR167a were highly expressed in FP,

Figure 1 Size distribution of R. glutinosa small RNAs.

Figure 2 The relative abundance of conserved miRNA sequences. (A) The number of occurrences of a sequence. (B) The ratio between the
number of sequences in FP (or SP) and the total number in the pooled library.

Yang et al. BMC Plant Biology 2011, 11:53
http://www.biomedcentral.com/1471-2229/11/53

Page 3 of 11



while miR160a and miR5138 were quite opposite, with
strongly expressing in SP.

Target prediction for the three differentially expressed
novel miRNAs
The target of most plant miRNAs possesses a single per-
fect or near perfect complementary site in the coding
region [13,15]. Assuming this to be generally the case, the
A. thaliana gene space was searched for complementarity
with the sequences of the three differentially expressed
novel miRNAs. Using a set of rules for predicting novel
miRNA potential target genes [14,38], this exercise pre-
dicted seven potential targets, with miR5138 and miR5140
both targeting more than one gene (Table S3 in Additional
file 1). The targets encoded the following gene products:
ICU2 (INCURVATA2), a DNA-directed DNA polymerase,
a magnesium transporter CorA-like family protein, an
ATP synthase (a chain), a TIR-NBS-LRR protein, a
ZIGA4 (ARF GAP-like zinc finger-containing protein
ZiGA4) and a DC1 domain-containing protein.

Function of the potential targets of differentially
expressed miRNAs
An indication of the genes responsible for the continu-
ous cropping syndrome was sought by an inspection of
the 308 potential targets of the 29 differentially

expressed miRNAs (Additional file 3) in addition to the
seven targets of the novel miRNAs (Table S3 in Addi-
tional file 1). Gene ontology categories were assigned to
all 315 putative targets according to their cellular
component, their molecular function and the biological
process(es) they are involved in A. thaliana (Figure 6).
With respect to molecular function, the targets fell
largely into nine categories, with the three most over-
represented being nucleic acid binding, metal ion bind-
ing and transcription factor activity. Twelve biological
processes were identified, with the three most frequent
being the regulation of transcription, plant development
and signal transduction. The potential targets for the 32
differentially expressed miRNAs mainly involved tran-
scription, plant development and signal transduction.
Several of these targets may be directly or indirectly
involved in the development of tuberous vs fibrous
roots (Figure 7, 8). For example, miR156/157 targets an
SPL transcription factor, which when over-expressed in
A. thaliana, produces an early flowering phenotype. The
over-expression of miR156/157 itself delays flowering
[39-41]. Thus it is possible that in R. glutinosa, a higher
level of expression of miR156/157 (as occurred in FP
plants) could prolong root growth and development.
The miR160 target is the auxin response factor ARF17,
while those of miR167 are ARF6 and ARF8. ARF17 is a
negative regulator, while ARF6 and ARF8 are positive
regulators of adventitious rooting. These three ARFs
share overlapping expression domains, interact geneti-
cally and regulate one another’s expression at both the
transcriptional and post-transcriptional level [42]. Since
SP plants express more miR160 and less miR167 than
FP plants, it is possible that the balance of ARF protein
present is altered by continuous cropping, and hence
there is an effect on tuberous root expansion. The target
of miR5138 is the gene ICU2, which is negative regula-
tor of floral homeotic genes in A. thaliana. Its over-
expression delays flowering, while its knock-out hastens

Table 2 Annotation of sRNAs sequences from SP and FP

Category Unique
signatures

Total
signatures

Mean
frequency

FP SP FP SP FP SP

Non-protein-coding RNAs 62,829 (0.93%) 48,587(0.63%) 624,301(4.26%) 483062 (3.08%) 9.94 9.94

rRNA 52,498 (0.78%) 39,983 (0.51%) 472,541 (3.23%) 346,969 (2.22%) 9 8.68

snRNA 1,461(0.02%) 1,304 (0.02%) 2,607 (0.02%) 2,158 (0.01%) 1.78 1.66

snoRNA 542 (0.01%) 513 (0.01%) 731 (0.00%) 709 (0.00%) 1.35 1.38

tRNA 8,328 (0.12%) 6,787(0.09%) 148,422 (1.01%) 133,226 (0.85%) 17.82 19.63

Known miRNAs 300 (0.00%) 251(0.00%) 282,063 (1.93%) 118,011 (0.75%) 940.21 470.16

Matched to A. thaliana genome 3,158 (0.05%) 3,269 (0.04%) 7,341 (0.05%) 7,468 (0.04%) 2.32 2.28

Other sRNAs 6,682,711 (90.01%) 7,842,554 (99.36%) 13,717,176 (93.76%) 15,035,793 (96.12%) 2.05 1.92

Total 6,748,998 (100%) 7,894,661 (100%) 14,630,881 (100%) 15,644,334 (100%) 2.17 1.98

Figure 3 RT-PCR products of novel miRNAs in R. glutinosa.
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it [43]. Since this miRNA is more highly expressed in SP
than in FP plants, there may be a differential expression
of ICU2 and hence an effect on flowering time, with a
knock-on effect on tuberous root expansion.
These predicted target genes were cloned in R.

glutinosa (Table 4 and Additional file 4) and registered
as ESTs in NCBI.
Overall, there was a suggestion that the expression of

a number of miRNA families may be correlated with the
continuous cropping syndrome in R. glutinosa. Whether
these miRNAs actually regulate key genes responsible
for the syndrome will require experimental demonstra-
tion. The identification of these miRNAs has neverthe-
less succeeded in providing leads for determining the
molecular genetic basis of the continuous cropping syn-
drome in R. glutinosa.

Conclusions
Here we have described the application of a combina-
tion of approaches to identify a set of 89 conserved
(belonging to 25 families) and six novel R. glutinosa
miRNAs, which are differentially, expressed in first and
second year crops. We believe that this information
could provide initial candidates for the genes responsible
for tuberous root expansion, and in particular for the
syndrome of continuous cropping yield decline in this
medicinally important species.

Methods
Plant material and RNA isolation
R. glutinosa cultivar “Wen 85-5” was collected from the
Wen Agricultural Institute, Jiaozuo City, Henan Pro-
vince, China. The first year crop (FP) was grown from

Table 3 miRNAs expressed differentially in FP and SP plants

miRNAs Sequencing
frequency

Normalized
value

Fold-change
(log2

SP/FP
P-value Significance

FP SP FP SP

rgl-miR156a 2,945 1,526 201.29 97.54 -1.05 0.00 **

rgl-miR156b 63 30 4.31 1.92 -1.17 0.00 **

rgl-miR156f 40 14 2.73 0.89 -1.61 0.00 **

rgl-miR157a 126,264 24,968 8,613.21 1,595.98 -2.43 3.45E-263 **

rgl-miR157b 2,154 1,071 147.22 68.46 -1.1 4.40E-05 **

rgl-miR157c 221 87 15.11 5.56 -1.44 1.26E-11 **

rgl-miR157d 158 53 10.8 3.39 -1.67 0.00 **

rgl-miR160a 17 47 1.16 3 1.37 7.87E-16 **

rgl-miR160b 2 26 0.14 1.66 3.6 0.00 **

rgl-miR160c 3 32 0.21 2.05 3.32 0.00 **

rgl-miR164b 153 62 9.71 3.96 -1.29 0.00 **

rgl-miR166a 15,257 4,835 968.6 309.06 -1.65 0.00 **

rgl-miR166b 15,607 4,964 990.82 317.3 -1.64 3.65E-66 **

rgl-miR166c 17,639 5,735 1,119.82 366.59 -1.61 0.00 **

rgl-miR167a 8,673 4,231 550.61 270.45 -1.03 0.00 **

rgl-miR167b 8,164 3,965 518.29 253.45 -1.03 0.00 **

rgl-miR167d 689 317 43.74 20.26 -1.11 0.00 **

rgl-miR168a 2,520 494 159.98 31.58 -2.34 0.00 **

rgl-miR168b 2,547 512 161.70 32.73 -2.3 0.00 **

rgl-miR171a 101 234 6.41 14.96 1.22 2.82E-59 **

rgl-miR171b 37 81 2.35 5.18 1.14 0.00 **

rgl-miR395a 26 3 1.65 0.19 -3.11 0.00 **

rgl-miR395b 11 0 0.7 0.06 -3.45 0.00 **

rgl-miR396a 1,331 577 84.5 36.88 -1.2 0.00 **

rgl-miR396b 656 295 41.65 18.86 -1.14 0.00 **

rgl-miR396c 451 221 28.63 14.13 -1.02 0.00 **

rgl-miR397a 30 0 1.9 0.01 -7.57 0.00 **

rgl-miR398a 76 0 4.82 0.01 -8.91 8.50E-36 **

rgl-miR398b 37 0 2.35 0.01 -7.88 3.24E-10 **

rgl-miR5138 32 84 2.81 7.67 1.44 0.00 **

rgl-miR5140 39 5 1.51 0.20 -2.96 0.00 **

rgl-miR5142 0 30 0.01 2.94 8.2 0.00 **
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Figure 4 Comparison of partial miRNAs expressed levels between FP and SP using different methods. (A) Solexa sequencing (normalized
values) and qRT-PCR. (B) Electrophoresis of the qRT-PCR products (FP in left and SP in right).
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Figure 5 Differential expression levels of 4 miRNAs in roots.

Figure 6 Gene ontology of the predicted targets for 32 differentially expressed miRNAs. Categorization of miRNA-target genes was
performed according to the cellular component (A), molecular function (B) and biological process (C).
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April 15 to November 30 2009, and the second year
crop (SP) was planted on the same date, but on land
where a first crop had been grown the previous year
(plant growth period was between April 15, 2008 and
November 30, 2008) (Figure 8). Leaf, stem and root
samples were taken from five independent plants at the
tuberous root expansion stage (August 15, 2009), and
their RNA content was extracted with the TriZOL
reagent (TaKaRa Co., Tokyo, Japan). Total RNA from
each plant was pooled, and then separated by 15% dena-
turing PAGE to recover the population of small RNAs
(size range 18-30 nt) present.

For the measure of differently expressed miRNAs in
various development stages of R. glutinosa, FP and SP
plants (cultivar “Wen 85-5”) were grown in the isolated
plots from April 22 to October 22, 2010. Roots of R.
glutinosa were collected every month and total RNAs
were extracted with TriZOL reagent.

miRNA library construction and sequencing
The small RNAs were ligated sequentially to 5’ and 3’
RNA/DNA chimeric oligonucleotide adaptors (Illumina),
and the resulting ligation products were gel purified by
10% denaturing PAGE, and reverse transcribed. The
cDNAs obtained in this way were sequenced on a Gen-
ome Analyzer IIx System by Beijing Genomics Institute
(BGI) (Shenzhen, China).

Identification of miRNAs
Conserved miRNAs were identified by blastn searches
against Genbank http://www.ncbi.nlm.nih.gov, Rfam 9.1
(rfam.janelia.org) and miRBase 15.0 http://www.mirbase.
org databases with default parameters. Potentially novel
sequences were identified by an alignment with the
A. thaliana genome sequence ftp://ftp.tigr.org/pub/data/

Figure 7 Possible functions between differentially expressed
miRNAs and their targets in growth and development of R.
glutinosa. ↑: up- regulation of expression, ↓: down-regulation of
expression. Empty arrows imply inhibition of phenotype, while solid
arrows indicate its promotion.

Figure 8 Difference of FP and SP R. glutinosa plants.
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a_thaliana/ath1/SEQUENCES/ using SOAP (soap.geno-
mics.org.cn) software [44]. Candidate pre-miRNAs were
identified by folding the flanking genome sequence of
distinct miRNAs using MIREAP (mireap.sourceforge.
net), followed by a prediction of secondary structure by
mFold v3.1 [45]. The criteria chosen for stem-loop hair-
pins were as suggested elsewhere [35,36].

Reverse transcription (RT) reaction
For RT, polyA was first added to the 3’ end of the miR-
NAs using polyA polymerase, and cDNA was then
synthesized using AMV reverse transcriptase (GeneCo-
poeia, Inc.), employing a 53 nt oligodT-adaptor
sequence (GeneCopoeia, Inc.) as the primer. The former
was a 25 μl reaction, containing 2 μg total RNA, 2.5U
polyA polymerase (GeneCopoeia, Inc.), 1 μl RTase mix-
ture (GeneCopoeia, Inc.), and 5 μl 5× reaction buffer.
The reaction was incubated at 37°C for 60 min and 85°
C for 5 min, and then stored at -20°C.

Identification of novel miRNAs using RT-PCR
Forward primers (sequence given in Table S4 in Addi-
tional file 1) were synthesized by Sangon (Shanghai,
China). Each 50 μl reaction comprised 0.5 μl cDNA, 2 μl
(2 μM) miRNA forward primer, 2 μl (2 μM) reverse pri-
mer (Universal Adaptor PCR Primer, GeneCopoeia, Inc.),
5 μl 10× PCR buffer, 2 μl 10 mM dNTP, 1U Taq DNA
polymerase (Invitrogen, Inc.). The reactions were initially
denatured at 95°C for 10 min, and then cycled 36 times
through 95°C/10 s, 55°C/20 s, 72°C/10 s. A 5 μl aliquot of
each reaction was subjected to 3% agarose electrophoresis.

Validation of differential miRNA expression based on
qRT-PCR
qRT-PCR was performed using an All-in-One™ miRNA
Q-PCR detection kit (GeneCopoeia, Inc.) on a BIO-RAD
iQ5 real-time PCR detection system (Bio-Rad labora-
tories, Inc.). Each 20 μl Q-PCR comprised 0.5 μl cDNA,
2 μl 2 μM miRNA forward primer (sequence given in
Table S5 in Additional file 1), 2 μl 2 μM reverse primer
(Universal Adaptor PCR Primer), 10 μl 2× All-in-One™
miRNA Q-PCR buffer and 5.5 μl nuclease-free water.
The reactions were incubated at 95°C for 10 min, then
were cycled 36 times through 95°C/10 s, 55°C/20 s and

72°C/10 s. After the reactions had been completed, the
threshold was manually set and the threshold cycle (CT)
was automatically recorded. All reactions were repli-
cated twice per biological sample. A 4 μl aliquot of each
reaction product was subjected to 3% agarose electro-
phoresis. The relative expression level of the miRNAs
was calculated using the 2 -ΔΔCT method [46], and the
data were normalized on the basis of 18 s rRNA CT
values.

Target gene prediction and annotation of novel miRNAs
Potential targets of novel miRNAs were predicted
in silico a software package developed by the Huada
Genomic Center (Beijing, China, http://www.rnaiweb.
com/RNAi/MicroRNA/MicroRNA_Tools___Software/
MicroRNA_Target_Scan/index.html) mounted in the
A. thaliana transcript database ftp://ftp.tigr.org/pub/
data/a_thaliana/ath1/SEQUENCES/. The criteria applied
were as described elsewhere [14,38]. The potential targets
of conserved miRNA families were identified by a search
in the website http://bioinfo3.noble.org/psRNATarget/,
with the following settings applied: transcript/genomic
library A. thaliana TAIR7 cDNA [25/04/2007 release];
range of maximum expectation 1-5; range of maximum
circles 1-3; range of central mismatch for translational
inhibition 9-11 nt. A BlastN search against a reference A.
thaliana database including UniProt entries http://www.
uniprot.org/ was used to provide gene ontologies,
expressed as three independent hierarchies: biological
process, cell component and molecular function.

Additional material

Additional file 1: Table S1 - Conserved miRNAs from R. glutinosa.
The abbreviations represent: ath, A. thaliana; gma, soybean; ptc, black
poplar; vvi, grape; osa, rice. The plus symbols indicate: ++, miRNA
sequences of R. glutinosa were exactly identical to those in other species;
+, miRNA sequences of R. glutinosa were conserved in other species but
have variations in some nucleotide positions. Table S2 - Candidates of
novel miRNAs from R. glutinosa. Table S3 - Predicted targets of novel
validated R. glutinosa miRNAs. Table S4 - Forward primer sequences of
candicate miRNAs using RT-PCR in R. glutinosa.

Additional file 2: Secondary structures of candidate miRNAs.

Additional file 3: Potential target genes of 29 conserved miRNAs.

Additional file 4: Sequence alignments of partial targets of
differential expressed miRNAs.

Table 4 Partial targets cloned in R. glutinosa

miRNAs Target Acc.
of A.thaliana

Genbank Acc. of targets
cloned in

Identity Annotation
(A. thaliana)

rgl-miR160 AT4G30080.1 JG014346 79.94% ARF16 (Auxin response factor 16)

rgl-miR167 AT1G30330.1 JG390498 67.51% ARF6 (Auxin response factor 6)

rgl-miR5138 AT5G67100.1 JG390599 76.68% ICU2 (INCURVATA2); DNA-directed DNA polymerase

rgl-miR5140 AT3G58970.1 JG390538 68.87% magnesium transporter CorA-like family protein
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