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Abstract

environmental factors.

interaction effects.
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Background: The identification of genes or quantitative trait loci that are expressed in response to different
environmental factors such as temperature and light, through functional mapping, critically relies on precise
modeling of the covariance structure. Previous work used separable parametric covariance structures, such as a
Kronecker product of autoregressive one [AR(1)] matrices, that do not account for interaction effects of different

Results: We implement a more robust nonparametric covariance estimator to model these interactions within the
framework of functional mapping of reaction norms to two signals. Our results from Monte Carlo simulations show
that this estimator can be useful in modeling interactions that exist between two environmental signals. The

interactions are simulated using nonseparable covariance models with spatio-temporal structural forms that mimic

Conclusions: The nonparametric covariance estimator has an advantage over separable parametric covariance
estimators in the detection of QTL location, thus extending the breadth of use of functional mapping in practical

Background

The phenotype of a quantitative trait exhibits plasticity
if the trait differs in phenotypes with changing environ-
ment [1-7]. Such environment-dependent changes, also
called reaction norms, are ubiquitous in biology. For
example, thermal reaction norms show how perfor-
mance, such as caterpillar growth rate [8] or growth
rate and body size in ectotherms [9], varies continuously
with temperature [10]. Another example is the flowering
time of Arabidopsis thaliana with respect to changing
light intensity [11]. However, QTL mapping of reaction
norms is difficult to model because of the inherent com-
plexity in the interplay of a multitude of factors
involved. An added difficulty is in their being “infinite-
dimensional” as they require an infinite number of mea-
surements to be completely described [12]. Wu et al.
[13] proposed a functional mapping-based model which
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addresses the latter difficulty by using a biologically rele-
vant mathematical function to model reaction norms.
The authors considered a parametric model of photo-
synthetic rate as a function of light irradiance and tem-
perature and studied the genetic mechanism of such
process. They showed through simulations that in a
backcross population with one or two-QTLs, their
method accurately and precisely estimated the QTL
location(s) and the parameters of the mean model for
photosynthesis rate. For a backcross population with
one QTL, the mean model consists of two surfaces that
describe the photosynthetic rate of two genotypes. How-
ever, in their model, they assumed the covariance matrix
to be a Kronecker product of two AR(1) structures, each
modeling a reaction norm due to one environmental
factor. This type of covariance model is said to be separ-
able. Although computationally efficient because of the
minimal number of parameters to be estimated, this
model only captures separate reaction norm effects but
fails to incorporate interactions. A more general
approach is therefore needed.
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In the context of longitudinal data, Yap et al. [14] pro-
posed a nonparametric covariance estimator in func-
tional mapping. It was nonparametric in the sense that
the covariance matrix has an unconstrained set of para-
meters to be estimated and not the usual distribution-
free sense in nonparametric statistics. This estimator
can be obtained by employing a modified Cholesky
decomposition of the covariance matrix which yields
component matrices whose elements can be interpreted
and modeled as terms in a regression [15]. A penalized
likelihood procedure is used to solve the regression with
either an L; or L, penalty [16]. Penalized likelihood in
regression is a technique used to obtain minimum mean
squared error (MSE) of estimated regression coefficients
by balancing bias and variance. L; or L, penalties, which
are functions of the regression covariates, are included
in a regression model in order to shrink coefficients
towards estimates with minimum MSE. In the case of
the L; penalty, some of the coefficients are actually
shrunk to zero. Thus, with the L; penalty, a more parsi-
monious regression model is obtained. The use of pena-
lized likelihood with L; or L, penalties is particularly
useful when there is multi-collinearity among the cov-
ariates in the regression i.e. when there are near linear
dependencies or high correlations among the regressors
or predictor variables. An iterative procedure is imple-
mented by using the ECM algorithm [17] to obtain the
final estimator. Through Monte Carlo simulations, this
nonparametric estimator is found to provide more accu-
rate and precise mean parameters and QTL location
estimates than the parametric AR(1) form for the covar-
iance model, especially when the underlying covariance
structure of the data is significantly different from the
assumed model.

The question of how to incorporate interaction effects
in a model with multiple factors has not, to our knowl-
edge, been thoroughly explored in the biology literature,
especially in the context of genetic mapping that incor-
porates interactions of function-valued traits. The spa-
tio-temporal literature, however, has a wealth of
publications that developed more general models such
as nonseparable covariance structures which are used to
model the underlying interactions of random processes
in the space and time domains (see [18,19]). A nonse-
parable covariance cannot be expressed as a Kronecker
product of two matrices like separable structures can.
The random processes being modeled may be the con-
centration of pollutants in the atmosphere, groundwater
contaminants, wind speed, or even disposable household
incomes. The main significance of the covariance in this
context is in providing a better characterization of the
random process to obtain optimal kriging or prediction
of unobserved portions of it. It therefore seems natural
to consider the utilization of nonseparable structures in
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the simulation and modeling of reaction norms that
react to two environmental factors. More concretely, we
consider the photosynthetic rate as a random process,
and the irradiance and temperature as the spatial (one
dimension) and temporal domains, respectively.

The remaining part of this paper is organized as follows:
We first describe the functional mapping model proposed
by Wu et al. [13] for reaction norms. Then, we formulate
separable and nonseparable models used in spatio-
temporal analyses and present a simulation study using
some nonseparable structures. Lastly, the new model and
its implications for genetic mapping are discussed. From
hereon, the terms covariance matrix, covariance structure
or covariance function are used interchangeably.

Functional Mapping of Reaction Norms

Reaction Norms: An Example

Wolf [20] described a reaction norm as a surface land-
scape determined by genetic and environmental factors.
The surface is characterized by a phenotypic trait as a
function of different environmental factors such as tem-
perature, light intensity, humidity, etc., and corresponds
to a specific genetic effect such as additive, dominant or
epistatic [21]. At least in three dimensions, the features
of the surface such as “slope”, “curvature”, “peak valley”,
and “ridge”, can be described graphically to help visua-
lize and elucidate how the underlying factors affect the
phenotype.

An example of reaction norms that illustrate a surface
landscape is photosynthesis [13], the process by which
light energy is converted to chemical energy by plants
and other living organisms. It is an important yet com-
plex process because it involves several factors such as
the age of a leaf (where photosynthesis takes place in
most plants), the concentration of carbon dioxide in the
environment, temperature, light irradiance, available
nutrients and water in the soil. A mathematical expres-
sion for the rate of single-leaf photosynthesis, P, without
photorespiration [22] is

_oltby,
20
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where b = (ol + P,,, 6 € (0,1) is a dimensionless para-
meter, o is the photochemical efficiency, I is the irradi-
ance, and P, is the asymptotic photosynthetic rate at a
saturating irradiance. P, is a linear function of the tem-
perature, T’
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where P(T) = P,,(20) is the value of P,, at
20

PRl

the reference temperature of 20°C and T* is the tem-
perature at which photosynthesis stops. T* is chosen
over a range of temperatures, such as 5°C-25°C, to pro-
vide a good fit to observed data.

Wu et al. [13] studied the reaction norm of photosyn-
thetic rate, defined by Egs. (1) and (2), as a function of
irradiance (I) and temperature (7). That is, the authors
considered P = P(I, T). We assume that 7% = 5 so that
the reaction norm model parameters are (¢, P,,(20), 6).
The surface landscape that describes the reaction norm
of P (I, T), with parameters (o, P,,(20), 6) = (0.02, 1, 0.9),
is shown in Figure 1. As stated earlier, each reaction
norm surface corresponds to a specific genetic effect.
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Likelihood

We consider a backcross design with one QTL. Exten-
sions to more complicated designs and the two-QTL
case, as in [13], are straightforward. Assume a backcross
plant population of size n with a single QTL affecting
the phenotypic trait of photosynthetic rate. The photo-
synthetic rate for each progeny i (i = 1, ..., n) is mea-
sured at different irradiance (s = 1, ..., S) and
temperature (¢ = 1, ..., T') levels. This choice of variables
is adopted for consistency in later discussions as we will
be working with spatio-temporal covariance models.
The set of phenotype measurements or observations can
be written in vector form as

yi=[ri(11),...v;(1, T),

Thus, if a QTL is at work, the genetic effects produce irradiance 1 3)
different surfaces defined by distinct sets of model para- o [Yi(S1), o yi(S, ),
meters corresponding to different genotypes. irradiance S
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(2) with parameters (¢, P,,(20), 6) = (0.02, 1, 0.9). Adapted from [13].
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Figure 1 Reaction norm surface of photosynthetic rate as a function of irradiance and temperature. Model is based on equations (1) and
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The progeny are genotyped for molecular markers to
construct a genetic linkage map for the segregating QTL
in the population. This means that the genotypes of the
markers are observed and will be used, along with the
phenotype measurements, to predict the QTL. With a
backcross design, the QTL has two possible genotypes
(as do the markers) which shall be indexed by k = 1, 2.
The likelihood function based on the phenotype and
marker data can be formulated as

n 2
w@=TT| X puifutyi 1) @

i=1 L k=1

where pyq; is the conditional probability of a QTL gen-
otype given the genotype of a marker interval for pro-
geny i. We assume a multivariate normal density for the
phenotype vector y; with genotype-specific means

mge = (1,1), o i (1, T),
irradiance 1 (5)

,[,le(s, 1), ceep ,le(S, T)I,

irradiance S

and covariance matrix X = cov(y;).

Mean and Covariance Models
The mean vector for photosynthetic rate in (5) can be
modeled using equations (1) and (2) as

as + Pmk
20,

6
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20,
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Where by = ogs + Py,

P,(20)P(t) t=T*
Py (1) :{0 " . (7)
t<T
pi)=-—T_ andk=1,2.
20-T

Wu et al. [13] used a separable structure (Mitchell
et al,, 2005) for the ST x ST covariance matrix X as

Zar) =1 QX (8)

where X; and X, are the (SxS) and (TxT) covariance
matrices among different irradiance and temperature
levels, respectively, and ® is the Kronecker product
operator. Note that £; and X, are unique only up to
multiples of a constant because for some |c| > 0, cZ; ®
(1/¢)Z; = Z; ® %,. Each of X; and %, is modeled using
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an AR(1) structure with a common error variance, 62,
and correlation parameters p; (k = 1, 2):

1 Pl pi !
1 s-2

Zk—az P:k : Pk: 9)
P Pl

Separable covariance structures, however, cannot
model interaction effects of each reaction norm to tem-
perature and irradiance. Thus, there is a need for a
more general model for this purpose.

Yap et al. [14] proposed to use a data-driven nonpara-
metric covariance estimator in functional mapping. The
authors showed that using such estimator provides bet-
ter estimates for QTL location and mean model para-
meters when compared to AR(1). Huang et al. [16]
showed that the nonparametric estimator works well for
large matrices. Functional mapping of reaction norms
when there are two environmental signals necessitates
the use of large covariance matrices that result from
Kronecker products of smaller matrices. Here, we are
interested in determining whether the nonparametric
covariance estimator of Yap et al. [14] will still work
well in this reaction norm setting.

It should be noted that unlike parametric models, e.g.
AR(1), there are no parameters being estimated in the
nonparametric covariance estimator. The entries of the
matrix are determined based on the data. This is differ-
ent from a model-dependent covariance matrix model
with one parameter for each of its elements. Due to
over-parametrization, such a model may not lead to
convergence to yield reliable results.

Note that with (6)-(9), Q = Q; U Q, in (4), where Q,
= {alx Pml(zo)’ 01, 621 Pz} and Q, = {052, Pm2(20)) 02, 0—2;
p2}. These model parameters may be estimated using
the ECM algorithm [17], but closed form solutions at
the CM-step are be very complicated. A more efficient
method is to use the Nelder-Mead simplex algorithm
[23] which can be easily implemented using softwares
such as Matlab.

Hypothesis Tests

The features of the surface landscape are important
because they can be used as a basis in formulating
hypothesis tests. Let Hy and H; denote the null and
alternative hypotheses, respectively. Then the existence
of a QTL that determines the reaction norm curves can
be formulated as

H,:o, =a,,P,,(20)=P,(20),0, =0,,

versus
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H; : at least one of the equalities
above does not hold

This means that if the reaction norm curves are dis-
tinct (in terms of their respective estimated parameters),
then a QTL possibly exists. The estimated location of
the QTL is at the point at which the log-likelihood ratio
obtained using the null and alternative hypotheses is
maximal. Of course a slight difference in parameter esti-
mates does not automatically mean a QTL exists. The
significance of the results can be determined by permu-
tation tests [24] which involves a repeated application of
the functional mapping model on the data where the
phenotype and marker associations are broken to simu-
late the null hypothesis of no QTL. A significance level
is then obtained based on the maximal log-likelihood
ratio at each application to infer the presence or absence
of a QTL (see ref. [25] for more details). A procedure
described in ref. [26] can be used to test the additive
effects of a QTL. Other hypotheses can be formulated
and tested such as the genetic control of the reaction
norm to each environmental factor, interaction effects
between environmental factors on the phenotype, and
the marginal slope of the reaction norm with respect to
each environmental factor or the gradient of the reac-
tion norm itself. The reader is referred to Wu et al. [13]
for more details.

Spatio-Temporal Covariances

We investigate the use of parametric and nonseparable
spatio-temporal covariance structures in functional map-
ping of photosynthetic rate as a reaction norm to the
environmental factors irradiance and temperature. As
stated earlier, the main idea is to model irradiance as a
one-dimensional spatial variable and temperature as a
temporal variable. The choice of which environmental
signal is modeled as temporal or spatial is arbitrary. For
more about spatio-temporal modeling, we refer the
reader to [27,19].

Basic Ideas, Notation, and Assumptions
We consider a real-valued spatio-temporal random pro-
cess given by

Y(s, 1), (s, )e RxR, de Z* (10)
where observations are collected at coordinates

(s1:t1),(s2,82) - (SN EN)

to characterize unobserved portions of the process.
This collection of coordinates are not necessarily
ordered fixed levels of each trait. We will only be
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concerned with the case d = 1. Aside from those men-
tioned earlier, Y may also represent ozone levels, disease
incidence, ocean current patterns or water temperatures.
In our setting, Y represents photosynthetic rate.

If var (Y(s, £)) < o for all (s, ) € R x R, then the
covariance, cov (Y(s, t), Y(s + u, t + v)), where u and v
are spatial and temporal lags, respectively, exists. We
assume that the covariance is stationary in space and
time so that for some function C,

cov (Y(s, 1), Y(s+u, t+v))=C(u v). (11)

This means that the covariance function C depends
only on the lags and not on the values of the coordi-
nates themselves. Stationarity is often assumed to allow
estimation of the covariance function from the data
[18]. We also assume that the covariance function is iso-
tropic which means that it depends only on the absolute
lags and not in the direction or orientation of the coor-
dinates to each other. The covariances considered in
this paper are positive (semi-) definite as they satisfy the
following condition: for any (s, t1), ..., (Sx ,» tx) € R x
R, any real coefficients aj, ..., a;, and any positive inte-
ger k,

ko _k
ZZaiajC(s,- —sjt;—t;)20

i=1 j=1

(12)

Note that C(x, 0) and C(0, v) correspond to purely
spatial and purely temporal covariance functions,
respectively.

In spatio-temporal analysis, the ultimate goal is opti-
mal prediction (or kriging) of an un-observed part of
the random process Y(s, £) using an appropriate covar-
iance function model. We utilize a covariance model to
calculate the mixture likelihood associated with func-
tional mapping.

Separable and Nonseparable Covariance Structures
Separable Covariance Structures
A covariance function C(u, v|6) of a spatio-temporal
process is separable if it can be expressed as
Clu, v]0)=Cy(u|6,)Cy(v]6,) (13)
where C;(u|60,) and C,(v|0,) are purely spatial and
purely temporal covariance functions, respectively, and 6
= (#,, 6,)". This representation implies that the observed
joint process can be seen as a product of two indepen-
dent spatial and temporal processes.
A more general definition for separability is as a Kro-
necker product (equation (8)). From equation (8), it can be

shown that T3k =27 ® 25" and | Z gy H 2, 122, 4,
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where |-| denotes the determinant of a matrix; d; and d,
are the dimensions of X; and %, respectively. This illus-
trates the computational advantage of using separable
models in likelihood estimation where the inverse and
determinant of the covariance matrix are calculated. For a
large covariance matrix of dimension UV, its inverse can
be calculated from the inverses of its Kronecker compo-
nent matrices, X, and X,, with dimensions U and V,
respectively. Thus, the inversion of a 100 x 100 matrix, for
example, may only require the inversion of two 10 x 10
matrices. A similar argument can be used for the determi-
nant. £4() can be put in the form (13) as

Clu, v|o?, py py)=0c’pi . o’p;
4 u_v (14)
=0 pP1P2s

where u = 1, .., U, v =1, ..., V. Note that this model
assumes equidistant or regularly spaced coordinates.
Thus, two consecutive or closest neighbor coordinates
will have the same correlation structure as another even
if their respective distances are different. A more appro-

priate model might be

Clw,v|o?, py, pyab)=c’pilpsl (15)

where a and b are scale parameters. In this model, the
scale parameters correct for the uneven distances
between coordinates.

Nonseparable Covariance Structures

Here, we present some nonseparable covariance models
that were derived in two different ways. The details of
the derivation are omitted as they are rather compli-
cated and lengthy.

The following nonseparable covariance models were
derived by Cressie and Huang [18] using the Fourier
transform of the spectral density and by utilizing Boch-
ner’s Theorem [28]:

2

C(u, 1/) = O-—
(a*v? +1)
(16)
b2u?
X - |
exp[ av? +1 ]
2
Olu, v) = c(a|v]+1) (17)
(a|v|+1)2+b2 |u|2
C(u, v)=o-2<>.:»<p(—a|v|—b2 |u|2) 18)

xexp(~c|v[ul?),

where a, b > 0 are scaling parameters of time and
space, respectively; ¢ > 0 is an interaction parameter of
time and space, and 6° = C(0, 0) > 0. Note that when ¢
= 0, (18) reduces to a separable model.
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Gneiting [27] developed an approach that can produce
nonseparable covariance models without relying on
Fourier transform pairs. One such model is

2
o

(alv[* +1)°
(alv[+1)? [

with (4, v) € ® x & and where a4, b > 0 are scaling
parameters of space and time, respectively; ¢, € (0, 1]
are smoothness parameters of space and time, respec-
tively; y O[1]; 7 > 1/2; and 6° > 0. yis a space-time inter-
action parameter which implies a separable structure
when 0 and a nonseparable structure otherwise. Increas-
ing values of y indicates strengthening spatio-temporal
interaction.

C(u, v) =
(19)

Computer Simulation

We investigated the performances of the following non-
separable covariances structures that were presented in
the preceding section

2
o

(a’v? +1)
a’v? +1 '

02(a|v|+1)
(alv|+1)? +b2|ul?’

Cy(u,v) =

C,(u, v) = (21)

2
(o3

" (alv[+1)

exp __ bfu]
(alv|+1)"? |
where a, b > 0; ye 0[1] and 6* > 0. C; and C, corre-
spond to (16) and (17), respectively, and Cj is a special
case of (19) with @ = 1/2, 8 =1/2 and 7 = 1.

We generated photosynthetic rate data using these
nonseparable covariances to simulate interaction effects
between the two environmental signals in functional
mapping of a reaction norm. The generated data was
analyzed using the nonparametric estimator Xyp pro-
posed by Yap et al. [14] using an L, penalty, and X4zq)
(equation (8)). Note that the underlying covariance
structures were very different from the assumed model,
Y4rq) » and we therefore expected to get biased esti-
mates. The issue we wanted to address was the extent

Cs(u, v)
(22)
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to which the bias cannot be ignored and an alternative
estimator such as Xyp may be more appropriate.

Covariance fit was assessed using entropy (Lg) and
quadratic (Lg) losses:

Ly(Z3) = u(Z7'%) - log‘ 2*12‘ —m
and
Lo 2) =tu(Z'Z-1)°

where 3 is the estimate of the true underlying covar-
iance X [14,16,29-31]. Each loss function is 0 when
s = v and large values suggest significant bias.

Using a backcross design for the QTL mapping popu-
lation, we randomly generated 6 markers equally spaced
on a chromosome 100 cM long. One QTL was simu-
lated between the fourth and fifth markers, 12 ¢cM from
the fourth marker (or 72 ¢cM from the leftmost marker
of the chromosome). The QTL had two possible geno-
types which determined two distinct mean photosyn-
thetic rate reaction norm surfaces defined by equations
(1) and (2) (see also Figure 1). The surface parameters
for each genotype were (0, P,,1(20), 64) = (0.02, 2, 0.9)
and (0, P,»(20), 0,) = (0.01, 1.5, 0.9). Phenotype obser-
vations were obtained by sampling from a multivariate
normal distribution with mean surface based on irradi-
ance and temperature levels of {0, 50, 100, 200, 300}
and {15, 20, 25, 30}, respectively, and covariance matrix
Ciu, v),1 =1, 2, 3 with a = 0.50, b = 0.01 for Cy, a =
1.00, b = 0.01 for Cy, a = 1.00, b = 0.01, ¢ = 0.60 for Cs
and 6> = 1.00 for all three covariances.

Figure 2 shows the reaction norm surfaces of photo-
synthetic rate as functions of irradiance and temperature
that were used in the simulation. Within the considered
domain of values for irradiance and temperature, one
surface lies above the other. These surfaces differ only
in terms of the o, and P,,;(20) parameters.

The functional mapping model was applied to the
marker and phenotype data with # = 200, 400 samples.
The surface defined by equations (1) and (2) was used
as mean model with Zyp and Z4z(;) as covariance mod-
els to analyze the data generated using Cj(u, v). 100
simulation runs were carried out and the averages on all
runs of the estimated QTL location, mean parameter
estimates, entropy and quadratic losses, including the
respective Monte carlo standard errors (SE), were
recorded. Tables 1 and 2 present the results of these
simulations. The results show that using Xyp yields rea-
sonably accurate and precise parameter estimates. The
results for X (1) are similar to Xy, except that the aver-
age losses, given by Lg and L, are inflated for C; and
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C,. Figure 3 shows box plots of the log-likelihood values
under the alternative model. These plots reveal biased
estimates of C; and C, by X4z and the degrees of bias
are consistent with the average losses. The results for
the log-likelihood values under the null model are very
similar but are not shown. We also provided the covar-
iance and corresponding contour plots of C(u, v), [ = 1,
2, 3 and the Z,z(;) estimates of these in Figure 4 and 5.
We only provided plots for Ci(», v), [ = 1, 2, 3 and X4z
) to illustrate the behavior of these parametric models.
We did not include plots for the estimated X5 because
there are no parametric estimates for this model and we
did not record all elements of the estimated X, in the
simulation runs.

We conducted further simulations using C; as the
underlying covariance structure of the data with n =
400. This was the case where X (1) performed the
worst. We considered two scenarios: increased variance
parameter, 67, or increased irradiance and temperature
levels (finer grid). That is,

1. 6 = 2, 4 with irradiance and temperature levels of
{0, 50, 100, 200, 300} and {15, 20, 25, 30},
respectively.

2. 6% = 1, 2 with irradiance and temperature levels of
{0, 50, 100, 150, 200, 250, 300} and {15, 18, 21, 24,
27, 30}, respectively.

We included an analysis of the simulated data using
C, as the covariance model to ensure the results are not
false-positives. The results of the simulation are shown
in Tables 3 and 4. The tables include columns for the
log-likelihood values under the null (Hp) and alternative
(H1) hypotheses as well as the maximum of the log-like-
lihood ratio (maxLR). MaxLR is used in permutation
tests to assess significance of QTL existence (see Section
2.3). Under scenarios (1) or (2), i.e. increased variance
parameter o~ or increased irradiance and temperature
levels, using Zx;p yields significantly more accurate and
precise estimates of the QTL location compared to X,z
a): In Table 3, when o2 = 4, the estimates of the true
QTL location of 72 were 71.64 and 74.20 for NP and
Y 4ra) respectively; In Table 4, when o? = 2, the esti-
mates were 72.13 and 78.44. Although for X4zx), maxLR
appears to be more accurate, the log-likelihood ratios
are still significantly different from the estimates given
by C;. Again, this is reflected in the inflated average
losses. Note that the maxLR estimates are larger for X,z
ay when compared to those for Xyp. We do not expect
this to be always the case. In other instances, the maxLR
estimates for £,p(;) may be smaller than those for X .
However, in those instances, we expect the maxLR esti-
mates for Xyp to still be more accurate and precise than
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Figure 2 Reaction norm surfaces of photosynthetic rate as functions of irradiance and temperature. Models are based on equations (1)
and (2) with parameters (a1, P.,1(20), 07) = (0.02, 2, 0.9) and (a, P.,»(20), 85) = (0.01, 1.5, 0.9) as used in the simulation.

\

Table 1 Averaged QTL position, mean curve parameters, entropy and quadratic losses and their standard errors (given
in parentheses) for two QTL genotypes in a backcross population under different sample sizes (n) based on 100
simulation replicates (Zyp)

QTL QTL genotype 1 QTL genotype 2
Covariance n Location a, ﬁml (20) él a, ﬁm2 (20) éz Le Lo
[« 200 71.68 0.02 202 0.90 0.01 152 0.88 1.04 203
(0.28) (0.00) (0.01) (0.00) (0.00) (0.02) (0.01) (0.01) (0.02)
400 72.16 0.02 2.00 0.90 0.01 152 0.88 0.53 1.06
(0.23) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.01)
G 200 71.88 0.02 2.00 0.90 0.01 153 0.88 1.00 1.96
(0.29) (0.00) 0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02)
400 7192 0.02 2.00 0.90 0.01 1.52 0.89 052 1.02
0.17) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.01)
G 200 72.12 0.02 2.01 0.89 0.01 1.54 0.87 0.88 1.70
(0.37) (0.00) 0.01) (0.01) (0.00) (0.02) (0.01) (0.01) (0.02)
400 72.08 0.02 2.01 0.90 0.01 152 0.89 048 0.94
(0.20) (0.00) 0.01) (0.00) (0.00) (0.01) (0.01) (0.00) (0.01)

True: 72.00 0.02 2.00 0.90 0.01 1.50 0.90
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Table 2 Averaged QTL position, mean curve parameters, entropy and quadratic losses and their standard errors (given
in parentheses) for two QTL genotypes in a backcross population under different sample sizes (n) based on 100
simulation replicates (Z4z(1))

QTL QTL genotype 1 QTL genotype 2
Covariance n Location a, ﬁml (20) él a, ﬁmz(zo) éz Le Lo
G 200 72.32 002 203 090 001 153 087 1943 681.78
(0.45) (0.00) 001) (0.01) (0.00) (0.02) (0.01) (0.07) 6.16)
400 7172 002 203 090 001 151 089 1945 684.11
(0.27) (0.00) ©001) (0.00) (0.00) (0.01) (0.01) (0.05) (4.40)
G 200 71.96 002 201 090 001 155 087 483 58,60
(0.34) (0.00) 001) (0.00) (0.00) 0.02) (0.01) (0.02) (1.01)
400 7184 002 201 090 001 152 089 483 5861
(0.20) (0.00) 001) (0.00) (0.00) (0.01) (0.01) (0.02) 0.77)
G 200 72,00 002 201 089 001 154 087 060 151
(0.35) (0.00) (0.01) (0.01) (0.00) (0.02) (0.01) (0.00) (0.10)
400 71.96 002 201 089 001 152 089 060 143
(0.22) (0.00) 001) (0.00) (0.00) 001) (0.01) (0.00) (0.08)
True: 72,00 002 200 090 001 150 090
n=200 n=400
~300 ' ' 1000f 9 '
I'_ é % I'_ o T,_Q_
o _700 [ o
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Figure 3 Boxplots of the values of the log-likelihood under the alternative model, H;. Significantly biased estimates by Xz, are apparent

for C,.
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0
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Figure 4 Covariance plots. Plots of C, [ = 1, 2, 3 versus irradiance (Ju|) and temperature (|v]) lags are on the left column. On the right column

those for L4y, unless the true underlying covariance
structure is X4r(1), which is not likely.

Discussion
In this paper, we studied the covariance model in func-
tional mapping of photosynthetic rate as a reaction
norm to irradiance and temperature as environmental
signals. In the presence of interaction between the two
signals simulated by nonseparable covariance structures,
our analysis showed that Xyp is a more reliable estima-
tor than X,p(1) particularly in QTL location estimation.
The advantage of Xyp over Z,p(1) is greater when the
variance of the reaction norm process and the number
of signal levels increase.

Ynp was developed in the context of a one dimen-
sional (longitudinal) vector which has an ordering of
variables. The phenotype vector we considered here

consists of observations based on two levels of irradi-
ance and temperature measurements, i.e.,

yi =[yi(11),...y;(1,T),

irradiance 1

(S ), yi(S, TY,

irradiance S

(23)

This vector has no natural ordering like in longitudi-
nal data. However, our simulation results still suggest
that Xyp can be directly applied to observations that
have no variable ordering such as (23). The process by
which Z,p was obtained in Yap et al. [14] was based on
non-mixture type of longitudinal covariance estimators.
This process is flexible and can potentially accommo-
date other estimators that can handle unordered data or
are invariant to variable permutations. See for example
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Figure 5 Contour plots. Contour plots of C, / = 1, 2, 3 on the left column. On the right column are the contour plots of the estimates of C; by
ZaRQy

the sparse permutation invariant covariance estimator
(SPICE) proposed by Rothman et al. [32].

In the presence of interactions, nonseparable covar-
iances can possibly be used in place of Zyp, but they
should closely reflect the structure of the data. Unfortu-
nately, as with any parametric model, this is not often
the case. In fact, it is not even known whether the data
exhibits interactions or not. Before deciding on what
model to use, one might utilize tests for separability
[33,34]. If separable models are appropriate, then there
are many options. Otherwise, it is difficult to choose
from a number of complex nonseparable covariances
because there are no available general guidelines as yet
that can help one decide which model to use. The cov-
ariance Cj that was used in the simulations had an easy
to interpret interaction parameter y € 0[1]. However,
despite an interaction “strength” of y = 0.6, the separable

model, £4za), estimated the data generated by C; quite
well. Thus, the trade-o between using a nonseparable
model instead of a separable one may not be worth it.
Another option is to use separable approximations to
nonseparable covariances [35]. The nonseparable covar-
iances that we considered were assumed to be stationary
and isotropic. These two assumptions may not always
hold for real data. Although not specifically addressed
here, using X5p may work for data that do not satisfy
these assumptions.

Finally, we only considered two environmental signals
with interactions: irradiance and temperature. However,
the reaction norm of photosynthetic rate is a very com-
plex process because there are really more environmen-
tal signals at play other than these two. Theoretically,
the spatial domain of spatio-temporal nonseparable cov-
ariance models can be extended to more than one
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Table 3 Averaged QTL position, mean curve parameters, log-likelihood values, maximum log-likelihood ratios (maxLR),
entropy and quadratic losses and their standard errors (given in parentheses) for two QTL genotypes in a backcross
population based on 100 simulation replicates (C; with n = 400 and o° = 2, 4)

QTL QTL genotype 1 QTL genotype 2 log-likelihood
Covariance ~ ¢*  Location ﬁm1(20) él oy ﬁmz (20) éz Ho H, maxLR  Lg Lo

ZAR() 2 72.40 0.02 2.05 0.89 0.01 1.52 0.87 -5437 -5373 12851 1945 68437
(0.44) (0.00) (0.01) (0.01)  (0.00) (0.02) (0.01) (7.36) (7.31) (245) (0.05) (4.44)
4 74.20 0.02 211 0.88 0.01 1.52 0.84 -8175 -8141 65.55 1944  683.82

0.69) (0.00) (0.02) (0.01)  (0.00) (0.03) 002 (732 (7.31) (1.80) (005  (446)

G 2 71.96 0.02 201 0.90 0.01 1.54 0.88 -4088 -4021 13341 0.01 0.13
(0.29) (0.00) (0.01) (0.00)  (0.00) (0.02) (0.01) (7.17) (7.16) (2.15) (0.00) (0.02)

4 71.96 0.02 2.03 0.89 0.01 1.57 0.86 -6822 -6788 69.07 0.01 0.13

(0.44) (0.00) 0.01) (0.01)  (0.00) (0.03) 0.02)  (7.16) (7.16) (157)  (000)  (0.02)

NP 2 72.16 0.02 201 0.89 0.01 1.54 0.87 -3967 -3912 109.79 0.53 1.05
(0.29) (0.00) (0.01) (0.00)  (0.00) 0.02) 001 (6387) (6.89) (166)  (0.00)  (0.01)

4 71.64 0.02 201 0.89 0.01 1.57 0.84 -6713 -6684 5992 0.53 1.04

(049) (0.00) (0.01) (0.01)  (0.00) (0.03) (0.02) (6.89) (6.93) (1.27) (0.00) (0.01)

True: 72.00 0.02 2.00 0.90 0.01 1.50 0.90

dimensions i.e., d > 1 in (10). For example, a two
dimensional spatial domain models an area on a flat
surface while a three dimensional domain models space.
There are spatio-temporal models for these. However,
this extension cannot be used to increase the number of
signals in a reaction norm unless the signals have the
same unit of measurement or one assumes separability
or no interaction among the signals. For example, car-
bon dioxide concentration cannot be added as a signal,

in addition to irradiance and temperature, when model-
ing photosynthetic rate as a reaction norm in the func-
tional mapping setting because it does not have the
same unit as irradiance or temperature. Thus, it is diffi-
cult to simulate data from more than two signals with
interactions. However, Zp can theoretically handle cov-
ariances associated with more than two signals that may
involve interactions. The computer code for the model
will be available from http://statgen.psu.edu.

Table 4 Averaged QTL position, mean curve parameters, log-likelihood values, maximum log-likelihood ratios (maxLR),
entropy and quadratic losses and their standard errors (given in parentheses) for two QTL genotypes in a backcross
population based on 100 simulation replicates (C; with n = 400, increased irradiance and temperature levels, and

0°=1,2)
QTL QTL genotype 1 QTL genotype 2 log-likelihood
Covariance  ¢°  Location @, ﬁm] (20) é] a, f’mz(20) éz Ho H, maxLR L Lo
R 1 7216 0.02 204 0.90 0.01 148 0.88 -1278 -1063 430.01 223 64090
(0.36) (0.00) 0.01) (0.00) (0.00) (0.01) (001 (1401 (14.15) (4.78) (045)  (261.88)
2 7844 0.02 2.15 091 0.01 148 0.86 -6992 -6876 231.86 222 63923
(0.84) (0.00) (0.02) (0.00)  (0.00) (0.02) (0.01)  (14.08) (14.16) (3.62) (044)  (257.89)
G 1 71.76 0.02 201 0.90 0.01 1.51 0.89 4913 5068 30986 001 031
(0.18) (0.00) (0.00) (0.00) (0.00) 0.01) (000 (11.04) (11.10) (3.17) (0.00) (0.04)
2 71.76 0.02 201 0.90 0.01 152 0.88 -821.08 -74376 15464 0.01 0.31
(0.24) (0.00) 0.01) (0.00) (0.00) 0.01) 001 (11.10) (11.12) (2.22) (0.00) (0.04)
N P 1 71.73 0.02 2.01 0.90 0.01 151 0.89 5431 5537 21264 2.34 455
(0.18) (0.00) (0.01) (0.00)  (0.00) (0.01) (000 (11.22)  (11.11) (2.20)  (0.01) (0.03)
2 7213 0.02 2.01 0.90 0.01 149 0.89 -336 -273 127.37 237 453
(0.34) (0.00) 0.01) (0.00) (0.00) (0.01) (0.01) (1044 (1042) (1.72) (0.01) (0.03)
True: 72.00 0.02 2.00 0.90 0.01 1.50 0.90
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