
RESEARCH ARTICLE Open Access

Responses of photosynthetic capacity to soil
moisture gradient in perennial rhizome grass
and perennial bunchgrass
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Abstract

Background: Changing water condition represents a dramatic impact on global terrestrial ecosystem productivity,
mainly by limiting plant functions, including growth and photosynthesis, particularly in arid and semiarid areas.
However, responses of the potential photosynthetic capacity to soil water status in a wide range of soil moisture
levels, and determination of their thresholds are poorly understood. This study examined the response patterns of
plant photosynthetic capacity and their thresholds to a soil moisture gradient in a perennial rhizome grass, Leymus
chinensis, and a perennial bunchgrass, Stipa grandis, both dominant in the Eurasian Steppe.

Results: Severe water deficit produced negative effects on light-saturated net CO2 assimilation rate (Asat), stomatal
conductance (gs), mesophyll conductance (gm), maximum carboxylation velocity (Vc,max), and maximal efficiency of
PSII photochemistry (Fv/Fm). Photosynthetic activity was enhanced under moderate soil moisture with reductions
under both severe water deficit and excessive water conditions, which may represent the response patterns of
plant growth and photosynthetic capacity to the soil water gradient. Our results also showed that S. grandis had
lower productivity and photosynthetic potentials under moderate water status, although it demonstrated generally
similar relationship patterns between photosynthetic potentials and water status relative to L. chinensis.

Conclusions: The experiments tested and confirmed the hypothesis that responsive threshold points appear when
plants are exposed to a broad water status range, with different responses between the two key species. It is
suggested that vegetation structure and function may be shifted when a turning point of soil moisture occurs,
which translates to terms of future climatic change prediction in semiarid grasslands.

Background
Water shortage constrains terrestrial ecosystem produc-
tivity considerably, mainly by limiting vegetation struc-
ture, such as species components, and their functions
including growth and photosynthesis, particularly in arid
and semiarid areas with large spatial-temporal variances
[1-4]. Drought has been and is becoming a most critical
issue under climate change, with the temperature
expected to increase continually, further enhancing
drought severity by accelerating evapotranspiration of
the ecosystems [5-7]. The grassland of North China cov-
ers 41% of the total land area of China. However,

approximately 90% of the grassland nationally has
degraded to various extents during recent decades due
to intensified land use, e.g., overgrazing and improper
reclamation, and adverse climatic change, e.g., water def-
icit [2,8,9]. Water scarcity accompanying rising tempera-
ture could become an increasing environmental concern
in this grassland ecosystem, leading to a reduction in
productivity and negative alterations in the ecosystem
structure and carbon balance, with consequent severe
deterioration [5,10-12].
Many studies have indicated that mild drought has no

obvious impact on plant growth and photosynthesis,
even stimulation to a certain degree, but severe drought
can lead to dramatic reductions [3,13,14]. Whether
photosynthetic capacity completely recovers after rewa-
tering depends on the drought-resistance of different
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species [3,15-17]. Most experimental results have shown
that the net photosynthetic rate (A), stomatal conduc-
tance (gs), and mesophyll conductance (gm) generally
decrease with decreasing water availability, and an
obvious reduction in photosynthesis occurs due to
severe water deficit. Reduction in net CO2 assimilation
can be attributed to both stomatal and biochemical lim-
itations, in which the proportional contribution of the
latter may increase with drought severity [18-22]. Parry
et al. [23] reported that in tobacco plants, Rubisco activ-
ity, a key photosynthetic activity marker, gradually
decreases with decreasing relative water content. How-
ever, in many studies, photosynthetic potentials are not
significantly affected by moderate water deficit, and only
under severe drought does obvious inhibition arise. Dis-
similarities may be related to drought treatment dura-
tion, as well as differing responses from species [24,25].
The central parameters representing photosynthetic capa-

city, including light-saturated net CO2 assimilation rate
(Asat), maximum in vivo carboxylation velocity (Vc,max), and
maximum rate of electron transport (Jmax) have been used
to assess the effects of global changes on the biosphere,
although parameters may be altered under different growth
conditions [26,27]. Unfortunately, the parameterization of
responses of the photosynthetic capacity to broad ranges of
soil water status has received relatively scant focus to date,
although a number of studies with one or a few drought
intensifications have been conducted. The lack of relatively
accurate parameters of environmental response curves for
plant biomass and photosynthetic capacity might have sub-
stantially limited the proper application of stimulation mod-
els on plant productivity [26-28].
Many studies have suggested a simple linear relation-

ship of plant biomass with water status or a precipita-
tion gradient in arid/semiarid regions [29,30]. In
contrast, at excessive moisture level, photosynthesis and
stomatal conductance, as well as carbohydrate partition-
ing also might be constrained due to hypoxia in the rhi-
zosphere [31-34]. Larger rainfall events have also
obviously decreased aboveground net primary produc-
tion (ANPP) relative to the normal rainfall pattern in a
mesic grassland [1]. Thus, the pattern that describes
how photosynthetic capacity is associated with soil
moisture gradient might be complex, rather than the
simple linear relationship only from a few drought treat-
ments. In this study, we determined the changes of
plant growth and photosynthetic capacity as plants were
subjected to soil moisture gradients (soil relative water
content 20%-90%). Our hypothesis was that the response
pattern along a soil moisture gradient might show no
simple linear form, and that plant growth and photo-
synthesis might increase with increasing water content
within an intermediate soil moisture range, but decreas-
ing with excessive soil moisture.

Results
Soil moisture changes and plant water status sensitivity
to soil moisture
Water-withholding treatments led to a significant
change in soil relative water content (SRWC, F =
287.066, P < 0.001), and a significant linear decrease in
SRWC with decreased irrigation water amount (Y =
-12.740× + 91.565), indicating water treatments can
bring about a broad soil moisture gradient (Figure 1a).
With regard to leaf relative water content (RWC) versus
gravimetrical water content (WC) (expressed as percen-
tage of fresh weight) in the same leaves, strong positive
linear correlations were found (R2 = 0.622, P < 0.001 for
L. chinensis; and R2 = 0.488, P = 0.004 for S. grandis)
(Figure 1b), with a greater slope of the former, indicat-
ing a higher sensitivity in L. chinensis to soil drought.

Plant growth response to soil moisture
A significant effect of soil moisture treatments on L. chi-
nensis plant biomass was found (ANOVA: F = 13.99,
P < 0.001) with significant reductions under moderate
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Figure 1 Changes in soil relative water content (SRWC) as
plants were subjected to the five levels of soil water-
withholding treatments (A), and leaf relative water content
(RWC) as a function of gravimetrical water content (WC) (B) for
L. chinensis (filled squares, solid line) and S. grandis (open
squares, dashed line). Vertical bars in Figure 1A represent ±SE of
the mean (n = 5) where these exceed the size of the symbol.

Xu and Zhou BMC Plant Biology 2011, 11:21
http://www.biomedcentral.com/1471-2229/11/21

Page 2 of 11



drought (MD), severe drought (SD), and extreme
drought (ED), based on Duncan’s multiple range test
(P < 0.05). The relationship of plant biomass with
SRWC showed an obviously typical pattern (Figure 2a):
increasing sharply with soil moisture below approxi-
mately 66% of SRWC, and then leveling off when plant
biomass peaked at a maximum of 13.1 g pot-1. The
similar relationship between leaf biomass and SRWC
appeared, with a maximum of 3.1 g pot-1 (Figure 2b).
Soil water significantly affected S. grandis plant and leaf
biomass with significant enhancement as plants were
subjected to light drought (LD, Figure 2c, d; P < 0.05),
and the relationships of individual plant and leaf bio-
mass with SRWC demonstrated similar response pat-
terns. Plant and leaf biomass maxima were 3.1 and 0.86
g pot-1 at 54.7% of SRWC, indicating a lower productiv-
ity for S. grandis relative to L. chinensis under moderate
soil moisture.

Light-response-curve photosynthetic potentials with
regard to soil moisture
The response of light-saturated net CO2 assimilation
rate (Asat) in L. chinensis leaves to soil moisture was sig-
nificant based on ANOVA (F = 8.862, P < 0.001) with
significant decline as plants were exposed to drought
stress below 50% SRWC (P < 0.05, Figure 3a). A maxi-
mum of 18.9 μmol mol-1 occurred at 58.4% SRWC with
a decrease thereafter, which may represent a soil moist-
ure optimum threshold for maximizing photosynthetic
potential.
Soil moisture treatments also produced significant

changes in light-saturated stomatal conductance (gs,sat)
(F = 2.946, P = 0.049), and extreme drought demon-
strated a significant decline relative to other water treat-
ments (P <.05, Figure 3b). A flat horizontal line on
response curve of correlation between gs,sat and SRWC
was also observed above 58.4% of SRWC, with a gs,sat
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Figure 2 Responses of plant (A, C) and leaf (B, D) biomass to soil relative water content (SRWC) for both L. chinensis (A, B) and S.
grandis (C, D). Vertical bars represent ±SE of the mean (n = 3-5) where these exceed the size of the symbol, and different lower case letters
represent significant differences from water status according to Duncan’s multiple range test.
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peak of 0.29 mol mol-1. Additionally, under soil water treat-
ments, significant changes in mesophyll conductance (gm)
occurred (F = 22.82, P < 0.001), with a pattern similar to gs,
sat in response to water status (Figure 3c). The maximum
apparent quantum yield of CO2 uptake (EQ) significantly
changed under water treatments (F = 3.037, P = 0.045) with
a significant ED-induced decline (Figure 3d). The flat hori-
zontal line of the response appeared at the same SRWC
level, with EQ peaking at 0.071 (dimensionless).
For S. grandis, soil water treatments led to significant

changes in the three key photosynthetic potential para-
meters derived from the light-response curves (P < 0.05,
Figures 3e-h). A similar pattern concerning the relation-
ship between Asat and SRWC was obtained, with a peak
Asat of 13.1 μmol mol-1 versus 60.3% SRWC (Figure 3e).

For the relationships between gs,sat, gm, and Q with
SRWC, the maxima were 0.16 mol mol-1, 0.084 mol mol-
1, and 0.067 at the same SRWC of 60.3% (Figures 3f-h).
The results also indicated S. grandis had a higher photo-
synthetic capacity under a proper water status.

A/Ci curve photosynthetic potentials with regard to soil
moisture
For L. chinensis plants, there were significant effects on
maximum gross CO2 assimilation rate (Ag,max) and maxi-
mum carboxylation velocity (Vc,max) due to the water
treatments. The response curves with the flat plateaus
were also obtained with Ag,max and Vc,max, but no signifi-
cant effect of soil moisture on the maximum rate of elec-
tron transport (Jmax) was observed (P >.05) (Figures 4a-c).
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Overall, the maxima of Ag,max, Vc,max, and Jmax were 33.1,
102.2, and 135.3 μmol mol-1, respectively, within a similar
SRWC range, approximately 56.1-64.3%.
For S. grandis, the responses of Ag,max and Vc,max but

not Jmax to soil water treatments were significant (P < 0.05)
(Figures 4d-f). The relationships of the former two para-
meters with SRWC again demonstrated similar patterns to
those of L. chinensis, while the relationship of Jmax with
SRWC was weak (P = 0.626). The maxima of the three cri-
tical parameters’ responses to soil moisture were 31.2, 79.4,
and 114.5 μmol mol-1, respectively, at a SRWC level
of 66.1%.

PSII photochemical potentials with regard to soil
moisture
Changes in soil moisture resulted in significant altera-
tions to the maximal efficiency of PSII photochemistry
(Fv/Fm) and efficiency of excitation energy capture by
open PSII reaction centers (F’v/F’m) for both grass

species (ANOVA, all, P < 0.037, Figures 5a-d) with sig-
nificant decreases under ED stress (P < 0.05). Generally,
for L. chinensis, no significant effects of water moisture
above the 60.0% level of SRWC were found in respect of
Fv/Fm and F’v/F’m (Figures 5a and b). At a level of 68.0%
SRWC, the maxima for Fv/Fm and F’v/F’m were 0.82 and
0.68, respectively. For S. grandis, analogous patterns
were obtained: Fv/Fm peaked at 0.80 (SRWC 57.8%), and
F’v/F’m peaked at 0.62 (SRWC 50.0%) (Figures 5c, d).

Discussion
Water scarcity is a central issue constraining productiv-
ity in most grassland ecosystems [12,29,30,35], and can
drastically affect photosynthesis at various levels, from
molecular through biochemical/physiological to indivi-
dual aspects [3,15,22]. Different photosynthetic para-
meters can demonstrate different irregular changes in
response to drought, involving interconnections and tra-
deoffs of great complexity, which strongly depend on
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the species [22,36-38]. In the present study, which uti-
lized a broad range of soil water status, the responses of
plant functions including growth and photosynthetic
potential to soil water status, showed the patterns with
photosynthetic capacity peaks at moderate soil water
availability but declines under severe drought and exces-
sive moisture, as well as differences between a perennial
rhizome grass and a bunchgrass.
Severe drought leads to great reduction and irreversi-

ble damage of photosynthesis, due to both diffusion lim-
itations (mainly decreases in stomatal and mesophyll
conductance) and biochemical limitations (e.g.,
decreases in Vc,max and Fv/Fm), the latter becoming
more critical with drought intensity [3,13,19,39]. On the
other hand, excess water in soil can also result in a dras-
tic reduction of photosynthesis [33,40,41]. As excessive
water in soil existed, plant malfunctions, such as distur-
bance in hormone signals, oxidative damage, and the
accumulation of toxic products of anaerobic metabolism
due to anoxia in the rhizosphere, can occur [42,43], as
well as decreases in phloem transport [34,44]. Together
these may correlatively negatively affect photosynthesis,
stomatal conductance, and PSII functionality.
In a larger regional geographic transect, the results of

Jiang and Dong [45] indicated that net photosynthetic
rate (A) appears to have high points in the middle
region along the Northeast China Transect, with an
annual precipitation ranging from 177 mm in the east
to 706 mm in the west. This implies the relationship
between gas exchange and water availability on a large
spatial scale. However, within a wide range of high pre-
cipitation (1800-3500 mm year-1) in lowland Panama-
nian forest, leaf photosynthesis decreases rather than
increases with increasing precipitation [46], indicating
that in the wetter region, excessive moisture may limit
photosynthetic activity.
At the ecosystem or community levels, the specific

relationships of grassland productivity and growth func-
tions with water status including precipitation gradient
are receiving more and more attention. On a continental
scale, Knapp and Smith [47] indicated that ANPP has a
strong linear relationship with annual precipitation, but
there is an exceptional point of the lowest ANPP with
the highest precipitation at the moist alpine meadow
site (Figure 6a). While Bai et al. [2] reported a signifi-
cant linear relationship between L. chinensis community
biomass and temporal precipitation, a response curve
with a flat plateau also could be obtained as reanalyzed
(Figure 6b). After further analyzing the report by Wang
and Gao [8], we also obtained a similar relationship
between annual L. chinensis shoot biomass and a spatial
precipitation gradient along a relatively large regional
transect (Figure 6c). According to the recent report by
Bai et al. [9], ANPP linearly increases with elevating
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mean annual precipitation (MAP) at both spatial and
temporal scales. Regarding the relationship between
relative biomass and MAP, they [9] indicated that a
unimodal relationship appeared between the mean rela-
tive biomass of perennial grasses and MAP across differ-
ent sites. However, for perennial forbs, a positive linear
correlation was found, suggesting that the form of eco-
system composition shift due to the changes in MAP
may depend on the plant functional group (PFG). By
the same token, the response of grassland productivity
to grazing pressures and/or unappreciated land use
might also demonstrate the relationship pattern with a
threshold shift. For instance, Sasaki et al. [48] found the
evidence that the presence of a threshold in vegetation
changed in response to a grazing gradient in the Mon-
golian rangelands, indicating that the productivity of
grassland can be favored under moderate grazing pres-
sure. In contrast, a deleterious turning point appeared
under an extreme high grazing level. In summary, we
have obtained strong evidence confirming the hypothesis
of the presence of discontinuities rather than simple lin-
ear relationships under a large range of environmental
gradients (such as water status) and land use intensifica-
tion (such as grazing level), from the physiologically
photosynthetic leaf to ecosystem levels.

Conclusions
Based on our study results and the reanalysis on other
relevant reports cited above, the response curves with
flat plateaus may be found often in most of the
responses of plant functional capacity to an environ-
mentally variable gradient; although the curves concern-
ing the response pattern are not always well justified
due to a few exceptional points appearing, that needs
further studies in detail. Species with different photosyn-
thetic response patterns to water content can also partly
explain the issues concerning the invasion of the grass-
lands by exotic species [49]. For example, those grasses
with a high photosynthetic regulating ability to soil
moisture, which are introduced, are always successful in
regard to opportunity of invasion [36], and some cli-
matic extremes, including severe drought, may deter-
mine the ecological success of grasses with different
photosynthetic pathways [35,37]. Generally, the commu-
nity dominated by S. grandis is more drought-resistant
than that dominated by L. chinensis, and the former is
often distributed in more arid areas [50,51]. In the pre-
sent experiments, S. grandis was found to have lower
productivity and photosynthetic potentials, but had gen-
erally similar patterns of the relationship between
photosynthetic potentials and water status relative to
L. chinensis. Thus, the present results showing the
threshold presences in photosynthetic capacity in
response to a broader range of soil moisture may also

provide a new insight into species component dynamics
at an ecosystem level in the changing environment.

Methods
Seed collection and plant culture
Steppe grasslands dominated by Leymus chinensis (Trin.)
Tzvel and Stipa grandis P. Smirn are the two key vege-
tation types that widely cover the largest contiguous
natural grassland region of the world, from the Eastern
Eurasian steppe (semi-arid and sub-humid) to the mid-
dle Eurasian steppe zone (semi-arid). The former species
represents a native, clonal perennial rhizomatic grass,
while the latter is a perennial bunchgrass [8,9]. Both
species can provide good livestock forage, and co-occur
mainly in the natural grazing rangeland.
In the last year of our studies, the seeds were obtained

from grassland in Xilinhot, Inner Mongolia, China (44°
08’ N, 117°05’ E), 1100 m above sea level. This region is
a semiarid grassland that experiences a continental cli-
mate with mild temperatures during spring and autumn,
cool and dry winters, and wet but hot summers. Annual
mean temperature and precipitation were 2°C and 350
mm over the last 50 years, respectively.
Seeds of L. chinensis and S. grandis were sterilized with

0.7% potassium permanganate solution for 8 minutes,
and rinsed before transfer into a refrigerator below 0°C
for 7 d. They were sown in plastic pots (5.1 L, 18 cm in
diameter, 20 cm in height) wrapped with plastic film to
avoid drainage. Each pot was filled with 4.08 kg of dry
soil obtained from the local field in which the seeds were
collected, with a density of 4 L. chinensis and 4 S. grandis
plants. In the chestnut-coloured soil, the organic carbon
and total nitrogen concentrations were 19.60 ± 0.18 g kg-
1 and 4.18 ± 0.11 g kg-1, respectively. Soil field capacity
was 29.3%. All experimental pots were placed in a natu-
rally illuminated greenhouse at a daily maximum photo-
synthetic photon flux density (PPFD) of approximately
1000 μmol m-2 s-1 above the plant canopy. Illumination
was provided by a combination of cool-white fluorescent
and incandescent lamps within the greenhouse, with a
day/night temperature of 26-28/18-20°C.
Soil moisture levels were maintained using manual

irrigation by weighing individual pots at 5:00 pm daily.
Each target of the desired soil moisture range was
achieved by decreasing the water supply progressively
over a period of about 20 d. To obtain a relatively stable
water moisture gradient, soil relative water content
(SRWC), i.e., the ratio between present soil moisture
and field capacity, was divided into 5 levels: well-
watered (WW, 70-80%), light drought (LD, 60-70%),
moderate drought (MD, 50-60%), severe drought (SD,
35-50%), and extreme drought (ED, 25-30%), respec-
tively. The measurement was made 56-60 d after the
plants had been subjected to the relative long-term soil
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water treatments. Each group (SRWC level) had at least
10 pots as replicates. The arrangements of pots with dif-
ferent treatments were randomized daily to avoid effects
from other environmental factors, such as light and
temperature conditions.

Leaf relative water content (RWC)
Detached leaves (0.5 g fresh weight) were cut and
weighed immediately to obtain fresh weight (FW), and
were then placed in a beaker filled with water overnight
in the dark to obtain turgid fresh weight (TW) the next
morning. Dry weight (DW) was obtained after drying at
80°C for at least 24 h in an oven. The relative water
content (RWC) of the leaves was expressed as RWC =
[(FW - DW)/(TW - DW)] ×100; water content (WC)
was calculated as WC = (FW - DW)/FW ×100.

Leaf gas exchange and chlorophyll fluorescence
measurements
Combined leaf gas exchange and chlorophyll fluores-
cence measurements were conducted using an open gas
exchange system (LI-6400; LI-COR, Inc., Lincoln, NE,
USA) with a leaf chamber fluorometer attachment (LI-
6400-40). Illumination was supplied to leaves from a
red-blue LED light source and data initially were ana-
lyzed with data acquisition software (OPEN 5.1, LI-
COR). Before making measurements, leaves were accli-
mated in the chamber for at least 10 minutes at 25°C
with an ambient CO2 concentration of 380 μmol mol-1

and a PPFD of 900 μmol m-2s-1, conditions under which
photosynthesis is nearly saturated. Determinations of
gas exchange parameters were made on at least 3 the
youngest and fully expanded leaves from different indivi-
duals (1 plant per pot) for all replicates, 8:30 to 15:30 h
daily. The vapour pressure deficit (VPD) in the cuvette
was maintained below 2.0 kPa.
The measurements for fluorescence parameters were

conducted simultaneously on the same leaves for gas
exchange determination after 30 minutes of dark adap-
tation at 25°C. The minimal fluorescence yield (Fo) was
measured by using modulated light that was sufficiently
low (< 0.1 μmol m-2s-1), and the maximal fluorescence
yield (Fm) was determined by a 0.8 s saturating pulse at
8000 μmol m-2s-1 in the dark-adapted leaves. Leaves
were then continuously illuminated with white actinic
light at an intensity of 900 μmol m-2s-1 for 20 minutes.
The steady-state value of fluorescence (Fs) was thereafter
recorded and the second saturating pulse at 8000 μmol
m-2s-1 was imposed to determine the maximal light-
adapted (F’m) fluorescence level. The actinic light was
removed and the minimal fluorescence level in the
light-adapted state (F’0) was determined after 3 s of far-
red illumination. The fluorescence parameters were
obtained from the formulae [52]: maximal efficiency of

photosystem II (PSII) photochemistry Fv/Fm = (Fm - F0)/
Fm, efficiency of excitation energy captured by open
PSII reaction centers F’v/F’m = (F’m - F’0)/F’m, and the
actual PSII efficiency FPSII = (F’m - Fs)/F’m.

Estimation of light response parameters
After acclimation, the PPFD was sequentially lowered to
1200, 900, 800, 600, 400, 200, 100, 50, and 20 μmol m-2s-1.
The response parameters of photosynthesis to light were
estimated by a quadratic equation devised by Long et al.
[53]:

A EQ PPFD EQ PPFD A EQ PPFD A= + +( )( )⎛

⎝
⎜

⎞

⎠
⎟ ( )* * * * * /

.

sat
2

sat

5
4  2 

0
−− Rd

where A is net photosynthetic rate (μmol m-2s-1), Asat the
light-saturated CO2 accumulation rate (μmol m-2 s-1), PPFD
the photosynthetic photon flux density (μmol m-2 s-1), EQ
leaf maximum apparent quantum yield of CO2 uptake, θ the
convexity of the transit from light-limited to light-saturated
photosynthesis, and Rd the respiration rate in the dark.
Light-saturated stomatal conductance (gs,sat) was obtained
after illuminating with saturating light (900 μmol photon
m-2 s-1) for at least 10 minutes at 25°C. Rd was measured
after dark conditions of at least 15 min.

Estimation of photosynthesis response to Ci
A modified photosynthetic model was used to analyze
the A/Ci response curve to obtain key photosynthetic
capacity parameters; thereafter the relationship of these
parameters with soil moisture was conducted using a
curve estimation analysis. The CO2 concentration gradi-
ent for the A/Ci curves was 380, 300, 200, 100, 50, 20,
380, 380, 600, 800, and 1000 μmol m-2s-1, step by step.
To obtain Vc,max, Jmax, and Ag,max, a modified curve-fit-
ting software was used to analyze the A/Ci responses
reported by Sharkey et al. [54] based on the original
model of Farquhar et al. [28], except that mesophyll
conductance (gm) was obtained from the Harley et al.
[55] equation in which the value for gm was fixed when
adjusting the A/Ci curves using procedure of Sharkey et
al. [54]: gm = A/(Ci - Г*(J + 8(A + Rd))/(J - 4(A + Rd))).
The electron transport rate (J) was expressed as J =

FPSII × fIaleaf, where I is actinic PPFD; f is the fraction
of absorbed quanta that is used by PS II, and is typically
assumed to be 0.5. The aleaf is effective leaf absorbance,
ranging between 0.88 and 0.95 in different species from
the data measured by Flexas et al. [56]. Due to experi-
mental facility limitation, many experimental studies
have not measured the value, which is assumed to be
0.85 [19]. For our experiments, we assumed a middle
value of 0.88. FPSII was directly measured using a leaf
chamber fluorometer attachment (LI-6400-40 LCF) and
the formulae of van Kooten and Snel (1990) [52]. Rd

was measured after dark conditions of at least 15 min.
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Biomass
For the biomass measurements, samples of 5 pots from
each treatment, separated into leaves and other parts,
were immediately placed in a dryer, and dried at 80°C
to constant weight to obtain dry matter.

Data analysis
All statistical analysis was performed using SPSS 17.0
(SPSS, Chicago, Illinois, USA). Effects of soil moisture
treatments on plant biomass, leaf biomass, and photo-
synthetic parameters were conducted by ANOVA; when
the effects were significant (P < 0.05), Duncan’s multiple
range test was used to compare soil water treatments
(P < 0.05). Key parameters were estimated using curve
estimations and nonlinear regression. Statistic signifi-
cance for all analyses was the 0.05 probability level
unless stated otherwise.

Abbreviations
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