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Transcriptome analysis of ectopic chloroplast
development in green curd cauliflower (Brassica
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Abstract

Background: Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts
requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and
environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of
chloroplast biogenesis and development remain to be elucidated.

Results: Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant,
turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we
compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing
produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were
found to exhibit at least 3-fold changes in expression between green and white curds. These included light-
regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis.
Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green
curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-
regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-
regulated genes were HY5-targeted genes in the light.

Conclusions: The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of
large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in
the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd
cauliflower mutant.

Background
Chloroplast biogenesis from proplastids requires coordi-
nate expression of nuclear and chloroplast genes [1],
and is largely regulated by developmental and environ-
mental cues such as light. Approximately 3000 proteins
in chloroplasts are encoded by the nucleus [2]. They
participate in a large number of functional processes
that are required for chloroplast biogenesis. These pro-
cesses include import of nuclear encoded proteins
through the Toc/Tic complexes, protein assembly and
disassembly with chaperone proteins, thylakoid forma-
tion, pigment synthesis, plastid divisions, and retrograde

signaling [3,4]. In addition, a great number of proteins
localized outside chloroplasts, such as photoreceptors,
light-signaling transducers, and transcription factors,
have been shown to be involved in chloroplast develop-
ment [3,4]. On the one hand, most genes belonging to
these two classes are essential for chloroplast develop-
ment since suppression of their expressions leads to
impaired chloroplasts. On the other hand, some light
signaling pathway genes, such as constitutive photomor-
phogenic 1 (COP1), COP10, COP11, De-etiolated 1
(DET1) and Phytochrome-interacting transcription factor
3 (PIF3), function as suppressors of light-regulated gene
expression and loss-of-function mutations of these
genes result in ectopic chloroplast development [5-7]. In
contrast, Elongated Hypocotyl 5 (HY5) that acts down-
stream of multiple families of photoreceptors [8-10] has
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been genetically characterized as a positive regulator of
photomorphogenesis under a broad spectrum of light
and affects chloroplast development [4,11]. Overexpres-
sion of HY5-ΔN77 has been shown to result in preco-
cious development of chloroplasts in the hypocotyls
[12]. Determining how these genes are coordinately
expressed during chloroplast development requires a
genome-wide examination of gene expression during the
transition from non-colored plastids into chloroplasts.
Mutations in model and other plant species are

important resources for functional genomics studies.
Analyses of some plastid development mutants identify
important regulatory genes of plastid development. For
example, ARC6, the first gene discovered to have a glo-
bal effect on plastid differentiation in higher plants, was
identified from an Arabidopsis mutant arc6 [13]. The
Orange (Or) gene that encodes a zinc-finger DnaJ
cysteine rich domain containing protein is isolated from
the orange curd cauliflower mutant and has been proven
to be responsible for the conversion of leucoplasts into
chromoplasts [14]. The green curd cauliflower mutant is
a spontaneous mutation with an abnormal pattern of
chloroplast development in curds. Compared with other
mutants in which chloroplast development is impaired,
the green curd mutant is unique in turning otherwise
non-photosynthetic white tissue into green color with
the ectopic development of chloroplasts in the inflores-
cence meristematic cells. The mutation in the green
curd cauliflower could involve the gene(s) sufficient for
chloroplast development, although there is possibility
that the white curd cauliflower carries a genetic
mechanism for the suppression of chloroplast develop-
ment, which the green curd mutation would suppress.
In the present study, we profiled gene expression in

green and white curds on the genome scale using the
RNA-seq approach. We assembled 118,000 unigenes
with an average length of 406 bp from cDNA libraries
of green and white curds and detected 7155 differen-
tially expressed genes with a change in expression of at
least 3-fold. Among them are a large number of genes
associated with chloroplast development. We also
observed that BoHY5 was expressed at higher level in
green curds than in white curds and that 2616 HY5-tar-
geted genes were expressed differentially. Among these
HY5-targeted genes, all the 1600 up-regulated genes
were found to be HY5-targeted genes in the light in
Arabidopsis, suggesting a role of BoHY5 with the ectopic
chloroplast development in the green curd cauliflower
mutant.

Results
Cauliflower mutant with green curds
Cauliflower curd is composed of inflorescence meris-
tems that normally contain proplastids and leucoplasts

and is therefore white [15]. In the commercially avail-
able green cauliflower mutant, chloroplasts are devel-
oped in the curd, turning the otherwise white tissue
green (Figure 1a and 1b). While the mutant plants pro-
duced green curds under normal growth conditions in
greenhouse and in field, the intensity of green hue in
the curd tissues was affected by light intensity. Under
field growth conditions, the curd tissues exposed to
direct sunlight showed dark green color and those
grown in shade exhibited less green hue. Autofluores-
cence of chlorophyll in chloroplasts was clearly observed
in the green curd cells under the confocal microscope
(Figure 1c and 1d).

Figure 1 Phenotype and chlorophyll content of green curd
cauliflower mutant. (a) and (b) Field grown curds from white
cauliflower variety (Stovepipe) and green curd line (ACX800),
respectively. (c) and (d) Autoflorescence of chloroplasts in green
curds. Scale bar in (c) = 20 μm and in (d) = 10 μm. (e) Chlorophyll a
and b content in young leaves and curds of Stovepipe (WT) and
ACX800 (Green) cauliflower. The numbers above bars show the ratio
of chlorophyll a/b. Error bars represent ± SD (n = 3).
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To investigate chloroplast development in the green
curd mutant, we first measured chlorophyll content in
young leaf and curd tissues. Higher level of total chloro-
phyll was detected in leaf tissue of green cauliflower
plants than that of the white control. The concentration
of chlorophyll in green curd cauliflower leaves was
1780.4 μg/g fresh weights (FW), while that in the white
curd leaves was 1056.6 μg/g FW. Although different
levels of total chlorophyll were observed between the
two samples, the ratio of chlorophyll a/b for leaves in
white and green mutant was similar at 2.70:1 and 2.75:1,
respectively. In comparison to leaf tissue, the chlorophyll
level in the curd of green cauliflower was lower at 344.4
μg/g FW. The chlorophyll a/b ratio was 3.43:1, showing
that the accumulation of chlorophyll a was much greater
than that of chlorophyll b in green curds (Figure 1e). As
expected, no chlorophyll accumulation was detected in
the white curd tissue. The green curd cauliflower
mutant serves as an excellent model system for investi-
gating the genetic basis of chloroplast biogenesis in
plants.

Comparative analysis of gene expression between green
and white curd cauliflower
To investigate the transcriptional control of chloroplast
development, RNA-seq was employed to monitor differ-
ences in gene expression between the green curd
mutant and the white cauliflower. A single lane of an
Illumina GAII run was utilized for each library and a
total of more than 15 million 86-bp reads from each
lane were produced. Since currently there is no full gen-
ome sequence available for cauliflower (Brassica olera-
cea) and the genomics resources from other Brassica
species are not applicable due to the short length of
RNA-seq reads, we developed a novel analysis strategy
for our RNA-seq data as described in the Methods sec-
tion. A total of 118,000 unigenes (including alternative
spliced isoforms) with an average length of 406 bp were
obtained. Statistical analysis identified 7155 unigenes
that were differentially expressed between green curd
mutant and white curd control. Among them, 4436
genes (3.76%) were expressed at least 3-fold higher
(Additional file 1) and 2719 genes (2.3%) were expressed
at least 3-fold lower in green curd than in white curd
(Additional file 2). Functional categorization revealed
that these genes were largely involved in cellular process
(1317), response to stress (980), metabolic process (810),
response to abiotic stimulus (654), and biosynthetic pro-
cess (574). Yet, a large group of genes (3602) remained
unclassified (Figure 2).

Verification of gene expression by quantitative RT-PCR
In order to verify the expression profiles obtained from
the RNA-seq approach, qRT-PCR was utilized to

analyze the expression of 14 selected genes. These genes
encode light signal transducers (FAR1, CRY2, PHOT2,
LSH7, HY5, CIP1), photosystem II component (LHCB5),
chloroplast constituents (GUN5, LHCB1.5, Toc159,
HSC70-1, ACP), ATP-dependent peptidase (FtsH8) and
chlorophyll synthetase (G4). Among them were 11 up-
regulated genes (FAR1, CRY2, PHOT2, HY5, G4,
Toc159, LHCB5, GUN5, LHCB1.5, FtsH8, and ACP)
and 3 down-regulated genes (HSC70-1, CIP1, LSH7).
The trends of the observed expression patterns of these
genes from qRT-PCR were consistent with that deter-
mined by the RNA-seq approach (Table 1). However,
there were differences at the fold level as reported in
other studies [16].

Metabolic pathway changes
To identify the metabolic pathways that were affected in
the green curd mutant, a cauliflower metabolic pathway
database was created based on annotation of the
assembled cauliflower unigenes. The significantly
affected pathways were identified by using the Plant
MetGenMAP analysis system http://bioinfo.bti.cornell.
edu/cgi-bin/MetGenMAP/home.cgi[17]. A total of 198
specific metabolic pathways were significantly changed
in green curd mutant (p < 0.01) (Additional file 3). As
expected, many metabolic pathways involved in chloro-
plast biogenesis and function were significantly altered.
These included those associated with chlorophyll bio-
synthesis, such as chlorophyllide a biosynthesis I, chlor-
ophyll a biosynthesis I, chlorophyll a biosynthesis II,
chlorophyll a degradation, and chlorophyll cycle, as well
as with carotenoid biosynthesis (Additional file 3). In
addition, those pathways associated with photosynthesis,
such as oxygenic photosynthesis, Calvin cycle, and
photorespiration, and with other metabolic processes
that take place in chloroplasts, such as amino acid bio-
synthesis and starch biosynthesis, were also significantly
changed (Additional file 3).

Genes involved in chloroplast formation
Chlorophylls and carotenoids compose the photosyn-
thetic pigments that play key roles in photosynthesis.
Many genes involved in chlorophyll biosynthesis were
found to be expressed highly in green curd in compari-
son with white (Figure 3). The upregulated genes
included Mg-chelatase that plays a key regulatory role in
chlorophyll biosynthesis. Genomes uncoupled 4 (GUN4,
PP005347) and Genomes uncoupled 5 (GUN5,
PP031929) involved in chlorophyll biosynthesis were
also expressed at higher levels in green curds. These
two genes are among those that produce plastid-to-
nuclear retrograde signaling molecules [18,19]. The
upregulation of many genes in chlorophyll biosynthesis
resulted in the accumulation of chlorophyll a and b in
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chloroplasts. Concomitantly, a number of genes involved
in carotenoid biosynthesis were also up-regulated (Table
2), suggesting an increased capacity for the synthesis of
photosynthetic pigments. Consistent with the accumula-
tion of chlorophyll a and b in green curds, genes

encoding chlorophyll binding proteins were also up-
regulated (Table 2). Moreover, genes encoding photosys-
tem I and photosystem II proteins were among the up-
regulated genes (Table 2), indicating the development of
chloroplast structures in the green curd tissue.

3602

1317

980

810

654

574

564

514

463

444

430

410

402

377

358

349

328

311

254

233

226

223

221

189

188

168

152

150

143

140

134

134

124

105

0 500 1000 1500 2000 2500 3000 3500 4000

unclassified

cellular process

response to stress

metabolic process

response to abio�c s�mulus

biosynthe�c process

transport

cellular component organiza�on

protein modifica�on process

catabolic process

transcrip�on

signal transduc�on

mul�cellular organismal development

response to endogenous s�mulus

response to bio�c s�mulus

protein metabolic process

carbohydrate metabolic process

nucleobase, nucleoside, nucleo�de and nucleic acid metabolic process

transla�on

genera�on of precursor metabolites and energy

cellular amino acid and deriva�ve metabolic process

lipid metabolic process

reproduc�on

secondary metabolic process

photosynthesis

anatomical structure morphogenesis

post-embryonic development

cell differen�a�on

response to external s�mulus

cell death

DNA metabolic process

cell cycle

embryonic development

flower development

Number of Genes

Figure 2 Functional categories of genes differentially expressed between green and white curds.

Zhou et al. BMC Plant Biology 2011, 11:169
http://www.biomedcentral.com/1471-2229/11/169

Page 4 of 12



In addition to the enhanced biosynthesis of photosyn-
thetic apparatus, genes involved in a number of other
chloroplast biogenesis processes were also differentially
expressed in green curd mutant. TRANSLOCON AT
THE OUTER ENVELOPE MEMBRANE OF CHLORO-
PLASTS 34 (Toc34) and Toc159 are important parts of
the Toc/Tic complexes mediating protein import from
cytosol [1]. High levels of Toc34 (PP019500 and
PP051864) and Toc159 (PP013646 and PP007289) tran-
scripts were observed in the green curds. Proteins
imported into chloroplasts need to be properly
assembled and folded, a process that is mediated by a
group of chaperone proteins, such as HSP70 and
Cpn60, and protein disulfide isomerase [3,20,21].
Accordingly, chaperone HSP70 (PP031462, PP020739,
and PP094292) and protein disulfide isomerase
(PP012584, PP000051, and PP028760) were found to be
significantly upregulated in green curds (Additional file
1).
Chlorophyllase catalyzes degradation of chlorophyll a

to yield chlorophyllide and phytol [22]. Chlorophyllase
(PP095462) was expressed lower in green curds than in
white curds, which could account for the accumulation
of chlorophyll a in green curds (Figure 3).

Signaling genes for chloroplast biogenesis
The large number of differentially expressed genes
between the green curd mutant and white curd cauli-
flower suggests that genes at high hierarchy in the signal
transduction cascade could be involved. COP/DET/FUS
are a group of evolutionarily conserved proteins that
represent central repressors of photomorphogenesis
including chloroplast development [11]. No changes
were detected in the expression of COP1, COP10,
COP11, and DET1. COP9 complex acts as a suppressor

of chloroplast development [5,23]. Unexpectedly, we
found that COP9 (PP010178) and FUSCA 12 (FUS12)/
COP9 signalosome complex subunit 2 (PP014936) were
expressed at higher levels in green curds than in white
curds. Such higher expression could be a result of a
negative feedback as the case of SPA1, a partner of
COP1, which is frequently found to be light induced
[24,25]. PIFs are another group of regulators that repress
photomorphogenesis. No changes were observed for the
expression of PIF3 and PIF4 in the green vs. white
curds. Interestingly, the transcript of PIL2 (PP058986)
was increased in the green curd mutant.
In contrast to those photomorphogenesis repressors,

HY5 is a key regulator that promotes photomorphogenic
development in all light conditions and directly regulates
the light-responsive gene expression [8,9,26-28]. Here,
we found that BoHY5 (PP014970 and PP017071) and
BoHY5-HOMOLOG (PP001428) were expressed at
higher levels in green curds than white curds (Table 1
and Figure 4c). A recent study on genome-wide map-
ping of the Hy5-mediated gene networks in Arabidopsis
reveals that HY5 could potentially bind to 11,797 genes
with 2770 and 2191 being light and dark regulated
genes, respectively [26]. Sequence comparison with the
HY5-targeted genes in Arabidopsis revealed that a total
of 2616 cauliflower HY5-targeted homolog genes were
differentially expressed in green curds (Figure 4a).
Among them included 1600 up-regulated genes and
1016 down-regulated genes (Additional file 4 and 5). All
of the 1600 up-regulated genes were found to be HY5-
targeted genes in the light, while 48 down-regulated
genes were HY5-targeted genes in the dark (Figure 4b).
Among the 1600 up-regulated HY5-targeted genes were
98 transcription factors, including ARABIDOPSIS
THALIANA HOMEOBOX 1 (ATHB-1, PP003454),

Table 1 Verification of gene expression by qRT-PCR

Genes RPKM white RPKM green Ratio green/white qRT-PCR Ratio* green/white

Toc159 0 23.1 23.1 4.52

ACP 0 18.7 18.7 1.47

FtsH8 0 12.8 12.8 1.55

LHCB1.5 50.6 320 6.32 7.84

G4 7.8 45.5 5.83 2.7

FAR1 2 8.2 4.1 1.64

CRY2 4.4 18.6 4.23 6.91

HY5 0 7.1 7.1 4.09

PHOT2 2 6.5 3.25 2.06

LHCB5 24.4 90.1 3.69 4.02

GUN5 3.6 14.5 4.03 4.81

CIP1 14.7 4.1 0.28 0.27

LSH7 9.1 1.8 0.2 0.63

HSP70-1 59.2 0.5 0.01 0.0003

*qRT-PCR was carried out with two biological repeats and three technical trials.
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PHYTOCHROME-ASSOCIATED PROTEIN 1
(PP002569), PHYTOCHROME INTERACTING FACTOR
3-LIKE 2 (PP058986) and INDOLE-3-ACETIC ACID

INDUCIBLE (IAA1, PP013005). Forty-four transcription
factors including RAP2.2 (PP072648), APETALA1
(PP029050), AUXIN RESPONSE FACTOR 6 (PP006891),
and SHORT HYPOCOTYL 2 (PP011787) were down-
regulated in green curds. The significant alteration of a
large number of transcription factors could cause pro-
found effects on chloroplast biogenesis and/or other
processes.

Discussion
Large-scale transcriptome sequencing by next generation
sequencing platforms such as the Illumina GA sequen-
cing system has been proven to be a powerful and effi-
cient approach for gene expression analysis at the
genome level and offers several advantages over micro-
array technologies [29]. Since the RNA-seq approach
provides digital representation of the gene abundance
and the statistics are well modeled by the Poisson distri-
bution, even a single replication has been shown to be
adequate [30]. Currently, the RNA-seq approach has
been widely used to investigate transcriptomes of plants
and animals, especially for those having whole genome
sequences [31]. A number of tools to map RNA-seq
data to reference genomes and to quantify the expres-
sion of transcripts have been developed [32]. However,
relatively fewer reports have shown studies on using the
RNA-seq approach for organisms without reference gen-
omes. In this report we employed the RNA-seq
approach to investigate the gene expression changes in a
green curd mutant in order to elucidate the genetic
basis of chloroplast biogenesis and development. RNA-
seq reads along with publicly available ESTs of cauli-
flower were assembled de novo using a novel assembly
strategy as described in the Methods section. A total of
118, 000 unigenes were obtained and 7155 genes
showed at least 3-fold changes in expression in green
curd mutant. Among them, a large number of genes
involved in photomorphogenesis including chloroplast
development were revealed, demonstrating a successful
use of the RNA-seq approach to profile gene expression
in a species without a fully sequenced genome.
Chloroplast biogenesis and development proceed with

the coordinated action of many processes [3,4]. Both
environmental signals and plastidic/nuclear factors affect
these processes. Light regulation of chloroplast develop-
ment has been well-documented [3,4,33]. The light sig-
naling pathways are composed of phytochromes,
transcription factors and numerous intermediates which
control photomorphogenesis including chloroplast
development. The COP/DET/FUS proteins are sug-
gested to have a function in suppressing chloroplast
development in non-photosynthetic tissues [4]. Loss of
function mutation of these regulators, such as cop1 and
det1, has been shown to result in ectopic chloroplast
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Table 2 Genes encoding carotenoid biosynthetic enzymes, chlorophyll binding proteins and photosystem proteins

RPKM green/white Top hit

unigene ID white green ratio p value ID description* e value

Carotenoid biosynthesis

PP038070 0.3 7 23.3333 0 AT4G25700.1 CAROTENE BETA-RING HYDROXYLASE 8e-093

PP043130 0.3 4.2 14 0 AT4G25700.1 CAROTENE BETA-RING HYDROXYLASE 6e-036

PP013262 0.7 3.5 5 5.64E-06 AT3G21500.2 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE 1e-032

PP011276 1.1 4.3 3.90909 2.88E-06 AT5G67030.1 ZEAXANTHIN EPOXIDASE 1e-034

PP088927 5.4 18.9 3.5 0 AT4G15560.1 1-DEOXY-D-XYLULOSE-5-PHOSPHATE SYNTHASE 1e-054

Chlorophyll binding

PP019996 0.2 36.9 184.5 0 AT1G15820.1 LHCB6 8e-042

PP013404 1.1 100.8 91.6364 0 AT2G34430.1 LHCB1.4 4e-042

PP042072 0.2 12.1 60.5 0 AT1G29930.1 LHCB1.5 4e-047

PP032956 2.5 140.7 56.28 0 AT2G34430.1 LHCB1.4 5e-112

PP036244 0.5 15.5 31 0 AT3G54890.1 LHCA1 1e-131

PP026927 1 26.9 26.9 0 AT3G27690.1 LHCB2.3 4e-059

PP032648 0.5 12 24 0 AT2G34430.1 LHCB1.4 3e-144

PP034454 1.2 25.7 21.4167 0 AT3G27690.1 LHCB2.3 3e-096

PP014055 4.5 90.2 20.0444 0 AT1G29930.1 LHCB1.5 5e-120

PP022096 1.8 34.9 19.3889 0 AT3G54890.1 LHCA1 3e-043

PP016518 5.2 80.2 15.4231 0 AT1G61520.1 LHCA3 1e-096

PP036291 5.6 85.6 15.2857 0 AT3G61470.1 LHCA2 6e-103

PP002791 0.7 10.4 14.8571 0 AT1G15820.1 LHCB6 6e-026

PP060891 0 13.8 13.8 0 AT3G54890.1 LHCA1 3e-037

PP032891 0.7 9.4 13.4286 0 AT5G01530.1 LHCB4.1 2e-039

PP033574 1.4 18.1 12.9286 0 AT3G54890.1 LHCA1 9e-121

PP043522 2.1 25.6 12.1905 0 AT1G61520.1 LHCA3 5e-036

PP004292 6.9 83.9 12.1594 0 AT3G61470.1 LHCA2 4e-132

PP041756 1.1 13.3 12.0909 0 AT2G34430.1 LHCB1.4 6e-023

PP004529 21.5 259.4 12.0651 0 AT1G15820.1 LHCB6 1e-128

PP003367 14.8 176.1 11.8986 0 AT3G61470.1 LHCA2 7e-125

PP019899 28.5 328.4 11.5228 0 AT1G29930.1 LHCB1.5 2e-146

PP020291 40.5 445.8 11.0074 0 AT2G34430.1 LHCB1.4 1e-143

PP055138 0.7 7.6 10.8571 0 AT3G27690.1 LHCB2.3 9e-048

PP005460 2.1 21.5 10.2381 0 AT3G54890.2 LHCA1 9e-066

PP020373 0 9.9 9.9 0 AT3G08940.2 LHCB4.2 3e-025

PP021872 12.4 115 9.27419 0 AT3G08940.2 LHCB4.2 1e-144

PP034445 0.9 8.3 9.22222 0 AT3G27690.1 LHCB2.3 3e-099

PP003971 13.1 117.1 8.93893 0 AT3G54890.1 LHCA1 1e-135

PP034046 1.1 9.2 8.36364 0 AT5G54270.1 LHCB3 4e-153

PP033656 4 31.3 7.825 0 AT5G54270.1 LHCB3 1e-028

PP029126 6 46.1 7.68333 0 AT1G61520.1 LHCA3 3e-077

PP005284 6.7 47.7 7.1194 0 AT1G29930.1 LHCB1.5 2e-105

PP021031 36.8 258.7 7.02989 0 AT2G34430.1 LHCB1.4 1e-061

PP016372 2.4 16.7 6.95833 0 AT2G34430.1 LHCB1.4 7e-020

PP022981 6.9 47 6.81159 0 AT2G34430.1 LHCB1.4 6e-060

PP021682 14.1 91.5 6.48936 0 AT1G61520.1 LHCA3 2e-130

PP003968 50.6 320 6.32411 0 AT1G29930.1 LHCB1.5 9e-151

PP020586 22.7 135.7 5.97797 0 AT1G61520.1 LHCA3 3e-129

PP005425 5.4 26.2 4.85185 0 AT1G29910.1 LHCB1.5 1e-051

PP010147 48.6 226.7 4.66461 0 AT1G15820.1 LHCB6 5e-123

PP003504 66.3 305.1 4.60181 0 AT3G47470.1 LHCA4 8e-131

PP004840 40.6 181.7 4.47537 0 AT2G34430.1 LHCB1.4 4e-115

PP020865 14.6 61.6 4.21918 0 AT2G34430.1 LHCB1.4 2e-019

PP032222 8.6 34.2 3.97674 0 AT4G10340.1 LHCB5 7e-098
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Table 2 Genes encoding carotenoid biosynthetic enzymes, chlorophyll binding proteins and photosystem proteins
(Continued)

PP021166 104.1 391.8 3.76369 0 AT2G34430.1 LHCB1.4 6e-150

PP005062 24.4 90.1 3.69262 0 AT4G10340.1 LHCB5 2e-128

PP033260 4.3 15.8 3.67442 0 AT3G27690.1 LHCB2.3 3e-140

PP032950 102.9 376.3 3.65695 0 AT2G34430.1 LHCB1.4 5e-150

PP022979 10 33 3.3 0 AT1G44575.1 NPQ4 6e-068

PP001298 3.7 12 3.24324 0 AT5G01530.1 LHCB4.1 3e-031

PP021716 24.4 78.8 3.22951 0 AT4G10340.1 LHCB5 1e-133

PP003549 24.1 74.3 3.08299 0 AT1G44575.1 NPQ4 1e-107

Photosystem proteins

PP008642 0.2 25.8 129 0 AT3G21055.1 PSBTN (PHOTOSYSTEM II SUBUNIT T) 5e-027

PP000591 0.5 54.9 109.8 0 AT1G03130.1 PSAD-2 (PHOTOSYSTEM I SUBUNIT D-2) 1e-053

PP006879 0.1 4.7 47 0 P11594 OXYGEN-EVOLVING ENHANCER PROTEIN 2 2e-012

PP004388 1.1 45.3 41.1818 0 AT1G55670.1 PSAG (PHOTOSYSTEM I SUBUNIT G) 1e-066

PP016988 0.2 4.9 24.5 0 AT2G30570.1 PSBW (PHOTOSYSTEM II REACTION CENTER W) 5e-025

PP018045 7.8 174.6 22.3846 0 AT1G08380.1 PSAO (PHOTOSYSTEM I SUBUNIT O) 8e-070

PP036218 0.3 5 16.6667 0 ATCG00280.1 CP43 SUBUNIT OF THE PHOTOSYSTEM II REACTION CENTER 2.00E-171

PP032734 1.1 17.4 15.8182 0 AT1G08380.1 PSAO (PHOTOSYSTEM I SUBUNIT O) 1e-065

PP020420 14.5 221.7 15.2897 0 AT1G06680.1 PSBP-1 (PHOTOSYSTEM II SUBUNIT P-1) 9e-122

PP018042 0 14.7 14.7 0 AT1G52230.1 PSAH2 (PHOTOSYSTEM I SUBUNIT H2) 2e-019

PP004848 3.4 49.6 14.5882 0 AT1G06680.1 PSBP-1 (PHOTOSYSTEM II SUBUNIT P-1) 3e-118

PP014192 7.3 103.1 14.1233 0 AT3G21055.1 PSBTN (PHOTOSYSTEM II SUBUNIT T) 6e-036

PP021663 4.9 63.5 12.9592 0 AT2G06520.1 PSBX (PHOTOSYSTEM II SUBUNIT X) 1e-038

PP069357 0.7 8.2 11.7143 0 AT3G21055.1 PSBTN (PHOTOSYSTEM II SUBUNIT T) 1e-035

PP005143 6.3 68.6 10.8889 0 AT4G12800.1 PSAL (PHOTOSYSTEM I SUBUNIT L) 5e-096

PP016409 7.1 60.7 8.5493 0 AT1G08380.1 PSAO (PHOTOSYSTEM I SUBUNIT O) 2e-065

PP033894 5.6 44.7 7.98214 0 AT1G03600.1 PHOTOSYSTEM II FAMILY PROTEIN 2e-051

PP014928 10.7 84 7.85047 0 AT1G30380.1 PSAK (PHOTOSYSTEM I SUBUNIT K) 5e-057

PP017397 10.6 76.7 7.23585 0 AT2G06520.1 PSBX (PHOTOSYSTEM II SUBUNIT X) 2e-018

PP060944 0 7.1 7.1 0 AT1G52230.1 PSAH2 (PHOTOSYSTEM I SUBUNIT H2) 4e-016

PP017005 0 6.6 6.6 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 2e-034

PP021626 0 6.5 6.5 0 AT1G52230.1 PSAH2 (PHOTOSYSTEM I SUBUNIT H2) 1e-035

PP000042 7.8 48.3 6.19231 0 AT1G52230.1 PSAH2 (PHOTOSYSTEM I SUBUNIT H2) 2e-056

PP022192 25.2 130.2 5.16667 0 AT3G50820.1 PSBO2 (PHOTOSYSTEM II SUBUNIT O-2) 4e-176

PP032949 6.7 33.7 5.02985 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 2e-060

PP032493 5.2 25.1 4.82692 0 AT1G52230.1 PSAH2 (PHOTOSYSTEM I SUBUNIT H2) 2e-056

PP033323 21.5 100.9 4.69302 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 4e-061

PP033241 6 27.1 4.51667 0 AT4G03280.1 PETC (PHOTOSYNTHETIC ELECTRON TRANSFER C) 3e-107

PP033302 7.4 32.5 4.39189 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 3e-064

PP005186 48.6 205.7 4.23251 0 AT1G06680.1 PSBP-1 (PHOTOSYSTEM II SUBUNIT P-1) 7e-116

PP016053 22.9 96.6 4.21834 0 AT2G30570.1 PSBW (PHOTOSYSTEM II REACTION CENTER W) 3e-042

PP022547 5.8 23.8 4.10345 0 AT2G06520.1 PSBX (PHOTOSYSTEM II SUBUNIT X) 3e-018

PP012172 7.3 29.7 4.06849 0 AT1G03600.1 PHOTOSYSTEM II FAMILY PROTEIN 6e-066

PP000003 17 68.8 4.04706 0 AT1G55670.1 PSAG (PHOTOSYSTEM I SUBUNIT G) 8e-067

PP033216 12.2 47.9 3.92623 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 2e-054

PP041363 2 7.7 3.85 0 NP_174418 PSAF (PHOTOSYSTEM I SUBUNIT F) 4e-009

PP012010 26.9 95.3 3.54275 0 AT4G12800.1 PSAL (PHOTOSYSTEM I SUBUNIT L) 5e-101

PP033278 11.6 40.2 3.46552 0 AT1G79040.1 PSBR (PHOTOSYSTEM II SUBUNIT R) 6e-044

PP033227 10.1 33.6 3.32673 0 AT1G52220.1 PSI-P (PHOTOSYSTEM I P SUBUNIT) 4e-042

PP005055 24 76.9 3.20417 0 AT1G30380.1 PSAK (PHOTOSYSTEM I SUBUNIT K) 3e-055

PP039593 2.1 6.5 3.09524 0 AT1G31330.1 PSAF (PHOTOSYSTEM I SUBUNIT F) 9e-036

PP013176 7 21.5 3.07143 0 AT2G46820.1 PSI-P (PHOTOSYSTEM I P SUBUNIT) 2e-044

*That the top hits of several cauliflower unigenes correspond to one gene in Arabidopsis could be due to paralogs or alternative splicing of genes in cauliflower.
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Figure 4 Comparison of the numbers of Hy5-mediated genes in Arabidopsis [26]with differentially expressed genes in green curds of
cauliflower and a simplified model of light signaling pathway for chloroplast development based on [11]. (a) Venn diagram showing the
number of common genes between HY5-targeted genes in Arabidopsis and total differentially expressed genes in green curds of cauliflower. (b)
Venn diagrams showing the numbers of common genes between HY5-regulated genes in Arabidopsis under light and dark and the up- and
down-expressed genes among the 2616 homologs of HY5-trageted genes in green curds of cauliflower. (c) Alignment of the associated
differentially expressed genes with light signaling pathway for chloroplast development. Abbreviations are as follows: CIP1, COP1-INTERACTIVE
PROTEIN 1; COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; COP9, CONSTITUTIVE PHOTOMORPHOGENIC 9; COP9-sub2, COP9 SIGNALOSOME
COMPLEX SUBUNIT 2; HY5, ELONGATED HYPOCOTYL 5; HYH, HY5-HOMOLOG.
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development, leading to greening in Arabidopsis roots
[5,6]. The fact that the transcripts of COP1 and DET1
remained unchanged and a large number of light-
responsive genes were altered in green curds of cauli-
flower suggests that other regulatory genes in the hierar-
chy of photomorphogenic regulation are responsible for
chloroplast development in the green curd.
In the light signaling cascade, HY5 plays an important

role in light signaling and chloroplast development. HY5
receives upstream signals and activates a large number
of genes by directly binding to the G-box in the promo-
ters of these genes [9,26,27]. Here, we observed higher
level of HY5 transcript in the green curd mutant.
Furthermore, 2616 cauliflower homologs of HY5-tar-
geted genes were differentially expressed in green curds.
Noticeably, among the 2616 genes, 1600 were up-regu-
lated genes in green curd cauliflower. The fact that all
1600 up-regulated genes were the HY5-targeted genes
in the light suggests an important role of elevated
expression of BoHY5 in mediating chloroplast develop-
ment in green curd cauliflower mutant. Furthermore, it
is known that COP1 negatively controls HY5 activity
[12]. Although COP1 was expressed at the same level
between green curds and white curds, we found that
CIP1 was significantly reduced in green curds (Figure
4c). Arabidopsis CIP1 is associated with the cytoskeleton
and has been hypothesized to affect partitioning of
COP1 in the nucleus and cytoplasm [34]. It is possible
that COP1 activity in the nucleus might be affected by
low level of CIP1, causing ectopic chloroplast develop-
ment in green curds. Thus, BoHY5 and/or the other
genes at the high hierarchy in the signal transduction
cascade could be responsible or work in concert to reg-
ulate chloroplast biogenesis and development in other-
wise white tissue to give rise to the striking green curd
mutant phenotype.
Ultimately, the development of chloroplasts requires

the coordinated action of a number of processes, includ-
ing the biosynthesis of photosynthetic complexes, trans-
portation of nuclear encoded proteins into chloroplasts,
processing of the imported proteins, and assembly of
the photosynthetic apparatus [3,4]. Indeed, many genes
involved in photosynthetic pigment biosynthesis along
with pigment-binding proteins such as chlorophyll a/b
binding proteins were discovered to be upregulated in
our genome-wide profiling of green curd cauliflower.
The majority of chloroplast proteins are nucleus-
encoded and enter the chloroplasts via the Toc/Tic
translocon complexes [1]. The increased expression of
Toc genes in the green curd mutant supports an
enhanced activity of chloroplast-targeted protein import.
The imported proteins are folded and processed to form
functional proteins. Molecular chaperones HSP70 and
Cpn60 have long been known to be involved in this

process [3,20]. A recent study shows that a protein dis-
ulfide isomerase is also required for protein folding [21].
Consistent with the increased activity of protein import,
genes associated with protein folding and assembling
were expressed highly in the green curd mutant for
chloroplast development.

Conclusions
In the present study, we compared gene expression on a
genome-wide scale by using RNA-seq in a species with-
out a reference genome. This study identified a great
number of genes associated with chloroplast develop-
ment and suggested the potential role of elevated
expression of BoHY5 and/or other regulatory genes in
the high hierarchy of light signaling pathways for the
ectopic chloroplast development in green curd cauli-
flower. Our results indicate that RNA-seq as a powerful
tool in a genomic era could accelerate the functional
identification of genes and aid in dissecting the genetic
basis of naturally-occurring variations in crops.

Methods
Plant materials
White curd cauliflower cultivar Stovepipe (Brassica oler-
acea L. var. botrytis) and the green curd mutant line
ACX800 were used in this study. Cauliflower plants
were grown either in a greenhouse under 14-h-light/10-
h-dark cycle at 23°C or in a field. In the greenhouse, the
natural daylight was supplied by full-spectrum lamps
with the light intensity at 400 μmol photons m- 2 s-1.
Fresh curd tissues were harvested, immediately frozen in
liquid nitrogen, and stored at -80°C for RNA extraction
and chlorophyll extraction.

RNA extraction and construction of cDNA library for
sequencing
Total RNA was extracted from pooled curd tissue using
the TRIzol reagent according to the manufacturer’s
instruction (Invitrogen, Carlsbad, CA), and was further
purified with the RNeasy®Plant Mini Kit (Qiagen,
Valencia, CA). The cDNA libraries of green and white
cauliflower from five micrograms of total RNA were
constructed using the mRNA Sequencing Sample Pre-
paration Kit following the manufacturer’s instruction
(Illumina, San Diego, CA, USA). Sequencing was carried
out on an Illumina/Solexa Genome Analyzer II system
at the Cornell University Life Sciences Core Laboratories
Center.

RNA-seq data processing and analysis
The raw Illumina RNA-seq reads were first processed to
remove low quality regions and adaptor sequences using
an in-house perl script. To eliminate rRNA sequence
contamination, the reads were then aligned to
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cauliflower ribosomal RNA (rRNA) sequences using
Bowtie [35], allowing up to two mismatches. A total of
~60,000 cauliflower Sanger ESTs were collected from
GenBank in June, 2010. These ESTs were screened
against the NCBI UniVec database, the Escherichia coli
genome, and cauliflower rRNA sequences, to remove
those contaminant sequences. The resulting high quality
ESTs were assembled into unigenes using iAssembler
http://bioinfo.bti.cornell.edu/tool/iAssembler. The pro-
cessed Illumina reads were then aligned to the cauli-
flower EST-unigenes using Bowtie [35], allowing up to
two mismatches. A de novo assembly of the unaligned
reads was then performed using ABySS [36]. The uni-
genes assembled from ESTs and unaligned Illumina
reads, respectively, were further assembled using iAs-
sembler. Following mapping to EST-unigenes and de
novo assembly, transcript count information for
sequences corresponding to each unigene were com-
pared to obtain relative expression levels following nor-
malization to RPKM (reads per kilobase of exon model
per million mapped reads) [37]. The significance of dif-
ferential gene expression between the green and white
curds was determined using the R statistical method
described by Stekel et al. [38] and raw p-values were
adjusted for multiple tests using the false discovery rate
[39]. Genes with a false discovery rate ≤ 0.01 and a fold
change no less than 3 were identified as differentially
expressed genes between green and white curds.
To identify biological processes affected in the green

curd mutant, the differentially expressed genes were
annotated by assigning gene ontology (GO) terms.
Potential roles of differentially expressed genes in some
specific biological processes were identified. In addition,
we created a metabolic pathway database based on the
annotation information of the assembled cauliflower
unigenes using the Pathway Tools [40]. The pathway
database was then integrated into the Plant MetGen-
MAP system [17] to identify the significantly affected
pathways.

Verification of RNA-Seq by quantitative RT-PCR
The cDNA was synthesized using oligo-dT primers
and Superscript® reverse transcriptase III (Invitrogen,
Carlsbad, CA). qRT-PCR was conducted by using the
SYBR Green PCR master mix (Applied Biosystems,
CA). The cycling conditions involved denaturation at
95°C for 10 min, followed by 40 cycles of 95°C for 15 s
and 60°C for 60 s. The dissociation curves were ana-
lyzed to verify the specificity of RT-PCR. The relative
expression of selected genes was normalized to a cauli-
flower actin gene [14]. Values reported represent the
average of two biological repeats with three indepen-
dent trials. Gene-specific primers used are listed in
Additional file 6.

Chlorophyll determination
Fifty milligrams of curds were ground in liquid nitrogen,
and 1 mL of 80% acetone was added to extract chloro-
phyll. After centrifugation at 12,000 g for 5 min, the
supernatant was transferred into the new tube and mea-
sured at OD645 and OD663. Chlorophyll concentrations
were calculated by using MacKinney’s coefficients in the
following equations: Chlorophyll a = 12.7*(OD663)-2.69*
(OD645) and Chlorophyll b = 22.9*(OD645)-4.48*(OD663)
[41].

Confocal analysis of chloroplasts in green curds
Fresh green curd cauliflower tissue was hand-sectioned
and examined under Leica TCS SP5 Laser Scanning
Confocal Microscope (Leica Microsystems, Exon, PA
USA) to detect the autofluorescence of chlorophyll with
argon laser excitation at 488 nm and emission filter at
680 nm.

Additional material

Additional file 1: Up-regulated genes in green curd cauliflower
mutant.

Additional file 2: Down-regulated genes in green curd cauliflower
mutant.

Additional file 3: Significantly changed pathways in green curd
cauliflower mutant.

Additional file 4: Up-regulated HY5-targeted genes in green curds.

Additional file 5: Down-regulated HY5-targeted genes in green
curds.

Additional file 6: Primer sequences used in this study.
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ELONGATED HYPOCOTYL 5; PHYA: PHYTOCHROME A; PIF3: PHYTOCHROME-
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