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Abstract

woody plants remain unclear.

Background: Although there has been considerable progress made towards understanding the molecular
mechanisms of bud dormancy, the roles of protein phosphorylation in the process of dormancy regulation in

Results: We used mass spectrometry combined with TiO, phosphopeptide-enrichment strategies to investigate the
phosphoproteome of dormant terminal buds (DTBs) in poplar (Populus simonii x P. nigra). There were 161 unique
phosphorylated sites in 161 phosphopeptides from 151 proteins; 141 proteins have orthologs in Arabidopsis, and
10 proteins are unique to poplar. Only 34 sites in proteins in poplar did not match well with the equivalent
phosphorylation sites of their orthologs in Arabidopsis, indicating that regulatory mechanisms are well conserved
between poplar and Arabidopsis. Further functional classifications showed that most of these phosphoproteins
were involved in binding and catalytic activity. Extraction of the phosphorylation motif using Motif-X indicated that
proline-directed kinases are a major kinase group involved in protein phosphorylation in dormant poplar tissues.

Conclusions: This study provides evidence about the significance of protein phosphorylation during dormancy,
and will be useful for similar studies on other woody plants.

Background

Dormancy is a key feature of perennial plants. During dor-
mancy the meristem becomes insensitive to growth-
promoting signals for a period of time, before it is released
and growth resumes [1,2]. Bud dormancy is a critical devel-
opmental process that allows perennial plants to survive
extreme seasonal variations in climate. The regulation of
dormancy is a complex process that is necessary for plant
survival, development, and architecture [3,4]. A thorough
understanding of regulation mechanisms controlling dor-
mancy in woody perennials would have a variety of appli-
cations for genetic improvement of woody trees [3,5,6].
Considerable progress has been made in understanding the
molecular mechanisms and regulatory pathways involved
in bud dormancy [2]. However, until recently such studies
focused on regulation at the levels of transcription, post-
transcription, and translation [1,7-12]. Despite the impor-
tance of dormancy regulation for perennial behavior [3],
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the roles of post-translational modifications, especially
protein phosphorylation, remain poorly understood.

The identification of phosphorylation sites within a cer-
tain protein cannot provide a comprehensive view of the
regulatory role of protein phosphorylation [13-17]. Instead,
the simultaneous identification of the phosphorylation sta-
tus of numerous proteins at a certain developmental stage
is required to decode regulatory mechanisms. Large-scale
mapping of phosphorylations that occur in response to
diverse environmental signals has become an indispensa-
ble method for unraveling plant regulatory networks
[17-22]. In recent years, advances in mass spectrometry
(MS)-based protein analysis technologies, combined with
phosphopeptide enrichment methods, paved the way for
large-scale mapping of phosphorylation sites in vivo
[13,18,23]. Specifically, the titanium dioxide (TiO,) micro-
column is an effective method to selectively enrich phos-
phopeptides [17,24-28]. There have been several studies
on plant phosphoproteomes. These studies have provided
large datasets that allow new insights into phosphorylation
events; however, they have been carried out only on her-
baceous plants, such as Arabidopsis [22,29-40], oilseed
rape [41], rice [42], barley [43], and maize [44]. To date,
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there have been no reports on the phosphoproteomes of
woody plant species, except for the identification of eight
phosphorylated poplar P-proteins [45].

Numerous cellular signaling pathways are based on the
sequential phosphorylation of an array of proteins
[15,33,46]. Therefore, the analysis of signaling pathways in
plants has often focused on protein kinases. Kinases show
catalytic preferences for specific phosphorylation motifs
with certain amino acid context sequences [33,47,48].
Therefore, identification of in vivo phosphorylation sites
can provide important information about the activity of
protein kinases in their cellular context.

To better understand the regulation mechanism of
phosphoproteins and cellular signaling networks during
dormancy, we investigated the phosphoproteome of dor-
mant terminal buds (DTBs) of hybrid poplar (Populus
simonii x P. nigra) using a MS method combined with a
TiO, phosphopeptide enrichment strategy. We identified
161 phosphorylation sites in 161 phosphopeptides from
151 proteins, most of which are associated with binding
and catalytic activity. The information gained from this
study provides a wealth of resources and novel insights to
decode the complicated mechanisms of phosphorylation
modifications in poplar. As far as we know, this is the first
phosphoproteomic analysis of woody plants.

Results

Identification and characterization of the
phosphoproteome of DTBs

Total proteins were isolated from DTBs of poplar, and
then digested with trypsin in solution. The resulting tryp-
tic peptides were subjected to nanoUPLC-ESI-MS/MS to
identify phosphorylation modifications after TiO, enrich-
ment. In total, 161 unique phosphorylation sites were
identified in 161 phosphopeptides from 151 proteins
(Table 1, Additional file 1, Additional file 2 and Additional
file 3).

Among these phosphorylation sites, 81.3% (131) of
phosphorylation events occurred on Ser and 17.4% (28) on
Thr (Table 1). This finding is consistent with previously
reported phosphorylation patterns: 85% pSer and 10.6%
pThr [22] and 88% pSer and 11% pThr [33] in Arabidop-
sis; and 86% pSer and 12.7% pThr in M. truncatula [49].

Table 1 Characterization of identified phosphopeptides,
phosphoproteins, and phosphosites

Items Number
Phosphopeptides’ 161
Phosphoproteins 151

Phosphorylation sites 161
Phosphorylated residues (Ser: Thr: Tyr) 131:28: 2

(81.3%) (17.4%) (1.2%)

"Number of phosphopeptides counted according to unique sequences
containing oxidized methionine or acetylated/phosphorylated residues.
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Only 1.2% (2) of the phosphorylation events of these phos-
phopeptides occurred on Tyr residue. This is lower than
the pTyr values reported for Arabidopsis (4.2%) and rice
(2.9%) [22,50], but comparable to that reported for Medi-
cago truncatula (1.3%) [49]. The results of these studies
indicate that Tyr phosphorylation in plants is more abun-
dant than once thought [51]. The spectra representing all
phosphopeptides and the original detailed data are shown
in Additional file 4. As examples, the spectra of phospho-
peptides with single pSer, pThr, and pTyr are shown in
Figure 1a, ¢, and 1d, respectively. The spectrum of a phos-
phopeptide containing two phosphorylated Ser residues is
shown in Figure 1b.

The majority (93.8%) of the 161 phosphopeptides were
phosphorylated at a single residue. This value is higher
than that reported for Arabidopsis (80.9%) [22] and M.
truncatula (66.4%) [49]. Only 6.2% of the phosphopeptides
from poplar contained two phosphorylated residues, and
none were phosphorylated at multiple sites. In Arabidopsis
and M. truncatula, 19.1 and 27.1% of phosphopeptides,
respectively, were doubly phosphorylated [22,49] (Addi-
tional file 5). This may be a result of different enrichment
strategies that show selective or preferred affinity for single
or multiple phosphopeptides [52,53].

In a recent phosphorylation mapping study in Arabidop-
sis, the phosphorylation sites were concentrated outside
conserved domains [22,30]. To evaluate whether this pat-
tern also occurred among poplar phosphopeptides, we
conducted Pfam searches [54] to obtain domain informa-
tion for the 151 phosphoproteins. We acquired domain
information of 134 phosphoproteins (Additional file 1).
These data showed that 81.9% of the phosphorylation sites
were located outside of conserved domains (Additional file
6), consistent with previous results [22,30]. Protein phos-
phorylation often leads to structural changes in proteins,
and such changes can directly modulate protein activity
and reflect changes in interaction partners or subcellular
localization [14]. Thus, phosphorylations outside con-
served domains can be expected to alter protein confor-
mation and functions.

Conservation of phosphoproteins and phosphosites
between poplar and Arabidopsis
We compared phosphorylation patterns of orthologous
proteins between poplar and Arabidopsis to analyze con-
servation between their phosphoproteomes. Additional
file 7 shows orthologous proteins in poplar and Arabi-
dopsis. Phosphorylation sites in poplar that were absent
from their equivalent sites in proteins from other plant
species were considered to be novel phosphorylation sites
(Additional file 2).

We found only 10 phosphoproteins that were unique
to poplar, and the rest had ortholog(s) in Arabidopsis.
Among these ortholog(s), more than 75% (110) were
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Figure 1 MS/MS spectra of poplar phosphopeptides with single or double phosphorylations. ESI-QUAD-TOF tandem MS spectra of
doubly charged parent molecular ions with 780.30 m/z. b-type and y-type ions, including H3PO, neutral loss ions (indicated as -HsPO4 and # in
spectra), were labeled to determine peptide sequences and to localize phosphorylation sites. Asterisks denote phosphorylated serine, threonine,
or tyrosine residues. (a) Phosphopeptide spectrum of EAVADMS*EDLSEGEKGDTVGDLSAHGDSVR with a single pSer, corresponding to
glycosyltransferase (578888). (b) Phosphopeptide spectrum of EAVADMS*EDLS*EGEKGDTVGDLSAHGDSVR containing two phosphorylated Ser
residues, corresponding to glycosyltransferase (578888). (c) Phosphopeptide spectrum of FGIEGLMTTVHSITAT*QK with a single pThr,
corresponding to glyceraldehyde 3-phosphate dehydrogenase (728998). (d) Phosphopeptide spectrum of MSFEDKDLTGDVSGLGPFELEALQDWEY*K
with a single pTyr, corresponding to cytochrome b5 domain-containing proteins (662371 and 666994).
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phosphoproteins, and almost half of them were phos-
phorylated at equivalent site(s) or neighboring site(s) in
poplar and Arabidopsis (Table 2; Table 3). Among the
identified phosphosites, 127 (84.1%) were conserved
across the two species. The proteins containing these
sites were involved in various physiological processes
(see Additional file 8). Of the 127 conserved sites, only
62 were phosphorylated in the Arabidopsis ortholog(s),
and the remaining 65 were novel phosphorylation sites
in poplar (Additional files 8 and 9). Note that the resi-
dues at the equivalent sites of ortholog(s) are potential
phosphorylation sites, as shown in Additional file 8. For
example, two different poplar plasma membrane H
+-ATPase isoforms (PtrAHA10, 826518 and PtrAHA11,
422528) and their Arabidopsis homologs (Atlgl7260
and At5g62670) were phosphorylated at their well-con-
served C-terminal domain (Figure 2a). In Populus tricho-
carpa, the Lhcbl protein exists as three distinct
isoforms; Lhcb1.1 (568456), Lhcb1.2 (652073) and

Lhcb1.3 (715463). In the present study, we identified
two previously unknown phosphorylation sites at the N-
terminus; Thr38, which is well conserved across the
Lhcbl isoforms of several plants, and Thr39, which is
not conserved across Lhcbl isoforms of other plants,
but is present as a non-phosphorylated residue in the
Lhcb1 isoforms of Arabidopsis and spinach (Figure 2b).

Table 2 Conservation of phosphosites and
phosphoproteins between poplar and Arabidopsis

Phosphoproteins Number
1) Proteins unique to poplar 10
2) Proteins with ortholog(s) in Arabidopsis 141
3) Proteins whose ortholog(s) are not phosphorylated 31
4) Proteins whose ortholog(s) are phosphorylated 110
5) Equivalent site(s) are phosphorylated in ortholog(s) 62
6) Other site(s) are phosphorylated in ortholog(s) 48




Table 3 Similarities of phosphoproteins/phosphosites conserved between poplar and Arabidopsis

Similarity with closest homologs in Arabidopsis

Number of phosphoproteins

Number of phosphosites

Conservation of phosphosites

Phosphosites in Arabidopsis counterparts

Unconserved Conserved Undescribed Described
70-100% 124 132 18 114 53 61
50-70% 17 19 6 13 12 1
<50% 8 7 7 0 7
No similarity 2 3 3 0 3 0
Total 151 161 34 127 75 62
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(@)

(b)

652073 PtrLhcb1.2 27
715463 PtrLhcb1.3 27
568456 PtrLhcb1.1 27
At2934430 Lhcb1.4 2T,
At1929930 Lhch1.3 27
At1929910 Lhech1.2 27
At2934420 Lhcb1.5 25
At1929920 Lhcb1.1 2
CAJ77389 SpLhch1.3 27
CAJ77390 SpLhcbh1.2 27
CAJ77391 SpLhcbh1.1 27

X
422528 PtrAHA11 947 ESVVRLKGLDIDTIQ -QAY|T|V 966
826518 PtrAHA10 931 ESVVRLKNLDLNL I Q -TAH[TIV 950
At1g17260 AHA10 928 ESVIKLKQIDQRMIR - AAHT|IV 947
At3g42640 AHA8 929 ESVVKLKGLDIDTIQ-QHY|T|V 948
At2g07560 AHA6 930 ESVVKLKGLDIDNLN -QHY|T|V 948
At5g62670 AHA11 937 ESVVRLKGLDIETIQ-QAY|T|V 956
At3g47950 AHA4 941 ESVVRLKGLDIETIQ-QAY|T|V 960
At4g30190 AHA2 930 ESVVKLKGLDIETP - -SHY|T|V 948
At1g80660 AHA9 935 ESVVKQKGLDIEAIQ-QHY|TIL 954
At2g18960 AHA1 930 ESVAKLKGLDIDTAG -HHY|T|V 949
At2g24520 AHAS 912 ESVVKLKGLDIDTI1Q -QHY|T|V 931
At5g57350 AHA3 931 ESVVKLKGLDIETA - -GHY|T|V 948
At3g60330 AHA7 941 ESAAKLKGYDLEDPNSNNY[T]I 961

* *
| MGNGRV SMRK|[T]|
| MGNGRV SMRK|T]
LMGNGRVSMRK[T
VFGTGR I TMRK
VLGSGRVTMRK[TIVAKPK -GPSGSPWYGSDR 55
VLG SGRVTMRK]T
VLGSGRVTMRK]IT
VLGSGRVTMRK]T
| IGEGR | TMRK[T]
| LGEGRVTMRK]T]
MIGEGR | SMRKISAGKPKNVSSGSPWYGPDR 56

Figure 2 Conservation of phosphorylation sites between poplar proteins and homologs in other plants. Sequence alignments were
conducted to determine conservation of phosphorylation sites among homologs. Gaps were introduced to ensure maximum identity. Fine red
boxes represent phosphopeptides identified in this study. Phosphorylation sites identified in our study are shown in red bold font. Previously
identified phosphorylation sites in Arabidopsis are indicated blue bold font. Well-conserved phosphorylation sites are shown within blue box in
bold. Phosphorylation site is marked with an asterisk. (@) Phosphorylation sites conserved across plant plasma membrane H+-ATPases (AHA)
orthologs. (b) Phosphorylation sites conserved across plant chlorophyll-a/b-binding protein 1 (Lhcb1) orthologs.

*
T-KP--VPSGSPWYGPDR 523
T-KP--VPSGSPWYGPDR 53
T-KP--VSSGSPWYGPDR 53

-lASKPT -GPSGSPWYGSDR 54

VAKPK -GPSGSPWYGSDR 55
VAKPK -GPSGSPWYGSDR 53
VAKPK -GPSGSPWYGSDR 55
AGKPKTVQSSSPWYGPDR 56
AGKPKNVSSGSPWYGPDR 56

J

Recently, overlaps among Medicago, rice, and Arabidopsis
phosphoproteomes suggested that the phosphoproteomes
are similarly conserved among various herbaceous plant
species, and that overlaps are not specifically dependent
on experimental conditions [50]. In this work, we observed
overlaps between the poplar and Arabidopsis phosphopro-
teomes, providing additional evidence that phosphopro-
teomes overlap across plant kingdoms.

Unique phosphorylation sites of poplar proteins,
compared with orthologs in other plants

Many physiological features of woody plants are not
reflected in herbaceous models, e.g., Arabidopsis or rice. In
our study, several poplar phosphoproteins were highly con-
served with their Arabidopsis ortholog(s), but their corre-
sponding phosphorylation sites were not conserved
(Additional file 9). For example, the poplar 20S proteasome

subunit protein (PtrPBA1) shared high sequence similarity
with its orthologs in Arabidopsis (AtPBA1), Medicago trun-
catula (MtPBA1), and rice (OsPBA1). In PtrPBA1 (673509
and 819127), there is a C-terminal motif that includes a
pSer residue at position 231. This motif is conserved across
two other PtrPBA1 isoforms (Figure 3a), but the equivalent
sites are substituted with a non-phosphorylatable residue
in the homologs in the other three species (Figure 3a). The
poplar glucose-6-phosphate 1-dehydrogenase isoforms
(PtrG6PD, 736146 and 641721) are another good example;
they share high sequence similarity with their homologs in
Arabidopsis (AtG6PD), M. truncatula (MtG6PD), and rice
(OsG6PD). However, PtrG6PD (736146) is phosphorylated
at the N-terminus at residue Thr25 (Figure 3b), which is
conserved across poplar G6PD isoforms, but the residues
at the equivalent position in G6PD isoforms of Arabidopsis,
Medicago, and rice are non-phosphorylatable. Interestingly,
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673509 PtrPBAl
819127 PtrPBAl
At4g31300 AtPBAl
ACJTB4027.1 MtPBAL
050290770000 OsPBAl
050690139900 OsPBA1

673509 PtrPBAl
819127 PtrPBAl
At4g31300 AtPBAL
ACJ84027.1 MtPBALl
050290770000 OSPEAl A YFL ATVEV nNLFRI LHY NKN
050690139900 OsSPBAL N LRI LH

673509 PLrPBAl
819127 PtrPBAl
At4g31300 AtPBAl
ACJB84027.1 MEPBAL
050290770000 OsPBAL
0s06g0139900 OsPBAl

673509 PtrPEAL
819127 PLrPBAL
At4g31300 AtPEAL
ACJB4027.1 MtPBAl
050290770000 OSPBAL
050690139900 OsPEAL

(b)

736146 PtrG6PD
641721 PLrG6PD
At5g40760 G6PD6
At3g27300 G6PD5
ACJIB5742.1 MtGEFD
0s02g0600400 OSG6PD
0s04g0485300 OsSG6PD

736146 PtrG6PD
641721 PtrGEéPD
At5g40760 G6PD6
At3g27300 G6PD5S
ACJIB5742.1 MtGEFD
050290600400 OsSG6FD
0s04g0485300 OsSG6PD

736146 PtrG6PD

641721 PtrG6PD LEYLALPP.
At5g40760 G6PD6 E RLFYLALPP
At3g27300 G6PD5S RLEYIALPP
ACJIB5742.1 MtGEFD E. RRLEFYLALPP

050290600400 OsG6PD RLFYIALPPS
0s04g0485300 OsG6PD

736146 PtrG6PD
641721 PtrGéPD
At5g40760 G6PD6
At3g27300 G6PD5
ACJB5742.1 MtGEPD
0s02g0600400 OsSG6FD
0s04g0485300 OsG6PD

736146 PLrG6PD
641721 PtrG6PD
At5g40760 G6PDE
At3g27300 G6PD5S
ACJIB85742.1 MtGEED
050290600400 OsSG6PD
0s04g0485300 OsG6PD

736146 PLrG6PD
641721 PtrG6PD
At5g40760 G6PDE
At3g27300 G6PD5
ACJIB85742.1 MtGEED \ 3 v

0s02g0600400 OsSG6PD NERWE! LK RIE C SEAMYMELTYV
050490485300 OSG6FD NER SR TLL 5D '\ MYMEL

736146 PLrGE6PD
641721 PtrG6PD
At5g40760 GEPDE
At3g27300 G6PD5
ACJ85742.1 MtGEPD
0s02g0600400 OsSG6PD
0s04g0485300 OsSG6FD

736146 PLrGEED 514
641721 PtrG6PD 510
At5g40760 GEED6 515
At3g27300 GGEDS 516
ACJ85742.1 MtG6PD 518
05020600400 OSGEED 517
050490485300 OsG6FPD 505

Figure 3 Sequence alignment of poplar phosphoproteins and their closest Arabidopsis homologs to identify unique phosphosites in
poplar. Asterisk indicates phosphorylation site. Fine red boxes show phosphopeptides identified in this study. Phosphorylation sites identified
from poplar in our study are shown in red bold font. Blue bold boxes show non-conserved phosphorylation sites. (a) Sequence alignment with
all PBA1 orthologs. (b) Sequence alignment with all G6PD orthologs.
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pSer16 is conserved across rice G6PD orthologs, but it is
substituted with a non-phosphorylatable Asn residue in its
Arabidopsis and Medicago orthologs (Figure 3b). These
findings suggest that there are unique mechanisms regulat-
ing phosphorylation in poplar.

In summary, identification of new phosphorylation sites
can provide significant biological insights about the cellu-
lar mechanisms of signaling activation and inhibition.
Although many phosphorylation sites have been identified
in Arabidopsis from the PhosPhAt database [55], we iden-
tified 99 novel phosphosites and 41 novel phosphoproteins
in poplar in the present study. These novel phosphopro-
teins and phosphorylation sites could provide useful data
to identify components of phosphorylation-dependent
signal cascades, and to determine the function of phos-
phorylation events in responses to specific environment
signals.

Classification of the DTB phosphoproteome

Figure 4a shows the results of a euKaryotic Orthologous
Groups (KOG) classification analysis [56] of the 151
phosphoproteins. The KOG classification of the identi-
fied phosphoproteins and all proteins encoded in the
P. trichocarpa genome are shown in Additional files 10
and 11, respectively. Of the 151 phosphoproteins, 129
were assigned a KOG ID according to the KOG classifi-
cation. The remaining phosphoproteins were poorly
annotated and could not be assigned to any KOG group.
The classified proteins were further divided into various
subgroups: the largest functional subgroup consisted of
19 phosphoproteins, which were assigned to the J sub-
group (translation, ribosomal structure, and biogenesis),
16 phosphoproteins were assigned to the G subgroup
(carbohydrate transport and metabolism), and 15 phos-
phoproteins were assigned to the O subgroup (post-
translational modification, protein turnover, chaperones)
(Figure 4a and Additional file 11).

Functional annotation of phosphoproteins was also con-
ducted using the Blast2Go program [57]. Sequences were
searched against the non-redundant (NR) protein database
at NCBI. These identified phosphoproteins were categor-
ized into seven major classes with diverse functions
(Figure 4b): 80.6% were related to binding affinity (45.3%
to binding affinity associated with regulation of gene
expression and catalytic activity, and 35.3% to binding affi-
nity related to carbohydrate transport, biosynthesis, and
metabolism). The rest were categorized as having struc-
tural molecule activity (7.1%), translation (5.3%) or tran-
scription regulator activity (2.9%), membrane proteins
with transporter activity (2.9%), and enzyme regulator
activity (1.2%) (Figure 4b). In this study, most of the iden-
tified phosphoproteins were involved in binding and cata-
lytic activity, consistent with previous studies [22,32,33].
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Potential protein kinases involved in signal transduction
during dormancy in poplar

Confirmed phosphorylation sites are footprints of kinase
activities. To date, several kinases have been documented
in Arabidopsis, and their substrate spectra and functional
interactions have mainly been deciphered by large-scale
investigations of phosphoproteins [22,33]. However, little
is known about the kinases involved in regulating
dormancy in plants. To identify the protein kinases
responsible for phosphorylation of the phosphosites iden-
tified in this study, we obtained putative phosphorylation
motifs from the phosphopeptide dataset using the Motif-X
software tool (Figure 5). This tool extracts overrepresented
patterns from any sequence dataset by comparing it to a
dynamic statistical background [58]. Four significantly
enriched phosphorylation motifs were extracted from the
identified DTB phosphopeptides dataset (Figure 5b). One
of the enriched phosphorylation site motifs resembled a
known motif in proline-directed kinases (pS/pTP). This
was also supported by the alignment of all the identified
DTB phosphorylation sites (Figure 5a). The identity of the
second enriched motif was unknown, and had no counter-
parts in any known kinases. The third enriched phosphor-
ylation motif showed high similarity to a motif found in
members of the casein kinase II subfamily (pS/pTXXE/D).
Members of this family can phosphorylate a wide variety
of plant proteins in vitro. The fourth enriched motif was
similar to the 14-3-3 binding motif (RXXpS/pT). Kinases
with this motif regulate the activities of the vacuolar potas-
sium channel KCO1 and the vacuolar ATPase [59] (Figure
5b). These results suggest that proline-directed kinases
could be the major kinase group involved phosphorylation
of these identified proteins during dormancy in poplar
(Figure 5).

Discussion

A series of differential expression profiling analyses of the
induction, maintenance, and release of bud dormancy
made it possible to identify a large set of dormancy-related
candidate genes [1,9-12,60-66]. These genes were mainly
involved in ABA signaling pathways, cold and oxidative
responses, flavonoid biosynthesis, flowering time, and cir-
cadian regulation [66,67]. Although there is increasing
information available about the roles of genes and their
products in dormancy, very little is known about the rele-
vance of protein phosphorylation in dormancy. To address
this, in this work, we identified the phosphorylation status
of proteins in dormant terminal buds of poplar using mass
spectrometry combined with TiO, phosphopeptide-
enrichment strategies. However, it remains unknown
whether these phosphoproteins identified in dormant
buds in this study actually participate in dormancy-related
processes. To interpret the significance of the presence of
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these phosphoproteins in dormant buds, we compared the
identified phosphoproteins with previously reported dor-
mancy-related genes and their products. Notably, some of
these phosphoproteins were well matched to homologs of
known dormancy-related candidate gene-products identi-
fied in previous studies of various species. Some of these
common proteins of interest are briefly discussed in the
context of dormancy.

Phosphoproteins involved in dormancy-related signal
transduction

Abscisic acid (ABA) is the major plant hormone involved
in growth, dormancy, and cold acclimation [68]. The

ABA signaling pathway is regulated by reversible protein
phosphorylation mediated by protein kinases and phos-
phatases [68]. Genetic evidence demonstrated that
sucrose non-fermenting (SNF)-like protein kinase, recep-
tor-like protein kinase (LRK), and protein phosphatases
2C (PP2Cs) encoded by ABII and ABI2 are important
regulators of the ABA signaling pathway, which plays an
important role in the induction or release of bud dor-
mancy [5,6,10,63,68-72]. In this work, three SNF1-type
kinases in poplar (299214, 818055, and 828986) contain-
ing the phosphopeptide “DGHFLKTSCGpSPNYAAPE-
VISGK”, and one leucine-rich repeat receptor-like
protein kinase (LRK, 422370) were phosphorylated
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(Additional files 12 and 13). These phosphorylation sites
were all well conserved, and corresponding phosphosites
were identified in Arabidopsis (Additional file 12). In the
case of PP2C, the Ser131 in the phosphopeptide
“VSGMIEGLIWpPSPR” from PP2C (554898, 587195) was
identified as a novel phosphorylation site (Additional file
14). Calmodulin (CaM) and the CaM-binding protein
play an important role in Ca** signaling, which is related
to bud dormancy [61,64,70,73,74]. In this study, two
CaM family proteins (729432 and 823453) were phos-
phorylated (Additional file 3 and Additional file 13); how-
ever, the corresponding site has not been identified as a
phosphorylation site in their respective Arabidopsis
counterparts, AT1G56340.1 and AT5G61790.1.

Phosphoproteins involved in auxin responses and growth
development related to dormancy

The auxin-sensitive Dormancy-associated/auxin-
repressed (DAAR) gene is associated with bud dormancy
[66,75,76]. In this study, one DAAR protein (647948)
showed three isoforms with respect to phosphorylation
status, the three forms respectively phosphorylated at
Thr61, Thr63, and Thr70 (Additional file 3 and Addi-
tional file 13). These corresponding sites have not been
identified as phosphorylation sites in its homolog in
Arabidopsis, the DAAR protein (AT1G28330.1). Inter-
estingly, the Arabidopsis DAAR protein is phosphory-
lated at its conserved Thr28 and Thr29 residues [33].

Vernalization independence 4 (VIP4) interacts with the
FLOWERING LOCUS C-LIKE MADS-BOX PROTEIN
(FLC) to activate FLC, leading to inhibition of flower
development [77-79]. They are key components in the
regulatory pathway of cold-mediated bud dormancy
induction and release [4,77]. In our study, we observed
that poplar VIP4 (569930) was phosphorylated at Ser225
(Additional file 3 and Additional file 13); the correspond-
ing site in its Arabidopsis homolog (AT5G61150.2) is
also known to be phosphorylated [50]. The mei2-Like
(ML) genes, which play roles in plant meiosis and devel-
opment [80], were preferentially expressed in dormant
buds of leafy spurge [66]. In this study, two phosphoryla-
tion sites were respectively identified on the N- and C-
terminus of two isoforms of poplar mei2-like proteins
(714870 and 410877), which are homologous to Arabi-
dopsis ML (AT1G29400.2) (Additional file 3 and Addi-
tional file 13). The corresponding site at the N-terminus
in Arabidopsis ML is known to be phosphorylated [50],
while the C-terminal phosphorylation site was novel.

Phosphoproteins involved in dormancy-related cold stress
response

Dehydrins (DHNSs) are Group II (D-11 family), late
embryogenesis abundant (LEA) proteins that accumulate
in response to water deficit induced by drought, low tem-
perature, or salinity [81-84]. Certain DHNs play a vital
role in bud dormancy and cold acclimation of trees
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[1,12,66,85-88]. Phosphorylation of their S-segment is
required for targeting to the nucleus [89-91]. In this
study, three DHN proteins were phosphorylated in
regions outside of the S-segment, one (663123) belongs
to the K, type of DHNS, one (571250) belongs to the K,,S
type of DHNS, and the other (818850) belongs to the SK,,
type of DHNs (Additional file 3 and Additional file 13).
Heat shock proteins (HSP) function as molecular chaper-
ones, and are induced by various environmental stress,
such as cold, salinity, and oxidative stress [92]. Recent
data suggested that they are also involved in the process
of bud dormancy [12,93,94]. A phosphorylation event on
an HSP was identified in Arabidopsis [22,40]. Here, two
HSP70s (657150 and 769322), one HSP90 (652330), and
one HSP26 (832078) were phosphorylated in poplar
(Additional file 3 and Additional file 13).

Phosphoprotein associated with dormancy-related
flavonoid biosynthesis

Many genes related to flavonoid biosynthesis are signifi-
cantly regulated during the release of dormancy, such as
acetyl-CoA carboxylase (ACCase), chalcone synthase,
chalcone isomerase, and flavonol synthase [12,65-67].
Acetyl-CoA carboxylase (ACCase) catalyzes the formation
of malonyl-CoA, which is the substrate for biosynthesis of
fatty acids and secondary metabolites, such as flavonoids
and anthocyanins [67]. In this work, one putative ACCase
(736443) was phosphorylated at Ser94 and Ser95 (Addi-
tional file 3 and Additional file 13). There have been no
reports of phosphorylation of its homolog in Arabidopsis
(AT5G16390.1). Interestingly, we also found another
phosphorylation event related to flavonoid biosynthesis;
polyphenol oxidase (PPO) (275859) was phosphorylated at
Ser452 (Additional file 3 and Additional file 13). The
poplar PPO has no counterparts in Arabidopsis, but it
shows homology to aureusidin synthase (AS) in Antirrhi-
num majus, a flavonoid synthase enzyme that catalyzes
the formation of aurones from chalcones [95]. To our
knowledge, this is the first report of a specific phosphory-
lation site in a plant flavonoid synthase. The existence of
this site suggests that phosphorylation may regulate its
functions.

Phosphoproteins involved in transport related to
dormancy

The plasma membrane H+-ATPase (AHA) is responsible
for the transport of protons out of the cell through the
membrane [96]. The AHA gene is strongly expressed dur-
ing dormancy transition, and contributes to changes in the
plasma membrane [12]. The regulation of AHA is con-
trolled by phosphorylation of one Thr residue in the well-
conserved C-terminal domain [97,98]. In the AHA family
in Arabidopsis, the well-conserved Thr residue is
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phosphorylated in response to stress [37,42,97]. Here, the
exact Thr site (Thr949) in the C-terminus of poplar
AHA10 (826518), and its corresponding site in AHA11 of
poplar (422528) were both phosphorylated (Figure 2a).
Another example of a transport protein is ATP-binding
cassette (ABC) transporters, which are integral membrane
proteins that transport a wide variety of substrates, such as
ABA, auxin, and some plant secondary metabolites across
cellular membranes [99,100]. Genes encoding ABC trans-
porters are regulated during dormancy transition
[11,12,66], suggesting that they are linked with dormancy.
Here, two ABC transporter family proteins (554850 and
800153) were phosphorylated at Thr55 (Additional file 3
and Additional file 13). The corresponding site is phos-
phorylated in its homologs in rice, Arabidopsis, and Medi-
cago [42,49,50].

Phosphoproteins involved in protein synthesis related to
dormancy

Some genes and proteins involved in protein biosynthesis
play a role in the mechanism of bud dormancy release
[12,60,101]. Phosphorylation of ribosomal proteins can
affect protein synthesis by altering ribosome structure
[45]. In the present work, six 60S acidic ribosomal proteins
including PO-, P1-, P2-, and P3-types were phosphorylated
close to their conserved C terminus, consistent with
results reported elsewhere [45]. However, the pSer at posi-
tion 2 on the 40S ribosomal protein S12 of poplar (RPS12,
714910) was novel (Additional file 15). Recent evidence
suggests that phosphorylation of Ser2 plays an important
role in regulating nucleocytoplasmic shuttling of eukaryo-
tic translation initiation factor 5A (eIF5A) in plant cells
[102-104]. Here, four poplar eIF5A proteins (717121,
832646, 835953, and 724093) were phosphorylated at their
well-conserved serine residue and acetylated at their N-
terminus (Additional file 16). Phosphorylation regulates
the function and/or location of translation elongation fac-
tor 1A (eEF1A), which is involved in protein biosynthesis
and signal transduction [105-107]. Here, five eEF1A iso-
forms (256777, 655943, 675976, 655949, and 720367)
from poplar, all containing the phosphopeptide pPSVEMH-
HEALQEALPGDNVGENVK (Ser279) were novel phos-
phoproteins (Additional file 17).

Phosphoproteins involved in electron transport or energy
pathways

There are increases in expressions of some genes involved
in energy pathways during bud release, including glyceral-
dehyde-3-phosphate dehydrogenase (GAPC) and phos-
phoenolpyruvate carboxylase (PEPC) [11,12,60,93]. Here,
three GAPC isoforms (821843, 575307 and 728998) and
three PEPC isoforms (552645, 745223, and 728315) were
phosphorylated (Additional file 13 and Additional file 3).
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The light harvesting complex protein Lhcb1, which is
essential for light electron transport, is significantly regu-
lated during bud release [11,63,66]. Reversible phosphory-
lation of Lhcb1 is important for distributing absorbed light
energy between the two photosystems [108,109]. As
reported in other experiments on Arabidopsis [33,110]
and spinach, Lhcb1 proteins are phosphorylated at several
Thr and Ser residues in their amino terminus [108]. Here,
we identified two previously unknown phosphorylation
sites on the poplar Lhcb1 protein; the conserved Thr38
phosphosite and the unconserved Thr39 phosphosite (Fig-
ure 2b).

In summary, this information on phosphoproteins in
dormant poplar provides a useful dataset, and provides
new insights for exploring the relevance of phosphoryla-
tion for dormancy. However, further research, e.g., com-
paring proteomes between dormant/non-dormant tissues,
is required to clarify the roles of phosphorylation in the
dormancy process.

Conclusions

Many physiological features of woody plants are not
reflected in the herbaceous model Arabidopsis or in rice.
Therefore, it is important to determine phosphorylation
sites in poplar proteins, and to determine the roles of these
phosphorylations in modifying protein function during
growth and development. To date, there have been no
extensive studies on the poplar phosphoproteome. In this
work, we conducted a detailed analysis of the phosphopro-
teome of dormant poplar buds using an MS method and
TiO, phosphopeptide-enrichment strategies. We found
161 unique phosphorylated sites in 161 phosphopeptides
from 151 proteins, most of which are associated with bind-
ing and catalytic activity. Most of the poplar phosphopro-
teins have orthologs in Arabidopsis, suggesting that there
are similar signaling pathways mediated by phosphoryla-
tion in poplar and Arabidopsis. However, some phospho-
proteins and phosphorylated sites were unique to poplar,
thus confirming the need to obtain phosphoproteome data
from poplar. Several phosphorylation motifs were extracted
from the dataset by Motif-X. This could provide evidence
for the involvement of kinases in phosphorylation of these
identified proteins during dormancy in poplar. Further
experiments are now required to confirm that these speci-
fic kinases interact with the identified phosphoproteins in
vivo. A promising way forward is to comprehensively char-
acterize and analyze the dynamics of phosphorylation of
poplar proteins in response to environmental changes,
using specialized targeted quantitative proteomics tools.

Methods

Plant materials and chemicals

Dormant terminal buds were collected from hybrid
poplar (Populus simonii x P. nigra) in Harbin, China,
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(E126°37’, N45°42’) at the end of December, 2009.
Samples were frozen in liquid nitrogen and stored at
-80°C until use.

Iodoacetamide (IAA) and dithiothreitol (DTT) were
purchased from Acros Organics (Morris Plains, NJ, USA).
HPLC-grade acetonitrile (ACN) was obtained from JT
Baker (Thomas Scientific, Swedesboro, NJ, USA). HPLC-
grade water was prepared using a Milli-Q A10 system
from Millipore (Billerica, MA, USA). ModiWed sequen-
cing-grade trypsin was supplied by Promega (Madison,
WI, USA). Protease-inhibitor cocktail and the 2-D Quant
kit were obtained from Amersham Pharmacia Biotech
(Uppsala, Sweden). All other reagents were purchased
from Sigma (St Louis, MO, USA).

Preparation of total proteins

The dormant terminal buds were crushed into a fine pow-
der in liquid nitrogen and resuspended at -20°C in 10%
(w/v) trichloroacetic acid (TCA) in cold acetone contain-
ing 0.07% (v/v) 2-mercaptoethanol for at least 2 h. The
mixture was centrifuged at 10000 g at 4°C for 1 h, and the
precipitates were washed with cold acetone containing
0.07% (v/v) 2-mercaptoethanol. The pellets were dried by
vacuum centrifugation and dissolved in 7 M urea, 2 M
thiourea, 20 mM dithiothreitol, 1% (v/v) protease-inhibitor
cocktail, 0.2 mM Na,VOs3;, and 1 mM NaF at room tem-
perature for 2 h, before centrifugation at 40000 g at 10°C
for 1 h. The resulting supernatant was collected and kept
at -80°C until further use. The total protein content of the
samples was quantified using a 2-D Quant kit.

In-solution protein digestion

Total proteins were digested as described elsewhere
[111,112]. Briefly, the total protein solution was adjusted
to pH 8.5 with 1 M ammonium bicarbonate. Then, the
sample was reduced for 45 min at 55°C by adding DTT to
a final concentration of 10 mM, and then carboxyamido-
methylated by incubation with 55 mM IAA for 30 min in
the dark at room temperature. After this step, CaCl, was
added to a final concentration of 20 mM. Then, endopro-
tease Lys-C was added to a final substrate-to-enzyme ratio
of 100:1, and this reaction was incubated for 12 h at 37°C.
The Lys-C digest was added to 1 M urea containing 100
mM ammonium bicarbonate, and modified trypsin was
added to a final substrate-to-enzyme ratio of 50:1. The
trypsin digest was also incubated at 37°C for 12 h. After
digestion, the peptide mixture was enriched using TiO,
microcolumns for further MS analysis.

Enrichment of phosphorylated peptides using TiO,
microcolumns

The TiO, microcolumns were packed as described else-
where [25]. A small plug of C8 material was stamped out
of a 3M Empore C8 extraction disk with a HPLC syringe
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needle and placed to form a frit at the small end of the
GELoader tip. The TiO, beads were suspended in 100%
ACN, and an appropriate volume of this suspension
(depending on the size of the column) was loaded into
the GELoader tip. Gentle air pressure produced by a plas-
tic syringe was applied to pack the column. The TiO,
microcolumn was equilibrated with loading buffer (40 pl;
80% ACN/5% TFA/saturated phthalic acid solution).
Immediately, the trypsin-digested peptide mixture diluted
in loading buffer was added to the TiO, microcolumn.
Then, the column was washed once with loading buffer
(40 pl) and three times with washing buffer (40 pl; 80%
ACN/2% TFA). The washing and loading buffer con-
tained 80% ACN organic solvent in order to abrogate the
adsorption of peptides to the C8 material [28]. The
bound peptides were eluted twice with 40 ul ammonium
bicarbonate (pH > 10.5), and then with 10 pl 30% ACN.
The eluted phosphopeptides were lyophilized and then
dissolved in 1% formic acid before MS analysis.

NanoUPLC-ESI-MS/MS

NanoUPLC-ESI-MS/MS was performed with a splitless
nanoUPLC (10 kpsi nanoAcquity; Waters) in combination
with a Synapt high-definition mass spectrometer with a
nanospray ion source (Waters). A symmetric C;g 5-um,
180-pum x 20-mm pre-column and a BEH C;g 1.7-um, 75-
pum x 250-mm analytical reversed-phase column (Waters)
were used. The MassLynx (version 4.1; Waters) program
was used for instrument control and data acquisition. The
mobile phases were (A) 100% H,0/0.1% formic acid and
(B) 100% ACN/0.1% formic acid. The samples were dis-
solved in aqueous 0.1% formic acid solution and loaded
onto the pre-column at a flow rate of 5 pl/min for 3 min.
The phosphopeptides were separated by a gradient of 5-
40% mobile phase B for 90 min at a flow rate of 200 nl/
min, followed by a 10-min rinse with 90% mobile phase B.
The column was re-equilibrated with the initial conditions
for 20 min. The lock mass was delivered from the auxiliary
pump of the NanoAcquity pump at a constant flow rate of
400 nl/min at a concentration of 100 fmol/ul of (Glul)
fibrinopeptide B to the reference sprayer of the NanoLock-
Spray source from the mass spectrometer. In this study,
every sample was analyzed in triplicate. Data-dependent
acquisition was carried out in positive ion mode. MS spec-
tra were acquired for 1 s from mass-to-charge ratios of
(m/z) 350 to 1990. Two of the most intense precursor ions
that were doubly or triply charged were selected from m/z
350 to 1990. MS/MS spectra produced by collision-
induced dissociation (CID) were acquired for 2 s from m/z
50 to 1990. The collision energy was automatically calcu-
lated according to peptide charge and m/z; a dynamic
exclusion window was applied to prevent the same m/z
from being selected for 2 min after its acquisition. The
candidate phosphopeptides were initially assigned by ESI-
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MS/MS using 79.96-Da mass increments per phosphate
moiety relative to the unmodified peptides. To detect the
phosphopeptides, we utilized the preferred loss of the
phosphate group upon collision-induced dissociation. In
positive ion tandem MS, an intense neutral loss of 98 Da,
corresponding to H3PO,, was observed for peptides con-
taining phosphorylated Ser, Thr, and Tyr residues.

Data analysis and Mascot database search

The MS/MS data were processed and converted to a pkl
file format with ProteinLynx software (Waters), and the
resulting pkl file was used to search against the JGI Popu-
lus trichocarpa v1.1 (http://genome.jgi-psf.org/Poptrl_1/
Poptrl_1.home.html) protein sequence database using an
in-house Mascot server (version 1.8) with acetylation in
the N-terminus of the protein, carbamidomethylation,
methionine oxidation, and phosphorylation of serine/
threonine/tyrosine residues as variable modifications. Two
missed cleavage sites were allowed. The search was per-
formed with a peptide mass tolerance of 15 ppm in the
MS and 50 ppm in the MS/MS modes. The false discovery
rate (FDR) was 0.00% for peptide matches above the iden-
tity threshold and 0.36-0.85% for peptide matches above
the homology or identity threshold.

Bioinformatics

Using a custom Perl program, all the phosphoprotein
sequences were extracted from protein databases (http://
genome.jgi-psf.org/Poptrl_1/Poptrl_1.home.html) by
their protein ID. The Blast2Go program [57] was used to
obtain descriptions of protein sequences by a BlastP search
against a non-redundant protein database (http://blast.
ncbi.nlm.nih.gov/Blast.cgi) with default parameter settings.
Protein functions, annotations, and classifications were
also examined using gene ontology (GO), GO-Enzyme-
Code, and InterPro databases and search tools.

The Batch sequence search tool (http://pfam.sanger.ac.
uk/search) was applied to obtain Pfam information for
identified phosphoproteins. The significantly enriched
phosphorylation motifs set was extracted from our phos-
phopeptide data using the Motif-X algorithm [58]. All
phosphorylated peptides with confidently identified phos-
phorylation sites were used as the data set to extract sig-
nificantly enriched phosphorylation motifs. The
phosphopeptides were centered at the phosphorylated
amino acid residues and aligned, and ten positions
upstream and downstream of the phosphorylation site
were included. In the case of C- and N-terminal peptides,
the sequence was completed to 21 amino acids with the
required number of “X"s, where X represents any amino
acid. As the background data set, protein sequences of the
entire genome poplar database Populus trichocarpa v1.1 in
Fasta format (in a shortened version due to upload restric-
tions of 10 MB) were used. The occurrence threshold was
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set to 5% of the input data set at a minimum of three pep-
tides, and the probability threshold was set to P <107°.
Amino acid sequences around the phosphorylated amino
acid based on the alignment of all the phosphorylation
sites were completed by the Weblogo program [113] in

the entire identified DTBs data set.
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