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Abstract

Background: Norway spruce [Picea abies (L) Karst] is one of the most important conifer species in Europe. The
wood is economically important and infections by wood-rotting fungi cause substantial losses to the industry.

The first line of defence in a Norway spruce tree is the bark. It is a very efficient barrier against infection based on
its mechanical and chemical properties. Once an injury or an infection is recognized by the tree, induced defences
are activated. In this study we examined transcriptional response, using 454-sequencing, and chemical profiles in
bark of Norway spruce trees with different susceptibility to Heterobasidion annosum s.l. infection. The aim was to
find associations between the transcriptome and chemical profiles to the level of susceptibility to Heterobasidion
spp. in Norway spruce genotypes.

Results: Both terpene and phenol compositions were analysed and at 28 days post inoculation (dpi) high levels of
3-carene was produced in response to H. annosum. However, significant patterns relating to inoculation or to
genotypes with higher or lower susceptibility could only be found in the phenol fraction. The levels of the
flavonoid catechin, which is polymerized into proanthocyanidins (PA), showed a temporal variation; it accumulated
between 5 and 15 dpi in response to H. annosum infection in the less susceptible genotypes. The transcriptome
data suggested that the accumulation of free catechin was preceded by an induction of genes in the flavonoid
and PA biosynthesis pathway such as leucoanthocyanidin reductase. Quantitative PCR analyses verified the induction
of genes in the phenylpropanoid and flavonoid pathway. The gPCR data also highlighted genotype-dependent
differences in the transcriptional regulation of these pathways.

Conclusions: The varying dynamics in transcriptional and chemical patterns displayed by the less susceptible
genotypes suggest that there is a genotypic variation in successful spruce defence strategies against
Heterobasidion. However, both high levels of piceasides and flavonoids in the less susceptible genotypes suggested
the importance of the phenolic compounds in the defence. Clearly an extended comparison of the transcriptional
responses in the interaction with Heterobasidion between several independent genotypes exhibiting reduced
susceptibility is needed to catalogue mechanisms of successful host defence strategies.
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Background

Norway spruce [Picea abies (L.) Karst.] is one of the most
important conifer species in forest ecosystems both ecolo-
gically and economically in Europe. Being long-lived
organisms, spruce trees rely on both induced and constitu-
tive defences to restrict the spread of invading fungi and
insects. The first line of defence in a Norway spruce trees
is the bark. The combination of the physical properties of
tough lignified and suberized walls that provide a hydro-
phobic obstacle and the chemical properties of phenolics
and terpenes makes bark a very efficient barrier against
infection [1]. Once an injury or an infection is recognized
by the tree, induced defences are activated, including cell
wall re-enforcements, production of lytic enzymes and
secondary metabolites such as phenols, stilbenes, lignans,
flavonoids, and terpenes [1-4].

The root-rot fungus Heterobasidion spp. species com-
plex is the most serious pathogen on Norway spruce in
Scandinavia [5] causing root and stem rot and rendering
the timber defective for sawing and pulping. Several stu-
dies indicate that genetically determined host characteris-
tics partly determine the susceptibility of Norway spruce
to Heterobasidion infections [6-11].

To protect themselves against pathogens and pests,
conifers such as spruce, have evolved complex constitu-
tive and inducible defence mechanisms [1,2]. Many of
these are associated with the production of secondary
metabolites to delay or stop the establishment of fungi or
insects within the tree [2,12-14]. Oleoresins produced in
the resin ducts in the phloem are part of the constitutive
defence in the bark [15,16]. Upon attack, de novo differ-
entiation of xylem resin ducts [1,15,17] and production
of defence-associated terpenes are reported [15,18-20].
Similarly, swelling and proliferation of polyphenolic par-
enchyma cells (PP cells) in the bark [21,22] and changes
in phenolic concentration [23-26] are seen in response to
pathogen attack.

The regulation and biosynthesis of terpenes in the
response to insect attack have been successfully explored
using combinations of transcript profiling and chemical
characterizations over the last decade [19,27,28]. Similar
approaches have been applied on studies of flavonoids in
response to leaf pathogens in poplar [29,30]. However, in
spruce this type of approach has not yet been applied on
the regulation and biosynthesis of phenolics in interaction
with pathogens. From a metabolic point of view, plant
phenolics constitute a much more heterogeneous group
than terpenes. The phenolics are biosynthesized by several
different routes but they all derive from products of the
shikimic acid and phenylpropanoid pathways (Figure 1)
[31].

Fungal infection commonly results in a decrease of
phenolic glycosides and a subsequent increase of the cor-
responding aglycones [12,14,24,26,32]. The accumulation
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of aglycones could be a result of B-glucosidase activity
from either the fungus [14] or the tree [33]. Possible
relations between stilbene content and resistance to
Heterobasidion spp. have been investigated and Lindberg
et al., [12] found that the initial concentration of the stil-
bene astringin was negatively correlated with the depth
of the hyphal penetration in Norway spruce bark. In con-
trast, no correlation between constitutive bark stilbene
glycosides and resistance to H. annosum was found in
Sitka spruce (Picea sitchensis [(Bong.) Carriere]) [34].
Better resistance to Ceratocystis polonica [(Siemaszko)
C. Moreau] infection has been associated with low con-
stitutive levels of the stilbene isorhapontigenin, phenol
diversity and accumulation of the flavonoid (+)-catechin
in the phloem of Norway spruce after inoculation [23,25].

In this study we examined transcriptional response and
chemical profiles in clonal Norway spruce trees. The
clones were quantitatively scored for susceptibility to
Heterobasidion spp. based on screening for visible decay
in the stand in 2004 [7]. The present investigation was
carried out in a replicate plantation in mid Sweden. For
sampling we selected four genotypes (clones), two geno-
types where the majority of the ramets were heavily
attacked by Heterobasidion spp. and two genotypes that
showed almost no infection, based on the analysis in the
investigation in 2004

Our aim was to find associations between the transcrip-
tome and chemical profiles to the level of susceptibility to
Heterobasidion spp. in Norway spruce genotypes. We
found associations between the level of susceptibility and
the phenol content and genotypic differences in the ter-
pene content.

Methods

Plant material and sampling

The plant material was from a site that was part of a
Swedish regional clonal forestry program at SkogForsk
[35]. The stand was situated at Ardala, Sweden, (59°01" N,
16°49” E) and was established in 1984 with 311 genotypes
as 3-year old bare root cuttings. It was planted in a Roman
square design with nine replicates and single tree plots
with 1.4 m spacing within main plots. The genotypes were
distributed in eight clone mixtures planted in different
main-plots. The selected Norway spruce genotypes have
previously been classified for natural susceptibility to
infections of Heterobasidion spp. [7].

Three ramets per clone were used and at day 0, two
roots of each tree were chosen, one for inoculation and
one for wounding treatment. The roots assigned to inocu-
lation were artificially inoculated with Heterobasidion
annosum [(Fr.) Bref.] (Sd 16-4) [36]. To allow the fungus
to enter the root, three 5 mm circular wounds were made
on a line perpendicular to the root elongation. Each bark
disc was cut in half (parallel to root elongation). One half
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was put in a 2 mL microcentrifuge tube containing 1.5 mL
of RNAlater (Ambion) for subsequent transcriptome pro-
filing and the other half was placed in a vial containing 1
mL of hexane with 57 nguL™ pentadecane as internal
standard and 102 ng pL™" of the antioxidant 3-tert-butyl-
4-hydorxyanisole for extraction of terpene content. Woo-
den plugs 5 mm in diameter and inoculated with H. anno-
sum, were prepared according to Stenlid & Swedjemark

[37], and attached to the wounds with Parafilm®. The
roots assigned to wounding were handled identically
except that a sterile wooden plug was attached to each
wound.

After five days the left inoculation point on each root
was sampled. The wooden plug was removed, and there-
after a 1.5 cm diameter bark sample was taken around
the inoculation point and the bark sample was cut in half
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(parallel to root elongation). One half was put in a 2 mL
microcentrifuge tube containing 1.5 mL of RNAlater
(Ambion) for subsequent transcriptome profiling and the
other half was placed in a vial containing 1 mL of hexane
with 57 ng uL™! pentadecane as internal standard and
102 ng pL™" of the antioxidant 3-tert-butyl-4-hydorxyani-
sole for extraction of terpene content. At 15 and 28 days
post inoculation (dpi) the procedure was repeated for the
other two inoculation holes. At 15 dpi the inoculation
point furthest to the right was collected and 28 dpi the
central point was sampled. The lesion length on the
wound/inoculation point harvested at 28 dpi was mea-
sured at 44 dpi, to validate that inoculation was success-
ful as lesion lengths has been shown to correlate with
fungal growth in field experiments [6,8,38].

Temperature data were collected during the sampling
period (13 August - 9 September 2008) by the data logger
Tinytag™ and air temperatures ranged between 6.2°C
and 25.8°C.

Chemical analyses

Chemicals

Acetonitrile, water and formic acid, all of LC-MS grade,
were purchased from Sigma Aldrich. Hexane, methanol
and water of LC grade used for extractions were bought
from SDS (Val de Reuil, France). n-Pentadecane was
bought from Lancaster (98% GC-purity) and 3-tert-butyl-
4-hydroxyanisole (BHA, = 90% GC-purity) from Fluka.
Vanillyl alcohol and some of the phenol reference chemi-
cals were synthesized in the lab at KTH; other phenol
reference chemicals were received as gift from Annie Yart
(INRA, Orléans, France). Terpene reference chemicals
were obtained from commercial sources.

Preparation of samples for GC-MS and HPLC-MS analysis
The extraction of terpenes with hexane was initiated dur-
ing sampling in the field and thereafter carried out in
room temperature overnight. The hexane was collected
for GC-MS analysis and the residue was washed again
with 1 mL of hexane for 1 h. To extract phenols the hex-
ane was removed and 0.5 mL of 80% methanol (with
106 ng pL™" of vanillyl alcohol and 108 ng uL™* BHA) was
added to the sample. The extraction of phenols continued
at room temperature overnight. All samples were centri-
fuged at 6000 rpm for 10 minutes and stored in the freezer
until analysed. The residues were placed in open vials in a
ventilated cupboard and further dried in 80°C for 40 hours
before the samples were weighed.

GC-MS analyses

Hexane samples were separated on a Varian 3400 GC
with a DB-wax column (30 m, 0.25 mm id and 0.15 pm
film thickness, J&W Scientific, Agilent, Santa Clara, CA,
USA) using the following temperature program: 40°C for
3 min, ramp with 4°C/min up to 230°C and kept constant
for 19 min. Injector temperature was 225°C and the
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transfer line 235°C. Helium (0.69 bar inlet pressure) was
used as carrier gas. The GC was connected to a Finnigan
SSQ 7000 MS instrument with electron ionization
(source: 150°C, 70 eV). Separations of enantiomers were
performed as described by Borg-Karlson et al. [39].
HPLC-ESI-MS analyses

LC-MS analyses were performed on a Finnigan HPLC sys-
tem, consisting of a Surveyor MS Pump Plus, Surveyor
Autosampler Plus and Surveyor PDA Plus detector,
coupled to a 2D linear ion trap, Finnigan LXQ (Thermo
Fisher Scientific, San José, CA, USA).

An Ascentis express RP-amide column (15 c¢cm, 2.1 mm
i.d., 2.7 pm film thickness; Supelco, Bellefonte, PA, USA)
together with an RP-amide guard column (2 ¢cm, 2.1 mm
i.d., 5 pm film thickness, Supelco, Bellefonte, PA, USA)
was used for HPLC separations. The separation was car-
ried out with a gradient of 0.1% formic acid in water (A)
and 0.1% of formic acid in acetonitrile (B) and flow rate
200 pL/min, oven temperature was 30°C. The elution gra-
dient was as follows (% of B): 10% (0-3 min), 10-30% (3-51
min), 30-100% (51-57 min), hold for 11 min and finally
decrease to 10% B during 2 min. The system was allowed
to equilibrate for 20 min between analyses.

All measurements were performed in negative mode
with full scans ranging between m/z 50-1000. The ESI
source was optimized on isorhapontigenin and set up as
follows: source voltage 4.00 kV, capillary temperature
270°C, sheet gas flow 40 au (arbitrary unit) and sweep gas
20 au. The capillary voltage was set to -23.00 V and the
tube lens to -109.80 V.

Transcript profiling
RNA extraction, cDNA synthesis and sequencing
Total RNA was isolated essentially as described by Chang
et al. [40]. To eliminate contamination of genomic DNA
the total RNA was treated with DNasel (SIGMA) before
use. RNA quality and quantity was assessed with an RNA
Nano assay on a Bioanalyzer 2100 (Agilent). Poly(A)+RNA
was extracted from the samples with the Dynabeads®™
mRNA Purification Kit (Invitrogen) according to the man-
ufacturer’s instructions. The purified mRNA was amplified
with the MessageAmplII kit (Ambion) according to the
manufacturer’s instruction. First strand cDNA was synthe-
sized from the amplified RNA (aRNA) using the iScript
c¢DNA Synthesis Kit (Bio-Rad) according to the protocol
supplied by the manufacturer except that the RT-reaction
was allowed to proceed over 50 minutes. Second strand
synthesis was performed as described by Sambrook and
Russel [41] using enzymes purchased from Fermentas.
Double stranded cDNA of sufficient quality was pooled
according to genotype and treatment.

Two to five pg each of 24 cDNA samples representing
all time points and treatments were submitted for tem-
plate preparation and pyrosequencing on a GS FLX
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(Roche, 454) at the Norwegian Sequencing Centre http://
www.sequencing.uio.no, according to themanufacturer
protocols (Roche Applied Science). Sequence reads and
quality scores for sequences were obtained from the Nor-
wegian Sequencing Centre.

Verification of gene expression by qPCR

Purified aRNA (1 pg) from all four genotypes (2405, 7398,
3178 and 3340) were reverse transcribed with the iScript™
c¢DNA synthesis kit (Bio-Rad). The cDNA synthesis was
diluted 1:1 in deionizer water, and an aliquot of cDNA
equivalent of 25 ng of aRNA was used per 20 pL of PCR
reaction using Maxima® SYBR Green/Fluorescein qPCR
Master Mix kit (Fermentas) and a final concentration of
0.5 uM of each primer. Primers were designed from isotig
sequences using the Primer3 software [42] with a melting
temperature (Tm) between 58°C and 60°C, and amplicon
length between 95-183 bp (Additional file 1). The ther-
mal-cycling condition parameters, run on a iQ™5 Multi-
color Real-Time PCR Detection System (Bio-Rad), were as
follows: 95°C for 10 min; 40 cycles of 95°C for 15 sec, 58
or 60°C for 10 sec and 60°C for 1 min. Each run was fol-
lowed by a melt curve analysis to validate the specificity of
the reaction. A linear plasmid standard curve was used to
measure the PCR efficiency and primer pairs with effi-
ciency lower than 95% was discarded. Two technical repli-
cates were prepared for each sample.

Transcript abundance was normalized to the reference
genes phosphoglucomutase [43], eukaryotic translation
initiation factor 4A (elF4A) [44]and elongation factor 1-
o (ELFle). The relative expression was calculated using
REST 2006 [45].

Bioinformatics and statistical analyses

The sequences retrieved were assembled with the
sequence assembler software Newbler v2.3 (Roche)
http://my454.com/ with default settings for cDNA
assembly with the sff-files as input file. The sequence
assembly was carried out on the freely available Bioportal
http://www.bioportal.uio.no. The combined sequences
from all treatments were assembled into the gene-equiva-
lent isogroups and the plausible splice variants, isotigs.
For a detailed explanation of the terms isogroup, isotig
and their connection with contigs see Ewen-Campen [46]
but generally an isogroup should equal a gene, isotigs
should correspond to splice variants thereof and contigs
to exons. Contigs were subjected to visual inspection in
ace format with the software Tablet [47]. The combined
assembled sequences from all libraries was used as a
reference file and were annotated with the software Blas-
t2GO [48], where the sequences got annotated to
BLASTx homologies, GO terms and EC numbers as well
as scanned with InterProScan. Furthermore, the data set
was trimmed for fungal sequences by identification of
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species belonging based on the BLAST homologies with
MEGAN [49].

In order to get an estimate of relative gene expression
between the libraries, count data of the occurrence of the
expressed genes in the individual samples were retrieved
by assembling individual reads from each library with the
isogroups and isotigs in the reference file as a reference.
The count data were aligned in R and imported into the
R-package DESeq [50] and normalized on number of
counts and subjected to further pair-wise differential
expression transcriptome analysis.

The normalized count data were transformed to homo-
scedastic data in DESeq and clustered with JMP™ by
Ward’s hierarchical cluster. The contigs annotated into
pathways leading to production of terpenes, stilbenes and
proanthocyanidins were clustered separately.

R (The R Foundation for Statistical Computing, TU
Wien, Vienna, Austria) was used for ANOVA of lesion
length. Multivariate analyses were performed with the
software CANOCO (Version 4.54, developed by Cajo J. F.
Ter Braak and Petr Smilauer, Biometris Plant Research
International, The Netherlands). Variables were subjected
to log transformation, unit variance scaling and mean cen-
tring prior to ordination. Differences in constitutive con-
centrations of terpenes and phenols were evaluated by
t-test assuming unequal variance. Comparisons of concen-
trations before and after treatments were made by pairwise
t-tests on samples from the same root. The t-tests were
carried out with the data analysis tool in Excel (Microsoft)
after log transformation.

Results

Inoculation

Lesion lengths at 44 dpi were significantly longer after
inoculation than after wounding alone (ANOVA, two
factor with replication: p = 0.01) (Table 1). However, no
significant differences in lesions lengths could be found
between genotypes (p = 0.36).

Assembly
The four sequenced genotypes rendered 492,102 reads
in total and these were unevenly distributed between

Table 1 Average lesion lengths (mm) (+/- SD) for
wounded and inoculated roots

Genotype Susceptibility* Wounded Inoculated
2405 LS 25 (0.6) 33011
7398 LS 23 (1.7) 42 (25)
3178 HS 24 (1.7) 39 (8)

3340 HS 23 (2.6) 67 (47)

Measured 44 dpi at the point sampled at 28 dpi, n = 3.
*Highly (HS) or less (LS) susceptible according to Swedjemark [8]
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the samples (Additional file 2). The sequences were
assembled and the resulting isotigs were automatically
annotated (Table 2). As no reference genome is available
for conifers we cannot estimate the percentage of the
total genes that are covered in this data set but the
numbers of possible unique transcripts are similar to
previous conifer studies [51]. In this study we focused
on isotigs associated with terpene- and phenylpropanoid
biosynthesis.

Phenols and phenylpropanoid biosynthetic pathway

Among the constitutive phenols, two astringin dimers
(piceaside A/B and G/H) and one unknown phenol gluco-
side were found in higher concentration in bark from less
susceptible genotypes (p < 0.05). The most obvious effect
on phenol content caused by inoculation was the decrease
of polar substances eluting early in the chromatogram and
an increase of the late eluting, less polar compounds
(Figure 2). Figure 3 shows a PCA based on the relative
phenol composition of the samples. The first PC explained
19% of the variation and mainly separated the samples on
time and treatment. Samples taken from the roots on the
day of inoculation were placed to the left in the plot and
furthest to the right were samples taken from inoculated
roots at 15 or 28 dpi. The second PC had a tendency to
separate the high and low susceptible genotypes. The ten-
dency was more prominent for constitutive samples and at
early stages of the inoculation; samples taken from inocu-
lated roots at 15 and 28 dpi were not separated on a sus-
ceptibility basis (Figure 3). The levels of the flavonoid
catechin in the bark samples were strikingly reduced at 5
dpi in comparison to the constitutive levels. Catechin
accumulated significantly between 5 and 15 dpi in both H.
annosum inoculated (p = 0.024) and wounded bark (p =
0.003) and at 15 dpi the levels of extractable catechin were
comparable to the control (Figure 4). The accumulation of

Table 2 Transcriptome assembly and annotation statistics
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free catechin was more immediate in the less susceptible
genotypes in response to H. annosum compared to in the
highly susceptible genotypes (Figure 4ap < 0.05, unpaired
t-test). It should be noted that the pattern of extractable
catechin varies among the genotypes; for example 3178
did not show any pronounced reduction of extractable
catechin at 5 dpi compared to the control, while the
reduction in 3340 was much more pronounced (p =
0.0086, unpaired t-test).

A cluster analysis based on the count data of isotigs
(Accession number) with similarity to selected genes
(phenylalanine ammonia lyase (PAL), cinnamic acid 4-
hydroxylase (C4H), 4-coumarate ligase (4CL), flavanone-
3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR),
anthocyanidin reductase (ANR), leucoanthocyanidin
reductase (LAR), MATE-like, cinnamoyl CoA reductase
(CCR) and cinnamyl alcohol dehydrogenase (CAD)) in
the phenylpropanoid and flavonoid pathway together
with selected reference genes resulted in eight clusters
(cluster 1-8, Figure 5).

Cluster 1 includes the selected reference genes that
are highly expressed throughout the experiment. The
isotigs in cluster 2 are all very highly expressed through
all treatments. Cluster 3 contain isotigs that are signifi-
cantly up-regulated at 5 dpi compared to the control,
irrespective of treatment, and then remain induced
throughout the experiment, such as two ANR sequences
and one LAR sequence (Figure 5). All of the isotigs
annotated as LAR are significantly up-regulated at 5 dpi
(p < 0.05) compared to the control. Cluster 4 includes
isotigs which show a higher expression in the control
and in wounded samples at 15 and 28 dpi. In cluster 5
and 6 isotigs activated in response to infection at 5 an
15 dpi are found, for instance isotigs annotated as PAL,
LAR and F3H (Figure 5). Interestingly, isotigs represent-
ing the genes directly involved in lignification, i.e. isotig

Assembly Annotation of isotigs

Total reads 492 102 Nr. with BLASTx 13 390
Total bases 146391859 homology

Assembled reads 242 206 Nr. GO Annotated 8 468
Inferred read error 1.51% GO Annotations 41 330
Q40* 94.53% Nr. with KEGG EC 3 605
Singletons 55334 Total KEGG EC Nr. 45183
Isogroups ('genes’) 9678 Nr. InterproscanTotal 79 194
Isotigs ("transcripts”) 14 364

Isotig N50 769

Mean no. isotigs per isogroup 15

Isogroups with one Isotig 7239

Contigs ("exons”) 17228

Mean no. contigs per isotig 2

* Q40 of contigs of at least 500 bp length
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Figure 2 LC-MS chromatograms for samples taken from the same H. annosum-inoculated root 0, 5, 15 and 28 days post inoculation.
The box enhances the area where compounds with relatively low polarity elute.

14332 (CCR), show a transient 3-4 fold up-regulation at
5 dpi compared to the control, but a corresponding up-
regulation cannot be detected at 15 or 28 dpi. None of
the isotigs annotated as CAD show any significant regu-
lation. Clusters 7-8 included no or very few isotigs with
significant differential expression between time points.

The overall expression pattern of the isotigs associated
with the phenylpropanoid and flavonoid pathways was
similar in the controls (Figure 5). At 5 dpi the general
expression pattern was similar for all treatments except
the isotigs found in clusters 4-6. No clear separation
between highly and less susceptible genotypes could be
detected at 5 or 15 dpi but the highly susceptible geno-
types show more similar expression patterns after inocula-
tion at these time points than the less susceptible
genotypes (Figure 5). The observation that the less suscep-
tible genotypes sometimes show contrasting expression
patterns in response to wounding and inoculation is
clearly verified in the qPCR analysis of the four genotypes
(Figure 6).

The qPCR analysis of PAL, C4H, CAD, LAR and ANR
genes confirmed the above picture. PALI, C4H2 and
C4H3/5 were significantly up-regulated at 5 dpi,

irrespective of treatment (p < 0.05, Figure 6). At later time
points only C4H2 was significantly (p < 0.05) up-regulated.
No significant up-regulation was observed for CAD. Signifi-
cant regulation (p < 0.05) was seen for ANR2, ANR3, LARI
and LAR2 at 5 dpi (Figure 6) and all but LARI stayed up-
regulated throughout the experiment. An isotig with simi-
larity to the R2R3 myb transcription factor gene 772
(transparent testa 2) showed a significant up-regulation for
both treatments at all time points (p < 0.05). The actual
levels of expression of the tested genes varied between gen-
otypes: 7398 showed down regulation of PALI, PAL2,
C4H3/5 and CAD at 15 and 28 dpi in wounding and at 28
days post H. annosum inoculation while 2405, for example,
did not (Figure 6c, e-f).

Terpenes and terpenoid biosynthesis

The terpene content of the constitutive samples did not
indicate clear differences between high and low suscepti-
ble genotypes. Both inoculation and wounding induced
terpene accumulation around the wounds but no consis-
tent alterations of terpene composition were found. A
PCA based on relative terpene composition (Figure 7)
tends to separate the four genotypes from each other on



Danielsson et al. BMC Plant Biology 2011, 11:154
http://www.biomedcentral.com/1471-2229/11/154

Page 8 of 15

2@
§¢m
g 2,40
H'{)‘ Y F.
= ¥G ¢ eom
©
5 7Ba] S
B P
gl B TR V.
# oo
T
i i 2| savees
2 gl 1 P 20 B 30 o
o O0O¢ &
12 s OO @A
s ®H G 2
S x He
=10 PC1 (188%) 10
?_ )
AR
Fe I
.,
M .
7y +i Ré& Pd" N
PG oan PR i
R, !
pan Py PR mi'!'h 3 no e
g I ey do t i BT pw P
ML i Pz B
rart {M -ﬁ?,*h ¥ ﬁ: ;:é AL
B i *ﬂ“h‘h' Ape TP PR Rtk
4 ] i Mﬁ‘
m+ £ P
P, Rl P
@ R VARMELES
] +
=10 PC1 10
Figure 3 PCA based on relative phenol composition. (a) Sample score plot. Odd numbers: inoculated samples, even numbers: wounded
samples. Less susceptible clones (LS; 2405, circles and 7398, squares) are coloured in yellow-red and highly susceptible clones (HS; 3178,
diamonds and 3340, triangles) are coloured in green-blue. The percentages of the axes states how much of the variation the PC explain. (b)
Corresponding variable loading plot. The constitutive levels of P-24 (unknown glucoside), P-52 (piceaside A/B) and P-66 (piceaside G/H) were
higher in samples from less susceptible clones. Further information on phenolic numbering (P-#) is found in Additional file 3.

the first PC but this separation did not correlate with sus-
ceptibility. At 28 dpi the accumulation of 3-carene dif-
fered between treatments (p < 0.01): on average H.
annosum inoculation caused a 1200-fold increase while
wounding lead to a 70-fold increase.

A limited number of contigs with significant similarity
to terpene synthase (TPS) genes were found in the data-
set (Accession number). There were three contigs with
significant alignment to (-)-0/B-pinene synthase (PaTPS-
Pin, [52]), each making up a separate isogroup in the
dataset. One isogroup, including one isotig, showed high
similarity to the previously described (+)-3-carene
synthase gene [PaTPS-Car, 18]. Furthermore one contig
had a significant BLASTx hit to limonene synthase
(TPS-Lim) genes of Picea spp.

Discussion
This study aimed to find associations between lower sus-
ceptibility to Heterobasidion spp. in Norway spruce and

changes in the transcriptome and chemical profiles
among host genotypes challenged with the fungus. We
used unique clone material derived from fully-grown
Norway spruce trees with either high or low susceptibility
to Heterobasidion spp. as measured in a field trial [7]. We
selected four genotypes at a site in central Sweden, two
highly susceptible and two with lower susceptibility for
these comparisons. It is well established that in the inter-
action between Heterobasidion spp. and conifers, lesion
length correlates to the fungal extension but not to the
host resistance measured as sapwood growth or rot
extension in the wood [6,8,38]. Consequently one cannot
expect a lesion extension proportional to the fungal
extension under field conditions. Although, we could not
detect any significant differences in lesion length between
genotypes at 44 dpi, we found significantly longer lesions
in the inoculated wounds compared to mock inocula-
tions. This showed that the host trees responded differ-
ently or stronger to inoculation than to wounding.



Danielsson et al. BMC Plant Biology 2011, 11:154
http://www.biomedcentral.com/1471-2229/11/154

Page 9 of 15

\

(@
H. annosum
— ~ 12000
(=]
o
2
Z é 10000 2405
=l
o
E‘g 8000 —0— 7398
= —o— 3178
g2 —f— 3340
£ = 4000
@ -
S 2 2000
N E
ER 0 3 . ‘ !
0 10 20 30
Days postinoculation
()
Wounded
_ —~ 12000
© L=
e E
g 2 10000 2405
3
g é 8000 07308
8=
g_ﬁu 6000 —— 3178
s £ .
£ > 4000 .
@ -
&2 2000
N E
E 3 0 . . |
0 10 20 30
Days postinoculation
Figure 4 Average levels of (+)-catechin in H. annosum inoculated (a) and wounded bark (b) at 0, 5, 15 and 28 dpi. Error bar indicates SE.

Both terpene and phenol compositions were studied
but patterns relating to inoculation or specific to geno-
types with higher or lower susceptibility could only be
found in the phenol fraction. There was a strong increase
in terpenes after both wounding and inoculation, but no
general qualitative differences. Instead, the most typical
variation of terpene content was between the genotypes,
without any correlation with resistance. The genotype-
dependent regulation is in agreement with the work by
Zeneli and co-workers [53] who report a genotype-
dependent response in sapwood terpene production after
treatment with methyl jasmonate. Woodward et al. [54]
found a larger relative increase of 3-carene in less suscep-
tible genotypes of Sitka spruce after inoculation with
H. annosum in comparison with more susceptible geno-
types. Our study showed no significant differences
between genotypes of the two susceptibility levels. Never-
theless, inoculation caused a stronger 3-carene induction
than wounding did, which is consistent with earlier find-
ings in Norway spruce [20,55]. The expression levels of
mono-TPS genes correlate with the production levels of
monoterpenes in Norway spruce [52,56]. The isogroups
with similarity to previously described Norway spruce
mono-TPS genes could account for the monoterpenes
identified. The absence of treatment-specific responses

associated with terpenes in the chemical analyses was
also reflected in the transcriptome. Although a number
of sequences with significant similarity to previously
described PaTPS genes were present in the data set, no
consistent responses were found between treatments or
between genotypes with high or low susceptibility. The
overall picture of the regulation of terpenes based on the
terpene profiles and the regulation of TPS genes in the
transcriptome data suggests that terpenes are regulated
primarily in an individual genotype-dependent manner
rather than a treatment-dependent manner in this study.
In Sitka spruce a small gene family of TPS-Car genes has
been reported [28,57] in genotypes resistant or suscepti-
ble to white pine weevil. Also (+)-3-carene and terpino-
lene (another major product of TPS-Car), have recently
been identified as indicators for resistance against weevils
in a particular geographic region of Sitka spruce origin
[58]. These studies suggests that an even more focused
approach, for instance involving cloning of specific TPS-
Car genomic sequences from individual genotypes, might
be needed to address clone specific differences in
terpene-based defence.

The constitutive phenolic composition differed
between genotypes with high and low susceptibility but
H. annosum inoculation lead to a differentiated phenolic
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pattern, characterized by an increase of less polar com-
pounds, e.g. aglycones. This is in accordance with pre-
vious findings after fungal inoculations [12,14,24,26,32].
Among the constitutive phenols, astringin dimers

(piceasides) are found in higher concentration in samples
from genotypes with low susceptiblity. Astringin was sug-
gested to contribute to resistance against H. parviporum
by Lindberg et al. [12] since its concentration correlated
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negatively with hyphal growth seven days after inocula-
tion. Stilbene dimers of astringin in Norway spruce were
described the first time by Li et al. [59] and their ecologi-
cal role has not yet been studied. However, viniferins,
which are dimers of the stilbene resveratrol, showed anti-
fungal activity in studies on grapevine and the dimers
were generally more toxic than the monomer [60]. Our
results indicate that the piceasides could be of impor-
tance in the defence system against Heterobasidion spp.,
but any antifungal effect remains to be shown.

Brignolas et al. [61] and Schmidt ez al. [62] have sug-
gested that activation of the biosynthetic pathways lead-
ing to flavonoids and stilbene monomers and the

subsequent conversion of these into insoluble products,
plays a central role in the induced defence towards
wounding and fungal infection in conifers. It was sug-
gested that resistance to C. polonica depends on the abil-
ity of Norway spruce to easily activate the flavonoid
pathway [61]. Consequently, we were interested in
whether activation of the flavonoid pathway is also of
importance in the interactions with H. annosum. A close
examination of the phenol profiles revealed that catechin
accumulated significantly between 5 and 15 dpi in both
H. annosum-inoculated and wounded bark (Figure 4).
Interestingly the accumulation of free catechin was more
immediate in the less susceptible genotypes in response
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to H. annosum compared with the highly susceptible
genotypes. A two-way clustering of the isotigs belonging
to the flavonoid biosynthetic pathway was made to reveal
expression patterns. This clustering contains a number of
highly similar ANR and DEFR isotigs with a low level of
expression (cluster 1 in Figure 5). Although no one
knows exactly how many members of these gene families
are to be expected in spruce it is likely that these isotigs
are a reflection of the quality of the assembly. Our data
set had an average read length of 305 bp (Additional file
2), which is shorter than expected due to technical pro-
blems in the cDNA synthesis and library preparation.
Also we used Newbler 2.3 to assemble this data set and
Kumar and Blaxter (2010) [63]reported that this version
of Newbler generates assemblies with significantly lower
total lengths than newer versions of Newbler. In the case
with the Milkweed transcriptome the differences between

Newbler 2.3 and later versions were not as drastic as
reported by Kumar and Blaxter [46] suggesting that the
impact of the assembler on the length of the assembly
varies. Finally the samples consisted of a mixture of plant
and fungal transcripts and in the absence of a spruce
reference genome, this will affect the assembly of genes
belonging to gene families present in both plants and
fungi. Nevertheless differences between treatments can
be found and validated by qPCR. The accumulation of
catechin is preceded by a concomitant activation of genes
in the phenylpropanoid pathway (PAL, C4H and 4CL)
and of genes in the epicatechin and catechin biosynthetic
pathways upon wounding and H. annosum attack (Figure
5, 6). The strongest effect in the 454-data set is seen on
the transcription of LAR genes, which are significantly
up-regulated at 5 dpi. The up-regulation of LAR is
accompanied by an up-regulation of the upstream DFR,
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which forms leucoanthocyanidins from which LAR
synthesizes catechins [30,64]. Up-regulation of the com-
peting ANS (anthocyanidin synthase), which also utilizes
leucoanthocyanidines as substrates to form anthocyani-
dines was also observed in addition to ANR, an enzyme
that catalyzes the synthesis of epicatechins from antho-
cyanidins [30,65]. In contrast, isotigs representing genes
directly involved in monolignol formation (CCR and
CAD do not show any significant up-regulation upon
wounding or inoculation (Figure 5). This picture was
confirmed by the qPCR analysis where no significant
induction of CAD was observed (Figure 6). However the
up-regulation of PAL and C4H at 5 dpi shows that the
phenlypropanoid pathway is activated. Monolignol for-
mation and lignification is a major sink for metabolites of
the phenylpropanoid pathway and the modest transcrip-
tional regulation in this pathway following wounding and
H. annosum inoculation may suggest that a larger pro-
portion of the metabolites are allocated to other down-
stream pathways such as the flavonoid pathway as
indicated by the confirmed up-regulation of LAR and
ANR expression. Also a recent report on Sitka spruce
states that H. annosum inoculation or wounding do not
result in any significant changes in lignin content either
in bark or in sapwood, but the levels of extractable phe-
nols do increase in the bark [66].

The level of susceptibility of Norway spruce to Hetero-
basidion infections is partly determined by the genotype
[6,7]. The pattern of extractable catechin in bark differ
between the clones; the two less susceptible genotypes
show a significantly larger increase of free catechin
between 5 and 15 days than the two highly susceptible
genotypes after inoculation and wounding (Figure 4). The
qPCR results show that the transcriptional changes in the
flavonoid pathway in response to H. annosum or wound-
ing treatment are substantially different in 2405 and 7398,
the two less susceptible genotypes (Figure 6). The gPCR
data may also indicate more general differences between
the clones as the expression of the PAL genes, for exam-
ple, is already down-regulated at 15 dpi in wounded mate-
rial of 7398 while they remain slightly up-regulated at 28
dpi irrespective of treatment in 2405 (Figure 6). The result
indicates that genotype 2405 and genotype 7398 may per-
haps depend on different successful defence strategies in
the interaction with Heterobasidion.

Conclusions

The varying dynamics in transcription chemical patterns
displayed by the less susceptible genotypes suggest that
there is a genotypic variation in successful spruce
defence strategies against Heterobasidion. However, both
high levels of piceasides and flavonoids in the less sus-
ceptible genotypes demonstrated the importance of the
phenolic compounds in defence. Clearly an extended
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comparison of the transcriptional responses in the inter-
action with Heterobasidion between several independent
genotypes exhibiting reduced susceptibility is needed to
catalogue mechanisms of successful host defence
strategies.

Additional material

Additional file 1: qPCR primers used in the study.
Additional file 2: 454-library size and mapping metrics.

Additional file 3: Denotations of phenols in Figure 3and terpenes in
Figure 7.
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