Clark standard Wild type Clark glabrous Hairless soybean mutant # Transcript profiling reveals expression differences in wild-type and glabrous soybean lines Hunt et al. #### **RESEARCH ARTICLE** Open Access ## Transcript profiling reveals expression differences in wild-type and glabrous soybean lines Matt Hunt^{1,3†}, Navneet Kaur^{1†}, Martina Stromvik² and Lila Vodkin^{1*} #### **Abstract** **Background:** Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for *Arabidopsis thaliana*, but their applicability to important crops such as cotton and soybean is not fully known. **Results:** Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant *P1* allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, *Glyma04g35130*, in wild-type soybean was of interest as it has high homology to the cotton gene *GhRDL1* gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of *Glyma04g35130* among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. **Conclusion:** Although not a candidate for the *P1* locus, a BURP family member (*Glyma04g35130*) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the glabrous CG line. RNA-Seq and DGE data are compared and provide experimental data on the expression of predicted soybean gene models as well as an overview of the genes expressed in young shoot tips of two closely related isolines. #### **Background** Plant trichomes are appendages that originate from epidermal cells and are present on the surface of various plant organs such as leaves, stems, pods, seed coats, flowers, and fruits. Trichome morphology, varying greatly among species, includes types that are unicellular, multicellular, glandular, non-glandular (as in soybean), single stalks (soybean), or branched structures (Arabidopsis) [1]. Various functions have been ascribed to trichomes, including roles as attractants of pollinators, in protection from herbivores and UV light, and in transpiration and leaf temperature regulation [2-4]. The genetic control of non-glandular trichome initiation and development has been studied extensively in Arabidopsis and cotton. In Arabidopsis, several genes were identified that regulate trichome initiation and development. A knockout of *GLABRA1* (*GL1*) results in glabrous Arabidopsis plants [5]. The *GL1* encodes a R2R3 MYB transcription factor that binds either *GL3* or ENHANCER OF GLABRA3 (EGL3), basic helix-loophelix (bHLH) transcription factors, which in turn bind to TRANSPARENT TESTA GLABRA (TTG) protein, a WD40 transcription factor [6,7]. The binding of GL1-GL3/EGL3-TTG1 forms a ternary complex, which Full list of author information is available at the end of the article ^{*} Correspondence: I-vodkin@illinois.edu [†] Contributed equally ¹Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA initiates the progression of an epidermal cell development into a trichome by binding to the *GLABRA2* (*GL2*) gene, which encodes a homodomain/leucine zipper transcription factor [8]. Microarray gene expression analysis of two Arabidopsis mutants lacking trichomes with wild-type Arabidopsis trichomes identified several cell-wall related upregulated genes [9]. Transcriptome analyses of wild-type trichomes and the double mutant *gl3-sst sim* trichomes in Arabidopsis identified four new genes: *HDG2*, *BLT*, *PEL3*, and *SVB* that are potentially associated with trichome development [10]. Cotton fibers are single celled trichomes that develop from the surface of cotton seed [11]. The development of cotton fibers goes through four stages of development: differentiation/fiber initiation, expansion/elongation, secondary cell wall biosynthesis, and maturity [11,12]. Unlike Arabidopsis, the specific genes/proteins involved in cotton fiber initiation have not been clearly elucidated. Several different approaches have been taken to study cotton fiber initiation and elongation, including studying gene expression in normal fibers [12-14], comparing gene expression in fiber development mutants to normal cotton varieties [13,15-17], and using existing EST or gene sequences from cotton or Arabidopsis clones [18-23]. Microarray studies comparing cotton fiber initiation mutants identified six clones falling into either BURP-containing protein or RD22-like protein that were over expressed in cotton fibers in wild-type compared with the mutant lines [15,16]. These six clones are all members of the BURP domain gene family as the RD22 protein that was identified in Arabidopsis is also a member of the BURP domain family of proteins [24]. Soybean has 23 possible BURP domain containing genes which are classified into five subfamilies: BNM2-like, USP-like, RD22-like, PG1 β -like, and BURPV (a new subfamily) depending on the translated products homology to these founding members of the BURP family [25,26]. BURP genes are plant-specific and with diverse functions in plants [24,25]. Unlike Arabidopsis and cotton, the developmental genetics of soybean trichomes has not been studied extensively. However, there are several soybean trichome developmental mutants available, including PI (glabrous), pc (curly pubescence), Pd (dense pubescence), Ps (sparse pubescence), and Ps (puberulent) that are each controlled by a different single Mendelian locus [27]. These mutants have been used to relate the importance of trichome to insect resistance [4,28,29], evapotranspiration [2,30,31] and other yield related characteristics. However, until now, none of these glabrous classical mutations has been studied at the molecular level. We studied the dominant PI glabrous soybean mutant using two high throughput transcript sequencing technologies to reveal major expression differences between the two genotypes. RNA and DNA blots further characterized a highly differentially expressed BURP family member *Glyma04g35130* that varied between the two genotypes and may be associated with trichome development in soybean although it is not a candidate for the *P1* locus. #### **Results** ## DGE library construction and identification of authentic tags We first used Illumina DGE Tag Profiling to determine the differential gene expression between wild-type Clark standard (CS) and glabrous-mutant Clark glabrous (CG) in shoot tip tissue. The CG isoline was developed by backcrossing the P1 glabrous mutant into Clark for six generations [27]. Total RNA isolated from shoot tips of both CS and CG plants was analyzed by Illumina DGE tag profiling to create transcriptome profiles of the two isolines. DGE tags are 16-nucleotide long and are designed to be derived from the 3'UTR of the transcript. DGE data provide a quantitative measure of transcript abundance in the RNA population and can also identify previously unannotated genes. The majority of DGE tags are expected to match only one location in the genome, with the remaining tags matching duplicated genes, alternate transcripts, antisense strands, or repeated sequences [32]. We obtained a total of 5.28 and 5.26 million tags from the CS and CG lines respectively, that resulted in approximately 84,899 and 85,402 unique tags from the CS and CG lines, which had counts of 5 tags or more in at least one library. DGE tags were aligned to the 78,774 cDNA gene models (known as Glyma models) predicted from the soybean reference genome of cv. Williams 82 [33] and available from Phytozome v.6 [34] using Bowtie [35]. With a stringent criterion of 0 mismatches within the 16-nucleotide tag alignments, most of the tags aligned to the models but large numbers of tags did not. In order to retrieve alignments in the cases where the computationally predicted Glyma models did not call sufficient 3'UTR sequence, we extended the Glyma models at both the 5' and 3' ends by 250 bases in each direction. This analysis produced more hits of tags that corresponded to the extra left, junction left, junction right, and extra right region in addition to the model (Figure 1 & Additional file 1). These data show that the current computational models from the soybean genome are likely incomplete for especially for the 3' end. Of the approximately 5.2 million tags in each library, we found that 4.7 million aligned to one or more of the extended soybean genome models. The remainder showed no alignment to any model or to the extended Glyma models. Non-aligned sequences might be attributed at least **Figure 1 Distribution of DGE 16-bp tags according to their positional alignment to the Williams 82 Glycine max gene models.** The cDNA models were downloaded from Phytozome [34]. Shown are the number of tags that matched to either the cDNA model or to 250 bases extended to the 5' or 3' end of each model as represented by
the figure underneath the graph. partially to single nucleotide differences in the soybean cultivars used in this study (Clark) as compared to the references soybean genome (cv. Williams 82) since a 0 mismatch criteria was used in the alignments. An example that illustrates multiple DGE tags found in a single Glyma model is Glyma04g35130, that matches five DGE tags: DGE0000012, DGE0002838, DGE0008244, DGE0022468, and DGE0033570 (Figure 2A &2B). Out of these 5 tags, only DGE0000012 originates from the authentic position within Glyma04g35130 because this tag sequence is adjacent to the last DpnII site in 3'UTR and additionally its abundance represents a normalized count of 2545 tags per million aligned DGE reads in the CS line as compared to other less abundant tags that likely originate from incomplete restriction digestion of *Dpn*II sites on either the positive or negative strands. For example, DGE0002838 and DGE0022468 likely originate from restricted fragments, which were not washed away after digestion of cDNA with DpnII (Figure 2). DGE0008244 and DGE0033570 originate due to inefficient restriction by DpnII (Figure 2). Thus, DGE0000012 is the authentic tag representing the transcript for Glyma04g35130 (Figure 2A &2B). As will be discussed later, the abundance of transcripts originating from the authentic DGE tag position DGE0000012 is very high in CS and dramatically reduced in CG (CS/CG = 2,545/1.06 tags). Additionally, all of the less abundant secondary tags from different positions showed much lower counts in the CG line, indicating that they all arise from the same Glyma model, Glyma04g35130. One DGE tag can also match to more than one Glyma model. For instance, DGE0004659 matches two Glyma models: *Glyma03g41750* and *Glyma19g44380* (data not shown). This DGE0004659 tag originates from *Glyma19g44380* because the sequence of this DGE tag is adjacent to the last *Dpn*II site in its 3'UTR as expected according to the protocol used for mRNA sequencing by Illumina. ## Transcriptome comparison of Clark standard and Clark glabrous with DGE tag profiling Approximately 85,000 unique tags representing over 4.7 million DGE tags that aligned to the extended Glyma cDNA predicted gene models of the soybean genome were generated from each line of the CS and CG isolines and counts were normalized per million aligned (mapped) reads. The resulting transcriptome datasets identified highly expressed genes as well as differentially expressed genes between young shoot tips of CS and CG isolines. The top 300 highly expressed genes (Additional file 2) in both genotypes were divided into 15 broad functional categories (Figure 3A) and their percentage distribution is illustrated in Figure 3B. As shown in Figure 3A, the genes from the top 5 categories that were highly expressed in shoot tip of CS and CG encode proteins related to: ribosomes (70 different tags), protein biosynthesis/metabolism (35 tags), photosynthesis (34 tags), other (29 tags), and histones (28 tags). In addition to automated annotations to the soybean references genome [34] and other databases, the annotation of these DGE tags were verified manually using blast searches to the soybean EST databases as described in the Materials and Methods section. The matches to specific ESTs are shown in the Additional File 2. This approach also verified direct expression of the DGE tags that were located in the extended Glyma model regions. Tags that were either ≥2-fold over or under-expressed in CS in comparison with CG with a minimum of 42 counts per tag per million mapped reads were also analyzed in greater detail. Of these, 144 (Additional file 3) showed ≥2-fold over-expression in CS as compared to CG and 23 were under-expressed in CS. Of those, some showing the greatest differential expression (either over or under-expressed relative to the Clark standard line) are shown in Table 1. Among the tags overexpressed in the CS line, one particular tag corresponds to a gene located on *Glyma04* chromosome, specifically *Glyma04g35130*, and showed >2000-fold expression difference between CS/CG = 2,545/1.06 tags per million aligned tags (Table 1). The *Glyma04g35130* gene is a member of the *BURP* gene family. It has high homology to the cotton gene-*RESISTANCE TO DROUGHT RD22-like 1* (*GhRDL1*), involved in cotton fiber initiation and member of the BURP protein domain family [15,16]. Soybean has a total of 23 BURP domain containing genes and BURP a) acaaaattcqtqtttcatatccacctaaaccataaqtcctattqqctcaaatqcaacatatqcctcataatqccatctcacccttc ctccaaaaqqtctatatatctttqqtttctctqtqtctcaatatcacattctcatctctaaccactttqcttcaqctatqqaqt ttcqttqccttccattqqttttctctctcaatctqatcctqatqacaqctcatqctqccatacctccaqaaqtttactqqqaaaqq $\verb|atgcttccaaataccccaatgcccaaagcaatcatagactttctaaaccttgatcaacttcctcttaggtatggtqctaaqqaaaccttgatcaacttcctcttaggtatggtqctaaqqaaaccttgatcaacttcctcttaggtatggtqctaaqqaaaccttgatcaaccttgatcaacttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttctaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttagatcaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttgatcaaccttcctcttaggtatggtqctaaqqaaaccttcaaccttgatcaaccttcctctcttaggtatggtqctaaqqaaaccttcaacctt$ $\verb|coatcaacagatcaaatattcctgtatgatgctaagaaaacccaatcaacagatcaagttcctcctatcttttatggtgataagaacccaatcaacagatcaagttcctcctatcttttatggtgataagaacccaatcaacagatcaagttcctcctatcttttatggtgataagaacacagatcaacagatcaagatc$ qqtqctaaqaaaacccaatcaacaqatqaaqttcctccatacttttatqqtqctaaqaaaatccaatcaacaqatqaaqttcctcc atcaagttcctccttttttttatggtgctaagaaaacccaatcaacagatcaagttcctatcttttatggtgctaagaaaactcaa tca a cagat caa agt to ctat cttttat gg t g ctaa agaa a acccaat caa cagat caa at to cto cotttt tttt tt tat gg gg g ctaa cagat caa at to cto cotttt tt tt to ttat gg gg g ctaa cagat caa at to cto cotttt to ttat to gg gg g ctaa cagat caa agt to ctat cott to ctat to ctat can be caused as a constant of the country cotttttcttatqqtqctaaqaaaacccaatcaacaqatcaaactcctctttttttatatqqtqctaaqaaaacccaatccqaaqatc aattcctatttttttggtacggtgttaagaaaactcaatccgaagatcaacctcctctttggtacggtgttaagaaaacctatgttg caaaaagaagtctttcacaagaagatgaaacgatccttgttgctaatggccatcaacatgacatcccaaaagcagaccaagttttc tttgaagaaggattaaggcctggcacaaaattggatgctcacttcaagaaaaagagaaaatgtaaccccattgttgcctcgccaaat tgcacaacatataccgttgtcatcagcaaagataaaagaaatagttgagatgctttttgtgaacccagagccagagaatgttaaga <mark>acatcagaatgg</mark>gatc<mark>caaaccatgtgttttt</mark>acaaatgcttaaaaccaagcctggagctgctccagtgtgtcacatcttccctga gggccaccttctctggtttgccaaataggttacttaagtctttatttgttagtgtgtccttaaataagtaggcatttccatattgc
atctgatgaactatatcagcctacaatgtatttctctatgtttgaaattgtctatcttaatggcatcataatgtagtgattat agtaataggtgtgtgttagttgcaaagagagacccctgataaacaaatacttacatggaaaatccaaaatttaaaaaagggaaata ttaatatagtaagaaataatagtatcataaagctaacaggtca #### b) | Model | DGE tag | Sequence | CS | CG | Strand | Authentic | |---------------|------------|-------------------------|--------------------|-------------------|------------------------|-----------------| | | | | counts | counts | | tag | | Glyma04g35130 | DGE0000012 | TACCTTAATGGCATCA | 2,545 | 1.06 | sense | yes | | | DGE0002838 | ACAATTTCAAACATAG | <mark>67.87</mark> | <mark>0.19</mark> | <mark>antisense</mark> | <mark>no</mark> | | | DGE0008244 | CAAACCATGTGTTTTT | <mark>24.04</mark> | 0.19 | sense | <mark>no</mark> | | | DGE0022468 | CCATTCTGATGTGTCT | 6.170 | 0.19 | antisense | <mark>no</mark> | | | DGE0033570 | CTTGTTGCTAATGGTC | 2.970 | 0.19 | sense | no | **Figure 2 Identification of the authentic tag corresponding to its Glyma model**. (A) Clark standard (CS) *Glyma04g35130* transcript sequence. *Underlined* sequences represent *DpnII* restriction sites. DGE0000012, indicated in *red* is an authentic tag because it is adjacent to the last *DpnII* site in the 3'UTR sequence of this gene. Other non-authentic site tags on either the sense or antisense strand are also shown: DGE0002838 (*yellow*) and DGE0022468 (*green*) originated from restriction fragments which are not washed after digestion of cDNA with *DpnII*; DGE0008244 (*ferozi*) and DGE0033570 (*grey*) originated due to inefficient restriction of cDNA by *DpnII*. (B) Five DGE tags match *Glyma04g35130* sequence. Their respective sequences and counts in CS and the glabrous-mutant (CG) are indicated. gene family members from other species are known to have diverse functions [26]. Some of the proposed functions of BURP family members include: regulation of fruit ripening in tomato [36,37], response to drought stress induced by abscisic acid in Arabidopsis [38], tapetum development in rice [39], and seed coat development in soybean [40]. In Clark, the DGE0000012 tag found to correspond to *Glyma04g35130* is the 12th most abundant tag in the DGE data set. For perspective, the 4th most abundant tag with a normalized count of 4,903 tags matches a chlorophyll a/b binding factor as do several of the most abundant tags (Additional file 2). For further verification of differential expression, we used DESeq package in R without replications as described [41]. This condition relies on the assumption that in the isolines most genes will be similarly expressed, thus treating the two lines as repeats. This analysis produced the same list of significant up and down-regulated genes. Lists of all differentially expressed genes in CS versus CG or vice versa are shown in Additional file 4A &4B, respectively, using the DESeq package. #### Comparison of DGE data with RNA-Seq The sequencing of CS and CG transcriptome by RNA-Seq generated 91.4 and 88.7 million 75-bp reads, **Figure 3 Distribution of the top 300 highly-expressed DGE tags among their functional categories.** (A) The top 300 most abundant DGE tags in Clark standard (CS) and Clark glabrous (CG) separated into functional categories. (B) Percentage distribution of the functional categories of the genes corresponding to the top 300 most abundant DGE tags in both Clark standard (CS) and Clark glabrous (CG). respectively from an independent biological sample of the CS and CG shoot tips. These tags were mapped to the 78,744 soybean gene models using Bowtie [35]. RNA-Seq data was normalized in reads per kilo base of gene model per million mapped reads (RPKM) as the sensitivity of RNA-Seq depends on the transcript length [42]. RNA-Seq analysis revealed that at the cutoff point of 10 RPKM, a total of 11,574 and 14,378 genes were expressed in CS and CG, respectively. At a cutoff of 1 RPKM, however, 41,972 and 44,120 genes were expressed in CS and CG, respectively. Together, the results suggest that in the RNA-Seq transcriptome, $\sim 50\%$ of genes are expressed in both wild-type and mutant soybean. The genes that showed over expression in CS compared to CG or vice versa in DGE data were compared with Table 1 Top DGE tags and RNA-Seq RPKM for genes that are over expressed either in Clark standard (a) or Clark glabrous (b). | a) | | | | | DGE | | | RNASeq | | |----|------------|------------------|---|--------|--------|-----------|---------|--------|----------| | | DGE Tag ID | Glyma Model | Annotation | CS | CG | CS/
CG | CS | CG | CS/CG | | | DGE0000165 | Glyma14g04140.1 | copper ion binding protein | 595.96 | 0.21 | 2801 | 4.58 | 2.31 | 1.98 | | | DGE0000012 | Glyma04g35130.1 | BURP domain protein | 2544.7 | 1.06 | 2392 | 480.38 | 0.01 | 45679.50 | | | DGE0000974 | Glyma16g02940.1 | chitinase | 164.04 | 0.21 | 771 | 139.37 | 91.88 | 1.52 | | | DGE0002509 | no Glyma model | cyclic nucleotide-gated channel B | 75.53 | 0.19 | 394.44 | NA | NA | NA | | | DGE0003828 | no Glyma model | small polyprotein 2 | 51.49 | 0.19 | 268.89 | NA | NA | NA | | | DGE0003923 | Glyma16g28030.1* | chlorophyll a-b binding protein 1 | 50.43 | 0.19 | 263.33 | 1093.27 | 280.90 | 3.89 | | | DGE0001116 | Glyma08g22680.1 | Blue copper protein precursor | 146.17 | 1.06 | 137.4 | 4.39 | 0.44 | 10.02 | | | DGE0002248 | Glyma11g07850.1 | cytochrome P450 monooxygenase CYP84A16 | 82.77 | 4.04 | 20.474 | 7.29 | 0.34 | 21.44 | | | DGE0002191 | Glyma15g15660.1 | putative allergen | 84.26 | 4.26 | 19.8 | 5.55 | 1.38 | 4.03 | | b) | | | | | | | | | | | | DGE0002073 | Glyma09g38410.1 | calreticulin-3 precursor | 88.94 | 329.79 | 0.2697 | 10.35 | 21.32 | 0.49 | | | DGE0000639 | Glyma07g05620 | phosphatidylserine decarboxylase invertase/pectin methylesterase inhibitor family | 233.83 | 753.40 | 0.3104 | 3.07 | 65.57 | 0.05 | | | DGE0004450 | Glyma06g47740.1 | protein | 44.89 | 143.62 | 0.31 | 8.04 | 28.56 | 0.28 | | | DGE0000888 | Glyma05g09160.1 | lipid transfer protein | 177.87 | 567.45 | 0.31 | 7.03 | 12.47 | 0.56 | | | DGE0003408 | Glyma02g01250.1 | hypothetical protein invertase/pectin methylesterase inhibitor family | 57.021 | 177.66 | 0.32 | 3.67 | 4.13 | 0.89 | | | DGE0002491 | Glyma06g47740.1 | protein | 75.74 | 233.40 | 0.32 | 8.04 | 28.56 | 0.28 | | | DGE0002716 | Glyma13g09420.1 | putative wall-associated kinase | 70.64 | 185.53 | 0.38 | 10.29 | 13.44 | 0.77 | | | DGE0002161 | Glyma03g32820.1 | glycine-rich protein | 85.11 | 207.45 | 0.41 | 1.21 | 3.85 | 0.31 | | | DGE0001547 | Glyma05g02630.1 | zinc ion binding protein | 114.47 | 264.89 | 0.43 | 8.19 | 12.54 | 0.65 | | | DGE0002544 | Glyma01g07860.1 | copper amine oxidase | 74.47 | 167.23 | 0.45 | 37.11 | 251.18 | 0.15 | | | DGE0002615 | Glyma06g17860.1 | putative diphosphonucleotide phosphatase | 72.98 | 158.72 | 0.46 | 33.91 | 224.33 | 0.15 | | | DGE0003965 | Glyma02g37610.1 | Aspartic proteinase nepenthesin-1 precursor | 50 | 108.30 | 0.46 | 0.55 | 1.90 | 0.29 | | | DGE0002836 | no Glyma model | root nodule extensin | 67.87 | 137.66 | 0.49 | NA | NA | NA | | | DGE0004693 | Glyma10g35870.1 | auxin down-regulated protein | 42.55 | 85.74 | 0.50 | 40.61 | 209.40 | 0.19 | | | DGE0001864 | Glyma12g36160.1 | receptor-like protein kinase | 97.45 | 196.17 | 0.50 | 23.48 | 27.61 | 0.85 | DGE is normalized per million tags and RNA-Seq is shown in RPKM *glyma model has SNP in their tag sequence. RNA-Seq data. Table 1 shows some of the RNA-Seq data compared to the DGE data that have the same trend, i.e. over or under expression in CS relative to CG. Among the BURP genes, RNA-Seq data has enabled nearly the same trend of differential expression and has confirmed that Glyma04g35130 BURP gene is over expressed in CS compared to CG. Similarly, among the seven BURP genes, four genes: Glyma04g35130, Glyma07g28940, Glyma14g20440, and Glyma14g20450 showed a same trend in both RNA-Seq and DGE data (Table 2). ## RNA blots confirm the dramatic transcript level differences of *Glyma04 BURP* gene in Clark standard and Clark glabrous To validate the transcriptome data for the BURP gene, we performed RNA blot analysis for the *Glyma04g35130 BURP* gene. Total RNA was isolated from mature soybean tissues and the probe was amplified from *Glyma04g35130 BURP* EST: Gm-r1083-3435. RNA blots performed on cotyledon, hypocotyl, leaf, and root organs revealed that the *Glyma04g35130 BURP* gene had strong transcript level differences among different organs in CS and CG, which validated the DGE data (Figure 4). The presence of two bands in CS root tissue might be explained by cross hybridization of the probe to more than one of the seven *BURP* genes present in the soybean genome as the BURP EST showed seven matches when used as a blast against the soybean reference genome [34] using TBLASTN program. The seven Glyma models that correspond to each feature were identified: *Glyma04g35130*, *Glyma04g08410*, *Glyma06g01570*, *Glyma06g08540*, *Glyma07g28940*, *Glyma14g20440*, and *Glyma14g20450*. ## DNA blot comparison of the *Glyma04g35130 BURP* gene in Clark standard and Clark glabrous DNA blot analysis was carried out to identify potential BURP gene RFLPs between CS and CG isolines. The same cDNA PCR product used as a probe in RNA blots was used for the *Glyma04g35130 BURP* gene DNA | | | | | DGE | | | RNASeq | | |---------------|----------|------------|-------------|--------|---------|--------|--------|----------| | | | | Norm Counts | | Ratio | RPKM | | Ratio | | BURP genes | e-value | DGE tags | CS | CG | CS/CG | CS | CG | CS/CG | | Glyma04g35130 | 0 | DGE0000012 | 2544.68 | 1.06 | 2392.00 | 480.38 | 0.01 | 45679.50 | | Glyma07g28940 | 4.4E-43 | no tag | 0.00 | 0.00 | 0.00 | 2.86 | 1.07 | 2.68 | | Glyma04g08410 | 1.4E-30 | DGE0060859 | 0.85 | 11.70 | 0.07 | 1.43 | 0.48 | 2.99 | | Glyma14g20450 | 7.5E-15 | DGE0001112 | 147.02 | 80.64 | 1.82 | 0.00 | 0.00 | 0.00 | | Glyma06g08540 | 3.2E-13 | DGE0060859 | 0.85 | 11.70 | 0.07 |
66.07 | 6.79 | 9.73 | | Glyma14g20440 | 3.2E-13 | DGE0002418 | 78.09 | 24.68 | 3.16 | 51.77 | 10.97 | 4.72 | | Glyma06g01570 | 3.60E-06 | DGE0000631 | 236.38 | 248.51 | 0.95 | 0.56 | 0.26 | 2.14 | Table 2 Expression of BURP gene family members as measured by DGE and RNA-Seq. blots. Genomic DNA was digested with six different restriction enzymes (*BamH*I, *Hind*III, *EcoR*I, *Dra*I, *Bgl*II, and *EcoR*V) and taken through the DNA blot protocol. The resulting blot shows several bands in the CS digests, not seen in the CG samples (Figure 5). These apparently missing bands may represent an insertion/deletion (indel) in the *Glyma04g35130 BURP* gene or in BURP gene family members, which is elucidated further by direct sequence analysis (below). ## Sequence Analysis of *Glyma04g35130* BURP Gene of Clark standard and Clark glabrous The *Glyma04g35130 BURP* gene sequence from cv. Williams 82 was used to design PCR primers to amplify the corresponding genomic regions in both CS and CG. To determine the gene structures in CS and CG, the cDNA sequence was produced from RT-PCR using primers within the 5' and 3' untranslated regions for *Glyma04g35130*. Sequencing of these fragments indicated that the *Glyma04g35130 BURP* gene in CS and CG contains an additional exon and intron, for a total of **Figure 4** RNA gel blot analysis of the *Glyma04g35130* BURP gene in different organs of Clark standard and Clark glabrous. Ten microgram of total RNA was electrophoressed through 1.2% agarose/1.1% formaldehyde gel, blotted to nitrocellulose. The cDNA probe corresponding to the *Glyma04g35130* was labeled and hybridized. four exons and three introns (Figure 6), relative to the cv. Williams 82 sequence. The comparison of cv. Williams 82 Glyma04g35130 BURP transcript sequence with those of CS and CG revealed various singlenucleotide polymorphisms (SNPs) and indels including two insertions of around 60 bp at positions 811 and 911 in the third exon of both CS and CG. From these two insertions, the first insertion created a premature stop codon in the transcript and resulted in a frameshift in the peptide sequence of CS; addition of one nucleotide C at position 798 in CG causes a frameshift mutation that results in premature stop codon in CG transcripts (Figure 7) and peptides (Figure 8). Extensive sequence analysis revealed that two insertions in CS and CG are actually repeats, a prominent feature of BURP domain containing genes (Figure 7). Surprisingly, the last intron of the Glyma04g35130 BURP gene in cv. Williams 82, CS, and CG contains another predicted gene-Glyma04g35140, encoding spermidine synthase (Figure 6). However, the sequence differences between the CS and CG Glyma04g35130 gene do not account for all the potential RFLPs seen in the DNA blots. Likely this is explained as the EST probe used for RFLP showed several matches in the soybean reference genome [34] when used as a blast that could reflect unaccounted RFLPs in the DNA blots (Figure 5). Seven potential BURP gene family members were found in the reference soybean genome [34] and these BURP gene family members are scattered on various chromosomes in the soybean genome (Table 2 & Figure 9) as expected since soybean is a an ancient tetraploid. The gene models that showed varying degrees of similarity with the probe were analyzed in DGE and RNA-Seq data to check their differential gene expression (Table 2). Among them we again found the Glyma04g35130 BURP gene located on the chromosome 4, with high identity to the BURP probe and also expressed differentially in CS and CG (CS/CG = 2,545/1.06 tags). The remaining seven BURP domain containing genes that showed significant similarity with the lowest e values to the BURP EST probe **Figure 5 DNA blot of Clark standard (CS) and Clark glabrous (CG) genomic DNA**. The CS and CG genomic DNA were digested with *BamHI, HindIII, EcoRI, Dral, BgIII,* and *EcoRV*. The RFLPs between CS and CG digests are indicated with red arrows. The probe was a labeled cDNA corresponding to *Glyma04q35130*. in phytozome do not show expression differences between CS and CG (Table 2). #### Expression analysis of soybean orthologs to known genes involved in trichome development reveal low transcript levels in young shoot tips of both lines The genes involved in the initiation of trichome development have been particularly well characterized in Arabidopsis. The *GL1-TTG1-GL3/EGL3* transcription factor complex has been posited to play a role in trichome development as mutations in these genes result in loss of trichomes [43-45]. We sought to look at differential expression of genes that are positive and negative regulators of trichome development in both lines (Table 3). Expression of these orthologs is very low as determined by RNA-Seq and DGE data. None of the genes described Figure 6 Diagram of *Glyma04g35130 BURP* genes from cv. Williams 82, Clark standard (CS), and Clark glabrous (CG) showing structural differences. *Green boxes* represent exons and *pink boxes* indicate insertions in the third exon. *Blue and black lines* indicate 5'UTR and introns. | ſ | 1 | | | | | | | | | | | | 130 | |--|--|--
--|---|--|---|--|--|--
--|--|---|--| | Williams | ACAAAATTCG | TGTTTCATAT | CCACCTAAAC | CATAAGTCCT | ATTGGCTCAA | ATGCAACATA | TGCCTCATAA | TGCCATCTCA | CCCTTCCTCC | AAAAGGTCTA | TATATATCTT | TGGTTTCTCT | GTGTCTCAAT | | | | | CCACCTAAAC
CCACCTAAAC | | | | | | | | | | | | | | | CCACCTAAAC | 131 | | | | | | | | | | | | 260 | | Williams | ATCACATTCT | CATCTCTAAC | CACTTTGCTT
CACTTTGCTT | CAGCTATGGA | GTTTCGTTGC | CTTCCATTGG | TTTTCTCTCT | CAATCTGATC | CTGATGACAG | CTCATGCTGC | CATACCTCCA | GAAGTTTACT | GGGAAAGGAT | | | | | CACTTTGCTT | | | | | | | | | | | | | | | CACTTTGCTT | Williame | 261 | ACCCCAATICC | CCAAAGCAAT | САПАСАСППП | CTANACCTTC | ATCAACTTCC | поприссили | CCTCCTAACC | AAACCCAATC | TACAGATCAA | ататтостот | атсатсета а | 390 | | | | | CCAAAGCAAT | | | | | | | | | | | | Standard | GCTTCCAAAT | ACCCCAATGC | CCAAAGCAAT | CATAGACTTT | CTAAACCTTG | ATCAACTTCC | TCTTAGGTAT | GGTGCTAAGG | AAACCCAATC | AACAGATCAA | ATATTCCTGT | ATGATGCTAA | GAAAACCCAA | | Consensus | GCTTCCAAAT | ACCCCAATGC | CCAAAGCAAT | CATAGACTTT | CTAAACCTTG | ATCAACTTCC | TCTTtGGTAT | GGTGCTAAGG | AAACCCAATC | tACAGATCAA | ATATTCCTGT | ATGATGCTAA | GAAAACCCAA | | | 391 | | | | | | | | | | | | 520 | | Williams | TCAACAGATC | AAGTTCCTCC | TATCTTTTAT | GGTGATAAGA | AAACCCAATC | AACAGATGAA | GTTCCTCCTA | TCTTTTATGG | TGCTAAGAAA | ACTCAATCAA | TAGATGGAGT | TCCTCCTATC | TTTTATGGTG | | | | | TATCTTTTAT | | | | | | | | | | | | | | | TATCTTTTAT
TATCTTTTAT | | | | | | | | | | | | Consensus | TCAACAGATC | AAGIICCICC | IAICIIIIAI | GGIGAIAAGA | AAACCCAATC | AACAGAIGAA | GIICCICCIA | ICITITATES | IGCIAAGAAA | ACTCAATCAA | IAGAIGGAGI | TCCTCCTATC | TITIATGGIG | | | 521 | | | | | | | | | | | | 650 | | | | | GATGAAGTTC | | | | |
 | | | | | | | | | GATGAAGTTC
GATGAAGTTC | | | | | | | | | | | | | | | GATGAAGTTC | | | | | | | | | | | | 1 | CF1 | | | | | | | | | | | | | | Williamo | 651
 | тапестеста | AGAAAACCCA | ATCAACACAT | СУУУЩШССТС | | тта тестест | PPCPPyycco | ΔΔΨΟΔΛΟΛΟΝ | псуусинсси | ССффффффф | атсетеста» | 780 | | | | | AGAAAACCCA | | | | | | | | | | | | Standard | TTTTTTTTCT | TATGGTGCTA | AGAAAACCCA | ATCAACAGAT | CAAGTTCCTC | CTTTTTTTT- | ATGGTGCT | AAGAAAACCC | AATCAACAGA | TCAAGTTCCT | ATCTTTT | ATGGTGCTAA | GAAAACTCAA | | Consensus | TTTTTTTTCT | TATGGTGCTA | AGAAAACCCA | ATCAACAGAT | CAAaTTCCTC | CTTTTTTTC | ttATGGTGCT | AAGAAAACCC | AATCAACAGA | TCAAGTTCCT | ccttTtTTTT | ATGGTGCTAA | GAAAACcCAA | | | 781 | | | | | | | | | | | | 910 | | Williams | TCAACAGATC | AAGTTCC-TA | TCTTTTATGG | | | | | | TGC | TAAGAAAACT | CAATCAACAG | ATCAAGTTCC | TATCTTTT | | Glabrous | TCAACAGATC | AAGTTCCCTA | TCTTTTATGG | GTGCTAAGGA | AAAACTCAAT | CCACCAGATC | AAGGTTCTCC | TATCTTTTAT | GGTGC | TAGGAAAATC | CAATCAACAG | ATCAAACTCC | TCTTTTTTTA | | Standard | TCAACAGATC | AAGTTCC-FA | TCTTTTATGG | -TGCTAAGAA | AACCCAA | TCAACAGATC | AAATTCCTCC | CTTTTTTTC | TTATGGGGGC | TAAGAAAACC | CAATCAACAG | ATCAAATTCC | TATCTTTT
TCTTTTTTTA
TCCTTTTTT
TcttTTTT. | | Consensus | TCAACAGATC | AAGTTCC.FA | TCTTTTATGG | .tgctaag.a | aaca. | .ca.cagatc | aat.ctcc | | ggtGC | TAAGAAAACC | CAATCAACAG | ATCAAatTCC | TettTTTT. | | | 911 | | | | | | | | | | | | 1040 | CCCAATCAAC
CC-AATCAAC | | | | | | | | | | | | Consensus | | | | | | | | | | | | | | | | | CLaaqaaaac | CC.aatCaaC | agatcaaatt | cctccttttt | tttcttaTGG | TGCTAAGAAA | ACCCAATCAA | CAGATCAAA. | CTCCTC | TTTTTTTATA | TGGTGCTAAG | AAAACCCAAT | | | | CLaagaaaaC | CC.aatCaaC | agatcaaatt | cctccttttt | tttcttaTGG | TGCTAAGAAA | ACCCAATCAA | CAGATCAAA. | CTCCTC | TTTTTTTATA | TGGTGCTAAG | | | | 1041 | - | | | | | | | | | | | 1170 | | Williams | 1041
CCGAAGATCA | AGTTCCTATT | TTTTGGTACG | GTATTAAGAA | AACTCAATCC | GAAGATCAAC | CTCCTCTTTG | GTACGGTGTT | AAGAAAACCT | ATGTTGCAAA | AAGAAGTCTT | TCACAAGAAG | 1170
ATGAAACGAT | | Williams
Glabrous
Standard | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA | AGTTCCTATT AGTTCCTATT A-TTCCTATT | TTTTGGTACG
TTTTGGTACG
TTTTGGTACG | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA | AACTCAATCC
AACTCAATCC
AACTCAATCC | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC | CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT | TCACAAGAAG
TCACAAGAAG
TCACAAGAAG | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT | | Williams
Glabrous
Standard | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA | AGTTCCTATT AGTTCCTATT A-TTCCTATT | TTTTGGTACG
TTTTGGTACG | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA | AACTCAATCC
AACTCAATCC
AACTCAATCC | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC | CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT | TCACAAGAAG
TCACAAGAAG
TCACAAGAAG | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT | | Williams
Glabrous
Standard | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA | AGTTCCTATT AGTTCCTATT A-TTCCTATT | TTTTGGTACG
TTTTGGTACG
TTTTGGTACG | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA | AACTCAATCC
AACTCAATCC
AACTCAATCC | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC | CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT | TCACAAGAAG
TCACAAGAAG
TCACAAGAAG | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT | | Williams
Glabrous
Standard
Consensus
Williams | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
1171
CCTTGTTGCT | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT | TTTTGGTACG
TTTTGGTACG
TTTTGGTACG
TTTTGGTACG | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTATTAAGAA
CCCAAAAAGCA | AACTCAATCC
AACTCAATCC
AACTCAATCC
AACTCAATCC | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
GAAGATCAAC | CTCCTCTTG
CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT
GTACGGTGTt | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT | TCACAAGAAG
TCACAAGAAG
TCACAAGAAG
TCACAAGAAG | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
1171
CCTTGTTGCT
CCTTGTTGCT | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AGTTCCTATT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTATTAAGAA
CCCAAAAGCA
CCCAAAAGCA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
TCTTTGAAGA
TCTTTGAAGA | CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTt CCTGGCACAA CCTGGCACAA | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA | TCACAAGAAG
TCACAAGAAG
TCACAAGAAG
TCACAAGAAG
ATGTAACCCC
ATGTAACCCC | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
1300
ATTGTTGCCT
ATTGTTGCCT | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
1171
CCTTGTTGCT
CCTTGTTGCT
CCTTGTTGCT | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTATTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
TCTTTGAAGA
TCTTTGAAGA
TCTTTGAAGA | CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT
GTACGGTGTt
CCTGGCACAA
CCTGGCACAA | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG
TCACTTCAAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGTCTT
AAAAGAGAAA
AAAAGAGAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
1300
ATTGTTGCCT
ATTGTTGCCT
ATTGTTGCCT | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
1171
CCTTGTTGCT
CCTTGTTGCT
CCTTGTTGCT | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTATTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
TCTTTGAAGA
TCTTTGAAGA
TCTTTGAAGA | CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT
GTACGGTGTt
CCTGGCACAA
CCTGGCACAA | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG
TCACTTCAAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGTCTT
AAAAGAGAAA
AAAAGAGAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC | 1170
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
ATGAAACGAT
1300
ATTGTTGCCT
ATTGTTGCCT
ATTGTTGCCT | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard
Consensus | 1041
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
CCGAAGATCA
1171
CCTTGTTGCT
CCTTGTTGCT
CCTTGTTGCT | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC AATGGCCATC | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTGTTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA | AACTCAATCC
AACTCAATCC
AACTCAATCC
AACTCAATCC
GACCAAGTTT
GACCAAGTTT
GACCAAGTTT | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
TCTTTGAAGA
TCTTTGAAGA
TCTTTGAAGA | CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG
AGGATTAAGG
AGGATTAAGG
AGGATTAAGG | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT
GTACGGTGTL
CCTGGCACAA
CCTGGCACAA
CCTGGCACAA | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG
TCACTTCAAG
TCACTTCAAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGACCT ATGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard
Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AGTTCCTATC AATGGTCATC AATGGCATC AATGGCATC CACAACATAT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT
AACATGACAT AACATGACAT ACCGTTGTCA | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTaTTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAGCA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT | GAAGATCAAC
GAAGATCAAC
GAAGATCAAC
TCTTTGAAGA
TCTTTGAAGA
TCTTTGAAGA
TCTTTGAAGA | CTCCTCTTG
CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG
AGGATTAAGG
AGGATTAAGG
AGGATTAAGG
CTTTTTGTGA | GTACGGTGTT
GTACGGTGTC
GTACGGTGTT
GTACGGTGTT
CCTGGCACAA
CCTGGCACAA
CCTGGCACAA
ACCCAGAGCC | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG
TCACTTCAAG
TCACTTCAAG
TCACTTCAAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGAACCAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT 1430 GAAGTGCCTG | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard
Consensus
Williams
Glabrous | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTGTTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG | CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTTGTGA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AGGAAACCAT
AGGAAACCAT | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATGTTGCCT AGAGGCCTG GAAGTCCCTG GAAGTCCCTG | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTGTTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAGA
TCAGCAAAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT | GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTGAAGATGAGATG | CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTC CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG AAGATTCTAG | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAGGAAAACCAT AGGAAACCAT AGGAAACCAT | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAATCTGT TAGTATTGTGT TAGTATTGTGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT 1430 GAAGTGCCTG GAAGTGCCTG GAAGTCCCTG | | Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard
Consensus
Williams
Glabrous
Standard | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG | AGTTCCTATT AGTTCCTATT A-TTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA | GTATTAAGAA
GTATTAAGAA
GTGTTAAGAA
GTGTTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAGA
TCAGCAAAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT | GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTGAAGATGAGATG | CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTC CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG AAGATTCTAG | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAGGAAAACCAT AGGAAACCAT AGGAAACCAT | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAATCTGT TAGTATTGTGT TAGTATTGTGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTCGTTGCT GCCCAAATTG GCCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG ACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA | GTATTAAGAA
GTATTAAGAA
GTATTAAGAA
GTATTAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAGA
TCAGCAAAGA
TCAGCAAAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG | CTCCTCTTG
CTCCTCTTTG
CTCCTCTTTG
CTCCTCTTTG
AGGATTAAGG
AGGATTAAGG
AGGATTAAGG
CTTTTTGTGA
CTTTTTGTGA
CTTTTTTGTA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT | ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
ATGTTGCAAA
TCACTTCAAG
TCACTTCAAG
TCACTTCAAG
AGATTCTAG
AAGATTCTAG
AAGATTCTAG
AAGATTCTAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AGGAAACCAT
AGGAAACCAT
AGGAAACCAT | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Williams Williams | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG LGCCAAATTG CGCCAAATTG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA TATTGTGCAA | GTATTAAGAA
GTATTAAGAA
GTGTETAAGAA
GTGTETAAGAA
CCCAAAAGCA
CCCAAAAGCA
CCCAAAAGCA
TCAGCAAAAGCA
TCAGCAAAGA
TCAGCAAAGA
TCAGCAAAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAGG AGGATTAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AAGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG
TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG TTACTAGAAGATTCTAG | AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAGAAGTCTT
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AAAAGAGAAA
AGGAAACCAT
AGGAAACCAT
AGGAAACCAT
AGGAAACCAT | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCCTG GAAGTCCCTG GAAGTACCTG GAAGTACCTG GAAGTACCTG CCCAAAAATT | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Standard | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTGATGTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CAATAACTGG CAATAACTGG CAATAACTGG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGAA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTGCAA | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TCAATGTT GTCCATGTA | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA GATTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTTTCCA GATTTTTTCCA | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTTAAGCT CTTCTAAGCT CTTCTAAAGCT | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATGGATGT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGCTCGAGTTA
GCTCGAGTTA
GCTCGAGTTA | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Standard | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTGATGTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CAATAACTGG CAATAACTGG CAATAACTGG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGAA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG TACATGACAT AACATGACAT AACATGACAT ACCATTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TCAATGTT GTCCATGTA | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA GATTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTTTCCA GATTTTTTCCA | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTTAAGCT CTTCTAAGCT CTTCTAAAGCT | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
GCTCGAGTTA
GCTCGAGTTA | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Standard | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTGATGTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CAATAACTGG CAATAACTGG CAATAACTGG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGAA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTGCAA | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TCAATGTT GTCCATGTA | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA GATTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTTTCCA GATTTTTTCCA | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTTAAGCT CTTCTAAGCT CTTCTAAAGCT | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
GCTCGAGTTA
GCTCGAGTTA | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG AAGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT | | Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus Williams Glabrous Williams Williams Williams | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCAAATTG CAATAACTGG CACTGGTGAAA | AGTTCCTATT A-TTCCTATT A-TTCCTATT AGTTCCTATT AATGGTCATC AATGGCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT AGAACAATAT AGAACAAAGA AGAAGAAAGA AGAAGAAAGA AGAAGAAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTCA ACTGTTCA ACTGTCAA ACTTGTCAA AATTGTGCAA TATTGTGCAA TATTGTGCAA AGTTGTTAGC | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATGGTA GTCATGTA GTCATGTA GTCATGTA | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TTGGGAAGAAT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATGGATGTA
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGCAGTTA
GCTCGAGTTA
GCTCGAGTTA
GCTCGAGTTA
GCTCGAGTTA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTNG ANGATTCTNG ANGATTCTNG ANGATTCTNG ATTTCTNCANG TTTCTNCANG TTCTNCANG TGAGATATCA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAACAA AGCAGAAAAA AGCAGAAAAA AGCAGAAAAA AGCAGAAAAAA AACAGAAAAAA AACAGAAAAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCT GAAGTCCCTG GAAGTCCCTG GAAGTCCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT | | Williams
Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG C | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA AGAAGAAAGA AGAAGAAAGA AGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTGCAA | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTATGGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTTCTAAGCT CTTTCTAAGCT | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTTGTT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATGGATGT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGCTCGAGTTA
GCTCCAGTTA
GCTCCAGTTA
GCTCCAGTTA
TTATGTGTCA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AATACTACTG | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATAGTGT GAAAGTAAGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GCAAGAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACAAATT CCCAACAAATT | | Williams Glabrous Standard Consensus Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG C | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCCATC AATGGCATC CACAACATAT C | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACGTTGTCA ACCGTTGTCA ACCGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA AGTTGTTAGC | GTATTAAGAA GTATTAAGAA GTGTTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TCAATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTGTCA GATTTTGTCA GTCATCCTAT GTCATCCTAT | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTTGTGA CTTTTTAGGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATTGGATGC
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGCTCGAGTTA
GCTCGAGTTA
GCTCGAGTTA
GCTCGAGTTA
TATGTGTCA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AATACTACTG | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATAGTGT GAAAGTAAGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GCAAGAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACAAATT CCCAACAAATT | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG C | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCCATC AATGGCATC CACAACATAT C | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTGCAA | GTATTAAGAA GTATTAAGAA GTGTTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TCAATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTGTCA GATTTTGTCA GTCATCCTAT GTCATCCTAT | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTATGGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTTCTAAGCT CTTTCTAAGCT | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT | AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AAGAAAACCT
AATTGGATGC
AATTGGATGC
AATTGGATGC
AATGGATGT
AGAGAATGTT
AGAGAATGTT
AGAGAATGTT
AGCTCGAGTTA
GCTCCAGTTA
GCTCCAGTTA
GCTCCAGTTA
TTATGTGTCA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTCTACAGA TTTCTACAGA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AATACTACTG | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATAGTGT GAAAGTAAGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GCAAGAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACAAATT CCCAACAAATT | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA AGAAGAAAGA AGAAGAAAGA AGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGTAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TCAATGGTA GTCCATGGTA GTCCATGGTA GTCCATGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GTCATCCTAT GTCATCCTAT GTCATCCTAT | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTCTTAGCT CTTCTAAGCT CTTCTAACCT CTTCTAACCT CTTCTAACCT CTTCTAACCT CTTCTAACCT CTTCTAACCT CTTCTAACCT CTTCTAACCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TAGGTAGTT TATGTTGTGT TATGTTGTGT TATGTTGTGT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATGGATGC AGAGAATGTT AGAGAATGTT AGAGAATGTT GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ANGATTCTAG TTTCTACAGA TTGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AATACTACTG AATACTACTG AATACTACTG AATACTACTG AATACTACTG | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT
TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAGAAATT CCCAAGAATT CCCAAGAGCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTTGGAG | | Williams Glabrous Standard Consensus Williams Glabrous Williams Glabrous Standard Consensus Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGTCATC AATGGTCATC AATGGTCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA AGAAGAAAGA AGAAGAAAGA AGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA CAGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG AGAAGATAAG | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTTGAGATG AGTTTGAGATG AGTTTGAGATG AGTTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA GATTTGTCA GTCATCCTAT GTCATCCTAT GTCATCCTAT ATCAGAATGG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TTGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTGT TATGTTGTGT ATGTTTGTGT ATGTTTTTT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGTGGATGT GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTC ACAAATGCTC ACAAATGCTCA | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG ATTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCACAGA TTCACAGA TTCACAGA TTGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AATACTACTG AATACTACTG AATACTACTG AATACTACTG CTGGAGCTGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATAGTAGT GAAAGTAAGT | 1170 ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT ATGARACGAT 1300 ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCTG CCCAAAAAATT CCCAAAAAATT CCCAAAAAATT CCCAACAAATT CCCAACAATT CCCATGAGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCCTTTGGAG CCCTTTGCAG CCCTTTGGAG CCCTTTGCAG CCCTTTGCAG CCCTTTGCAG CCCTTTGCAG CCCTTTGCAG CCCTTTGCAG CCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCCTTTCCTTTCCTTTCCTTTT | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG C | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA CAGTTGTTAGC AGTTGTTAGC AGTTGTAGC AGTTGTAG | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGC CTTCATTCC CTTTATGCC CTTCATTCCC CTTCATTCCC CTTCATTCCC | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA TCATCCTAT GTCATCCTAT GTCATCCTAT ATCAGAATGG ATCAGAATGG ATCAGAATGG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAGGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC GATCCAAACC | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG ATTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA AAAACCAAGC AAAACCAAGC AAAACCAAGC | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CCTGAATACTACTG AATACTACTG AATACTACTG CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT CAAAGTAAGT GAAAGTAAGT GAAAGTAAGT CGCATTTTAT CGCATTTTAT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT | 1170 ATGARACGAT ATGARACCT ATTGARACCT ATTGARACCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACAATTGAGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTCCACATCTCC CACATCTTCC CACATCTTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTTCC CACATCTTTCC CACATCTTCC CACATCTTCC CACATCTTTCC CAC | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG C | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA CAGTTGTTAGC AGTTGTTAGC AGTTGTAGC AGTTGTAG | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGC CTTCATTCC CTTTATGCC CTTCATTCCC CTTCATTCCC CTTCATTCCC | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA TCATCCTAT GTCATCCTAT GTCATCCTAT ATCAGAATGG ATCAGAATGG ATCAGAATGG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAGGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC GATCCAAACC | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG ATTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA AAAACCAAGC AAAACCAAGC AAAACCAAGC | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CCTGAATACTACTG AATACTACTG AATACTACTG CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT CAAAGTAAGT GAAAGTAAGT GAAAGTAAGT
CGCATTTTAT CGCATTTTAT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT GAAGTCCTG GAAGTCCTG GAAGTCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAGAGCCTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTGGAG CCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGCAC CACACTCTTCC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTTCC CACACTCTCC CACACTCTC CACACTCTC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTCC CACACTCTC CACACTCTC CACACTCTC CACACTCTCTC C | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CTGATGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAA | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA CAGTTGTTAGC AGTTGTTAGC AGTTGTAGC AGTTGTAG | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGC CTTCATTCC CTTTATGCC CTTCATTCCC CTTCATTCCC CTTCATTCCC | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA TCATCCTAT GTCATCCTAT GTCATCCTAT ATCAGAATGG ATCAGAATGG ATCAGAATGG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAGGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC GATCCAAACC | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCTGGCACAA CCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTGTTTTTT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT | ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA ATGTTGCAAA TCACTTCAAG TCACTTCAAG TCACTTCAAG TCACTTCAAG AAGATTCTAG AAGATTCTAG ATTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA AAAACCAAGC AAAACCAAGC AAAACCAAGC | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CCTGAACTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT CAAAGTAAGT GAAAGTAAGT GAAAGTAAGT CGCATTTTAT CGCATTTTAT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT | 1170 ATGARACGAT ATGARACCT ATTGARACCT ATTGARACCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACAATTGAGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTGGAG CCCTTTCCACATCTCC CACATCTTCC CACATCTTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTTCC CACATCTTTCC CACATCTTCC CACATCTTCC CACATCTTTCC CAC | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AATGGTCATC AATGGCCATC AATGGCCATC AATGGCCATC CACAACATAT CACACAGAT GATGGAGTGA GATGGAGTGA CACCAGAGT GAACCAGAGT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTGTCA ACTGTTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TAAAGCTGCA TAAAGCTGCA | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC GCTGTATGCC | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTCTCA GATTTCTCA TCAATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT ATCAGAATGG ATCAGAATGG ATCAGAATGG ATCAGAATGG | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC GATCCAAACC GATCCAAACC GATCCAAACC GATCCAAACC | GTACGGTGTT GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCA TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTGTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGCTGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA ATTCTACAGA ATTCTACAGA TTCTACAGA TTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATACCAAGC ANAACCAAGC ANAACCAAGC ANAACCAAGC ANAACCAAGC | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAC AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CAGAAAAG CAGAAAG CAGAAAG CAGAAAG CAGAAAG CAGAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT GAAAGTAAGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGTTGCCT GAAGTCCTG GAAGTCCTG GAAGTCCTG GAAGTCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAGAATT CCCAAGAATT CCCAACATCTCC CACATCTTCC | | Williams Glabrous Standard Consensus Glabrous Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCAAATTG CAATAACTGG CAATAACT | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCTATC AATGGCATC AATGGCATC AATGGCATC AATGGACATAT CACAACATAT CACACAGAT GAACCAGAGT GAACCAGAGT GAACCAGAGT CAACCAGAGT CAAC | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG ACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TAAAGCTGCA TTTGCCAAAF TTTTGCCAAAF | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA GAAGATAAG AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC GCTGTATGCC AGGTTACTTA AGGTTACTTA AGGTTACTTA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAGACAC ACAACAC ACAACAC ACAACAC ACAACAC ACAACA | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTCTCA TCAATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT TCATCCTAT TGTTAGAATGG TCGTTAGTTGT | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTAGGA CTTTTTAGGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCA GGATTACCA GGATTACCA GGATTACCA CTCCAAACC GATCCAAACC CATCCAAACC CATCAAACC CATCCAAACC CATCCAAAC | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCA TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTGTTTTATGTGTTTTTA ATGTGTTTTTA ATGTGTTTTTT AGTAGGCATT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGATGTT AGTGGATTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATTGTGTCA TTATTGTGTCA TTATTGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT TCAAATTGCT TCAAATTGCT TCAAATTGCT TCAAATTGCT TCCAATTTGC | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG
TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA ATTCTACAGA ATTCTACAGA ATACCAAGC AAAACCAAGC | AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAGAAGTCTT AAAAGAGAAA AAAAGAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CAGAAAAG CAGAAAAAG CAGAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATATGTGT TAGTATATGTGT TAGTATATGTGT TAGTATATGTGT TAGTATATGTGT TAGTATATGTGT TCAAGTAAGT CGCATTTTAT CGCATTTTAT CGCATTTTAT TCCAGTGTGT TCCAGTGT TCCAGTGTGT TCCAGTGT TCCAGT TCCAGTGT TCCAGTGT TCCAGTGT TCCAGTGT TCCAGTGT TCCAGTGT TCCAGTGT TCCAGTGT | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTGGAG CCTTTGGAG CCTTTGGAG TCCTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCA ACTGTGTACA ACTGTTGTCA ACTGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAT TTTGCCAAAT TTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC GCTGTATGCC AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT GTCCATGGTA GTCCATGGTA GTCATTGTT GTCATTGTTT GTCATTGTTT TACAAAGACAC ACAAAGACAC ACAAAGACAC AGTCTTATT AGTCTTTATT AGTCTTTATT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA GATTCTAT GTCATCCTAT GTTAGTGTG TGTTAGTGTG TGTTAGTGTG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTGGA CTTTTTGGA CTTTTTGGA CTTTTTGGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAACCC GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC CTCCTTAAATA TCCTTAAATA TCCTTAAATA | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT AGTAGGCATT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATGGATGT AGAGAATGTT AGAGAATGTT AGAGAATGTT GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TCAAATGCTT ACAAATGCTT ACAAATGCTT TCCATATTGC TCCATATTGC | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ANGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATACCAAGC ANAACCAAGC ANAACCAAGC ANAACCAAGC ATCTGATGTA ATCTGATGTA ATCTGATGTA ATCTGATGTA | AAGAAGTCTT AAGAACAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CTGAGAGTGC CTGGAGCTGC CTATATCAGC CTATATCAGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATCTGCGGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTTGGAG CCTTTTGGAG TCTTTCTCAATGTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCA ACTGTGTACA ACTGTTGTCA ACTGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAT TTTGCCAAAT TTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC GCTGTATGCC AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT GTCCATGGTA GTCCATGGTA GTCATTGTT GTCATTGTTT GTCATTGTTT TACAAAGACAC ACAAAGACAC ACAAAGACAC AGTCTTATT AGTCTTTATT AGTCTTTATT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA GATTCTAT GTCATCCTAT GTCATCTATGTCTGTCATCTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTGGA CTTTTTGGA CTTTTTGGA CTTTTTGGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAACCC GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC CTCCTTAAATA TCCTTAAATA TCCTTAAATA | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT AGTAGGCATT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATGGATGT AGAGAATGTT AGAGAATGTT AGAGAATGTT GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TCAAATGCTT ACAAATGCTT ACAAATGCTT TCCATATTGC TCCATATTGC | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ANGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATACCAAGC ANAACCAAGC ANAACCAAGC ANAACCAAGC ATCTGATGTA ATCTGATGTA ATCTGATGTA ATCTGATGTA | AAGAAGTCTT AAGAACAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CTGAAGTGC CTGGAGCTGC CTATATCAGC CTATATCAGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGTTGCCT GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTCCTG CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTGGAG CCTTTGGAG CCTTTGGAG TCCTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAATAAC | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAGA AGAAGAAGA AGAAGAAGA AGAAGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCA ACTGTGTACA ACTGTTGTCA ACTGTTGTCA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAT TTTGCCAAAT TTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT TAAAAGAAT GTCCATGGTA GTCCATGGTA GTCATTGTT GTCATTGTTT GTCATTGTTT TACAAAGACAC ACAAAGACAC ACAAAGACAC AGTCTTATT AGTCTTTATT AGTCTTTATT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA
TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA GATTCTAT GTCATCCTAT GTCATCTATGTCTGTCATCTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTGGA CTTTTTGGA CTTTTTGGA CTTTTTGGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAACCC GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC CTCCTTAAATA TCCTTAAATA TCCTTAAATA | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT ATGTTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT AGTAGGCATT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATGGATGT AGAGAATGTT AGAGAATGTT AGAGAATGTT GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TCAAATGCTT ACAAATGCTT ACAAATGCTT TCCATATTGC TCCATATTGC | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ANGATTCTAG TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATACCAAGC ANAACCAAGC ANAACCAAGC ANAACCAAGC ATCTGATGTA ATCTGATGTA ATCTGATGTA ATCTGATGTA | AAGAAGTCTT AAGAACAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CTGAAGTGC CTGGAGCTGC CTATATCAGC CTATATCAGC | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATCTGCGGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTTGGAG CCTTTTGGAG TCTTTCTCAATGTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTCTTCTC CCTTCTTCCT CCTTCTTCCT CCTCTTTCCT CCTCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAAGAGATG GGAGAAGATG GGAGAAGATG GGAGAAGATG GGAGAAGATG CATGAGGGCCA CTGAGGGCCA CTGAGGGCCA CTGAGGGCCA TTTGAAATTG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCATC AATGGCATC AATGGCATC AATGGCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA AGAAGAAAGA AGAAGAAGA AGAAGAA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATCCT AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA ATAATGTAGT | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT GTCTTTATT GTCTTTATT GTCTTTATT AGTCTTTATT GTCTTTATT GTCTTTATT GTCTTTATT GTCTTTATT GTCTTTATT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTCTCA GATTCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT TCATCCTAT GTCATCCTAT TCATCCTAT TCATCCTAT TCATCCTAT TCTAGAATGG ATCAGAATGG ATCAGAATGG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA CGATCCAAACC GATCCAAACC CATCCAAACC CATCCAAACC TCCTTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA | GTACGGTGTT GTACGGTGTC GTACGGTGTC GTACGGTGTT GTACGGTGTT CCTGGCACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTTTTT ATGTTTTTT ATGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTAGCATT AGTAGGCATT AGTAGGCATT AGTAGGCATT AGTAGGCATT AGTAGGCATT ATTAATGTAA | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGCTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TCAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC TCCATATTGC CCATGTTATG | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA TTCACAGA TTCACAGA TTCACAGA ATTCACAGA ATTCACAGA ATCAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA TGAGATATCA AAACCAAGC AAAACCAAGC AAAACCAAGC AATCTGATGTA ATCTGATGTA ATCTGA | AAGAAGTCTT AAGAAGAAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG ACCAGAAAAG ACCAGAAAAG ACCAGAAAAG CCAGAAAAG CCAGAAAAG CTGAACTCTG AATACTACTG AATACTACTG CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTATATCAGC CTATATCAGAC CTATATCAGAC CTATATCAGC CTATATCAGAC CTATATCAGAC CTATATCAGAC CTATATCAGC CTATATCAGC CTATATCAGC CTATATCAGAC CTATATCAGA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATCTGCGGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTTGGAG CCTTTTGGAG TCTTTCTCAATGTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA 1171 CCTTCTTGCT CCTTGTTGCT CCTTGTTGCT 1301 CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CAATAACTGG CAAGAGATG GGGAGAAGATG GGAGAAGATG GGAGAAGATG CTGAGGGCCA CTGAGAATTG TTTGAAATTG TTTGAAATTG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCCATC AATGGCCATC CACAACATAT CACAACATAT CACAACATAT AGAAGAAAGA AGAAGAAAGA AGAAGAAAGA AGAAGA | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTGTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAF TTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA GTAGATAAGA GAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA ATAATGTAGT | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT AGTCTTATT AGTCTTTATT AGTCTTATT AGTCT | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA ACTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA TCATCCTAT GTCATCCTAT GTCATCCTAT TCATCCTAT TCTAGTCTG TGTTAGTCTG TGTTAGTCTG TGTTAGTCTG TGTTAGTCTG TGTTAGTCTG TTTTGTCATCTT | CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCCTCTTG CTCTCTTG CTCTCTTTG CTCTCTTTG CTCTCTTTG CTCTCTTTGTA CTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAACCCA GGATTACCCA GGATTACCCA GGATTACCCA GGATCCAAACC GATCCAAACC GATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC CATCCAAACC TCCTTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA TTTACATATGT | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTGCACAA CCTGGCACAA ACCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT ATGTGTTTTT AGTAGGCATT | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATGGATGT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGTCGAGTTA GCTCGAGTTA GCTCGAGTTA GCTCGAGTTA TATATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA TCAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT TCAATATTGC TCCATATTGC TCCATATTGC TCCATATTGC
TCCATATTGC CCATGTTATG | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG AGATTCTAG ANGATTCTAG ANGATTCTAG ATTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATTCTACAGA ATCTGAGATATCA ANAACCANGC ANAACCANGC ANAACCANGC ATCTGATGTA ATCTGATGTA ATCTGATGTA ATCTGATGTA ATCTGATGTA CGACTTTCT CGACTTTCT CGACTTTCT | AAGAAGTCTT AAGAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CAGAAAAG CAGAAAAG CTGAGACTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTATATCAGC CTATATCAGAAA TTTCAAAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATCTGCGGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTTGGAG CCTTTTGGAG TCTTTCTCAATGTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG | | Williams Glabrous Standard Consensus | 1041 CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA CCGAAGATCA CCTTCTTCTC CCTTCTTCCT CCTTCTTCCT CCTCGTTGCT CCCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCCAAATTG CGCAAATTG CAATAACTGG CAAGAGATG GGAGAAGATG GGAGAAGATG GGAGAAGATG TCGAGGGCCA CTGAGGGCCA CTGAGGGCCA CTGAGGGCCA TTGAAATTG TTTGAAATTG TTTGAAATTG | AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTTCCTATT AGTGCTATC AATGGCATC AATGGCATC AATGGCATC AATGGCATC ACAACATAT CACAACATAT CACACAGAT GAACCAGAGT GAACCAGAGT GAACCAGAGT CATCTCTCGG CCTTCTCTGG CCTTCTCTGG CTTCTCTGG CCTTCTCTGG TGATCTACCT TGATCTACCT TGATCTACCT TGATCTACCT TGATCTACCT | TTTTGGTACG TTTTGGTACG TTTTGGTACG TTTTGGTACG AACATGACAT AACATGACAT AACATGACAT AACATGACAT AACATGACAT ACCGTTGTCA ACCGTTGTCA ACCGTTGTCA ACTGTTGCAA TATTGTGCAA TATTGTGCAA TATTGTGCAA TATTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC AGTTGTTAGC TAAAGCTGCA TAAAGCTGCA TTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT TTTTGCCAAAT | GTATTAAGAA GTATTAAGAA GTATTAAGAA GTATTAAGAA GCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA CCCAAAAGCA TCAGCAAAGA TCAGCAAAGA TCAGCAAAGA CTTCATTAGA CTTCATTAGA CTTCATTAGA AGAAGATAAG AGAAGATAAG AGAAGATAAG GCTGTATGCC GCTGTATGCC GCTGTATGCC GCTGTATCCT AGGTTACTTA AGGTTACTTA AGGTTACTTA AGGTTACTTA ATAATGTAGT ATAATGTAGT ATAATGTAGT ATAATGTAGT ATAATGTAGT ATAATGTAGT | AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC AACTCAATCC GACCAAGTTT GACCAAGTTT GACCAAGTTT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT TAAAAGAAAT GTCCATGGTA GTCCATGGTA GTCCATGGTA GTCATTGTTT GTCATTGTTT GTCATTGTTT ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAAAGACAC ACAATTATTATT AGTCTTTATT AGTCTTTATT AGTCTTTATT GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG GATTATGTTG | GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC GAAGATCAAC TCTTTGAAGA TCTTTGAAGA TCTTTGAAGA AGTTGAGATG AGTTGAGATG AGTTGAGATG GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTTGTCA GATTTGTCA GATTTCTCA GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT GTCATCCTAT TGTAGATTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTG TGTTAGTGTT TTGTGATGTAT TTGTGATGTAT TTGTGATGTAT | CTCCTCTTG CTCCTCTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG CTCCTCTTTG AGGATTAAGG AGGATTAAGG AGGATTAAGG AGGATTAAGG CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTGTGA CTTTTTAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT CTTCTAAGCT GGATTACCCA GGATTACCCA GGATTACCCA GGATTACCCA CTCCTAAATA TCCTTAAATA TCCTTAAATA TCCTTAAATA TTACATATGT TTACATATGT TTACATATGT TTACATATGT TTACATATGT TTACATATGT TTACATATGT TTACATATGT | GTACGGTGTT GTACGGTGTT GTACGGTGTT GTACGGTGTT CTACGGTGTT CTACGGTGTT CTACGGACAA CCTGGCACAA CCTGGCACAA ACCCAGAGCC ACCCAGAGCC ACCCAGAGCC ACCCAGAGCA TGGGAAGAAT TGGGAAGAAT TGGGAAGAAT TATGTTGTGT TATGTTGTGT TATGTTTTTT ATGTGTTTTTT ATGTGTTTTTT ATGTAGTTTTTT ATGTAGCATT AGTAGGCATT AGTAGGCATT AGTAGGCATT AGTAGGCATT ATTAATGTAA | AAGAAAACCT AAGAAAACCT AAGAAAACCT AAGAAAACCT AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AATTGGATGC AGAGAATGTT AGAGAATGTT AGAGAATGTT AGAGAATGTT AGCTGAGTTA GCTCGAGTTA GCTCGAGTTA TTATGTGTCA TTATGTGTCA TTATGTGTCA TTATGTGTCA ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT ACAAATGCTT CCATATTGC TCCATATTGC CCATGTTATG CTATGT CTATGT CCATGTT CTATGT CCATGTT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CCATGT CTATGT CTA | ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA ATGTTGCANA TCACTTCANG TCACTTCANG TCACTTCANG TCACTTCANG ANGATTCTAG ANGATTCTAG ANGATTCTAG ATTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTTCTACAGA TTCTACAGA TTCTACAGA TTCTACAGA ATTCTACAGA TTCTACAGA ATTCTACAGA TTCTACAGA ATTCTACAGA ATTCTACAGA ATCTGATATCA ANAACCAAGC ANAACCAAGC ANAACCAAGC ACACAGC ACACAGC ACACAGC ACACAGC ACCAGCTATCC CGACTTTCT CGACTTTCT CGACTTTTCT CGACTTTTCT | AAGAAGTCTT AAGAAGAAA AAAAGAGAAA AGGAAACCAT AGGAAACCAT AGGAAACCAT AGCAGAAAAG AGCAGAAAAG AGCAGAAAAG CAGAAAAG CAGAAAAG CAGAAAAG CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGGAGCTGC CTGTATATCAGC CTATATCAGC CTATATCAGAA TTTCAAAA TTTCAAAA | TCACAAGAAG TCACAAGAAG TCACAAGAAG ATGTAACCCC ATGTAACCCC ATGTAACCCC ATGTAACCCC TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TAGTATGTGT TCAGTATGTGT TCCAGTGTGT TCCAGTGTGT TCCAGTGTGT CTACAATGTA CTACAATGTA CTACAATGTA CTACAATGTA | 1170 ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGAAACGAT ATGATGCCT ATTGTTGCCT ATTGTTGCCT ATTGTTGCCT ATGATGCCTG GAAGTGCCTG GAAGTGCCTG GAAGTGCCTG CCAAAAATT CCCAAAAATT CCCAAAAATT CCCAAAAATT CCCAACATCTGCGGG GCCTTTGGAG GCCTTTGGAG GCCTTTGGAG CCTTTTGGAG CCTTTTGGAG TCTTTCTCAATGTTCCCACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC CACATCTTCC TTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG TTTCTCTATG | Figure 7 Alignment of the *Glyma04g35130* BURP transcript sequences from cv. Williams 82 with Clark standard (CS) and Clark glabrous (CG). Identical nucleotides are shown in *red. Dashes* represent gaps introduced for alignment. *Black boxes* represent insertions (that disrupt the reading frame) resulted in premature stop codons in CS and CG compared to Williams 82. Stop codons are indicated in *green boxes*. **Figure 8** Alignment of the deduced *Glyma04*g35130 BURP amino acid sequence from cv. Williams 82, Clark standard (CS) and Clark glabrous (CG). Identical amino acids are shown in *red*. The Williams 82 Glyma04g35130 peptide is 558 amino acids long where as CS and CG amino acid sequences end prematurely at 329 and 386, respectively. from previous reports as essential for trichome development showed higher transcript counts in our DGE data and RNA-Seq data, and likewise did not vary substantially. For instance, in the DGE transcriptome from shoot tip, the expression of *GL1 GL2*, *GL3*, and *TTG1* showed the opposite trend with some exceptions (Table 3). One explanation to this discrepancy is that trichome development commences at a very early stage of leaf development, even before the leaf primordial is differentiated, so that these transcription factors might have been differentially expressed at higher levels at earlier stages of development of the trichomes. Thus, our DGE and RNA-Seq data may reflect genes that are expressed preferentially in trichomes and not necessarily in the early signaling stages of trichome formation. Other studies have shown that MYB transcription factor genes CAPRICE (CPC), TRICHOMELESS (TCL1) and *TRIPTYCHON* (*TRY*) are negative regulators of trichome development [46-48]. Elevated levels of *SPLs* (*SQUAMOSA PROMOTER BINDING PROTEIN LIKE*) produced fewer trichomes in Arabidopsis. *SPL9* directly activates the expression of MYB transcription factor genes such as *TRICHOMELESS1* (*TCL1*) and *TRIPTY-CHON* (*TRY*), which are the negative regulators of trichome development [49]. Again, no substantial differences were found between the two soybean genotypes (Table 3). #### **Discussion** While microarrays have been used extensively to reveal physiological trends from transcriptome analyses of soybean developmental stages or organ systems, fewer reports to date have focused on transcriptome analysis of near isogenic lines using either microarrays [50,51] or Figure 9 The potential BURP gene family members with similarity to the *Glyma04g35130* BURP EST shown as Glyma models in Phytozome and their chromosome locations. Table 3 Comparison of DGE and RNA-Seq expression in soybean Clark standard and Clark glabrous of genes influencing trichome development in Arabidopsis | | | | DGE | | | RNASeq | | | | | |-------------------|-------------------|-----|-----|-----------|------|--------|-----------|--|--|--| | Trichome
genes | Soybean orthologs | CS | CG | CS/
CG | CS | CG | CS/
CG | | | | | GL1 | Glyma07g05960 | 2.8 | 4.5 | 0.6 | 0.5 | 3.8 | 0.1 | | | | | GL3 | Glyma08g01810 | 0.9 | 2.1 | 0.4 | 0.7 | 0.7 | 1.0 | | | | | | Glyma05g37770 | 0.4 | 1.3 | 0.3 | 1.0 | 0.8 | 1.3 | | | | | | Glyma07g07740 | 6.8 | 19 | 0.4 | 0.1 | 0.1 | 1.3 | | | | | | Glyma15g01960 | 7.2 | 9.1 | 0.8 | 1.7 | 4.7 | 0.4 | | | | | TTG1 | Glyma06g14180 | 29 | 43 | 0.7 | 5.0 | 10.0 | 0.5 | | | | | | Glyma04g40610 | 8.5 | 16 | 0.5 | 2.7 | 5.2 | 0.5 | | | | | | Glyma16g04930 | 14 | 13 | 1.1 | 9.9 | 13.7 | 0.7 | | | | | | Glyma19g28250 | 15 | 14 | 1.1 | 15.0 | 15.8 | 1.0 | | | | | GL2 | Glyma07g02220 | 7.2 | 9.1 | 0.8 | 2.6 | 5.9 | 0.4 | | | | | | Glyma07g08340 | 21 | 17 | 1.3 | 4.8 | 6.9 | 0.7 | | | | | | Glyma15g01960 | 7.2 | 9.1 | 0.8 | 1.7 | 4.7 | 0.4 | | | |
 | Glyma08g21890 | 14 | 21 | 0.7 | 2.7 | 4.8 | 0.6 | | | | | | Glyma08g06190 | 11 | 4 | 2.7 | 0.1 | 0.2 | 0.5 | | | | | SPL9 | Glyma03g29900 | 37 | 56 | 0.7 | 4.8 | 4.7 | 1.0 | | | | | | Glyma19g32800 | 0 | 0 | 0 | 8.7 | 9.0 | 1.0 | | | | | TRY | Glyma06g45940 | 8.7 | 21 | 0.4 | 0.4 | 3.9 | 0.1 | | | | | TCL1 | Glyma11g02060 | 0 | 0.6 | 0 | 0 | 0 | 0 | | | | DGE is normalized per million tags and RNA-Seg is shown in RPKM high throughput sequence analysis [52,53]. Here we compared high throughput sequencing using Digital Gene Expression and RNA-Seq transcriptome profiles of wild-type soybean (CS) and a glabrous-mutant (CG) with the dominant P1 mutation in soybean. DGE produces 16-nucleotide long tags generally specific to 3' end of each mRNA that provide information on quantitative expression of genes, rare transcripts, and also reveals novel or unannotated genes. However, since DGE data often represent the 3' end, it is essential that the databases or reference genome contain that information. We found that many of the annotated gene models in the soybean gene do not extend sufficiently to represent the DGE tags and extending the models to 250 bases at the 5' and 3' ends enables many more tags to align to the models. Compared to DGE, RNA-Seq produces even greater numbers of reads, up to hundreds of millions in one sequencing lane. The reads are also longer, generally 75 bp and correspond to the entire coding region thus giving more depth and range of coverage. The majority of the genes that are over-expressed in CS as compared to CG were also over expressed in RNA-Seq data or a vice versa but their expression fold changes were different. The use of different technology in DGE and RNA-Seq that produced 16 bp tags from 3'ends and 75 bp tags from whole transcripts, respectively, resulted in differences between DGE and RNA-Seq data. RNA-Seq is potentially a more comprehensive way to measure transcriptome abundance, composition, and splice variants, and it also enables discover of new exons or genes. Soybean has a large and highly duplicated genome, rich in paralogs and gene families. This presents a challenge when mapping DGE tags to a specific gene, since they could equally well map to the other gene homologs in the genome. Yet, both DGE and RNA-Seq data has enabled nearly the same trend of differential expression for many of the gene models. DGE and RNA-Seq analyses of CS and CG soybean isolines revealed several hundred genes with differential expression. Among them, the Glyma04g35130 BURP gene had a strong transcript level differences between the two lines. Additional validation came from RNA blots, which confirmed that the Glyma04g35130 BURP gene was strongly expressed in CS tissues and not in the glabrous CG isolines. There are also structural (SNP) differences between the CS and CG isolines for this gene. However, the parallel of high transcript levels for trichome-containing plants breaks down for the cv. Williams 82 which has trichomes but also has a very low level of transcripts in shoot tips of the Glyma04g35130 BURP gene as shown by Northern blotting (data not shown). The most distinguishing structural feature difference between the Glyma04g35130 BURP genes in the three cultivars is the presence of the 60 bp repeats, and an additional exon in the CS and CG lines compared to cv. Williams 82, and the addition of one nucleotide C in CG as compared to the other two. The Glyma04g35130 BURP gene showed high homology to the cotton gene RESISTANCE TO DROUGHT RD22-like 1 (GhRDL1) that is involved in cotton fiber initiation and is also a member of the BURP protein family. The Glyma04g35130 BURP gene and SCB1, seed coat burp domain protein 1 (Glyma07g28940) fall into one BURP protein family- BURPV, when 41 BURP proteins from different species were classified into 5 subfamilies [26]. SCB1 may play a role in the differentiation of the seed coat parenchyma cells and is localized on the cell wall of soybean [40]. But it should be noted that despite high sequence homology among the BURP domain containing genes, the function of each BURP protein seems to greatly vary among plants. The Glyma04g35130 BURP gene does not seem to have a direct role in trichome formation but the possibility is open that it may be indirectly involved in some soybean genotypes. Although sequence comparison of transcripts from cv. Williams 82, CS, and CG showed 98% identity, but it also revealed various SNP's, insertions, and deletions in CS and CG when compared to cv. Williams 82 (Figure 7). These differences in the transcript sequences such as ~60 bp insertion in the third exon of CS and addition of one nucleotide C in CG resulted in premature stop codons and also disturbed the frame in both CS and CG (Figure 7 &8). One might also expect differences in the upstream promoter regions of the Glyma04g35130 BURP between CS and CG genes based on the dramatic transcript level differences between the two genotypes as shown by DGE and confirmed by RNA blotting. The number of RFLPs seen in the CS vs. CG DNA blots suggested more family members that may differ by various indels. By comparing the BURP EST probe against the cv. Williams 82 soybean genome sequence [34], seven potential BURP gene family members were found that have sequence homology to the probe (Table 2) but only Glyma04g35130 stood out as highly differentially expressed between the two genotypes. Up to 23 total genes with BURP protein domains exist in soybean [26] but only seven are related to the Glyma04g35130 as assessed by e value of <10⁻⁶. Some genes involved in the initiation of trichome development have been particularly well characterized in Arabidopsis. As shown in Table 3, the transcript levels of soybean orthologs to some of the Arabidopsis genes were very low and did not vary considerably between the two genotypes even in the RNA-Seq data that yielded nearly 70 million mapped reads from the young shoot tips of each genotype. It may be necessary to assay earlier stages of trichome development using laser capture microdissection to find transcripts in early trichome formation in specific cell types. Alternatively, soybean may have different and undiscovered mechanisms for trichome formation. #### Conclusion Digital gene profiling and high throughput RNA-Seq revealed thousands of genes expressed in young trifoliate shoot tips of soybean. The data show a direct comparison of both methods. Many genes show agreement of the same trend of gene expression between the isolines but the two techniques produce differences in the ratios. Both methods allowed distinguishing gene family members in many cases. Comparison of isolines delineated changes in transcript abundance between wild-type soybean and glabrous-mutant on a genome-wide scale. Many genes showed similar expression levels between the two isolines as expected but the data also delineated the genes that are over-expressed or under-expressed in CS and may provide an insight into trichome gene expression in soybean, as the CG mutants lack any non glandular trichomes. The identification of a highly expressed member of the BURP gene family, Glyma04g35130, in CS that has almost no transcript presence in CG, may indicate its involvement in trichome formation or function in certain genotypes although it is not a candidate for the dominant P1 locus. Orthologs for Arabidopsis genes involved in trichome development were only very weakly expressed and did not vary considerabley between the two genotypes. This study represents a first step in expanding the study of trichome genetics into the economically important soybean plant. #### **Methods** #### Plant Materials and Genetic Nomenclature The two isolines of Glycine max used for this study-Clark standard (L58-231) (CS) and Clark glabrous (L62-1385) (CG) were obtained from the USDA Soybean Germplasm Collections (Department of Crop Sciences, USDA/ARS University of Illinois, Urbana IL). CG mutant was generated by introgression of the P1 glabrous mutant line (T145) into CS for six generations. Plants were grown in the greenhouse for one month and tissues were harvested and sampled from each plant including leaves (four stages from young to older leaves), shoot tips, root, hypocotyl, cotyledons, seed coats, and stem tissue. Multiple plant and tissue samples were used for each extraction in a 12 ml extraction volume. All tissues were quick frozen in liquid nitrogen and stored at -80°C. The tissues were then lyophilized and stored at -20°C. #### **DGE Library Construction and Data Analysis** Shoot tips from green house grown soybean isolines: CS and CG were collected approximately 4 weeks after planting and immediately frozen in liquid nitrogen. The RNA from multiple shoot tips and leaves was extracted using a modification of the McCarty method [54] using a 12 ml protocol with phenol chloroform extraction and lithium chloride precipitation. Library construction was carried out at Illumina, Inc., San Diego, using illumina's DGE tag profiling technology. Briefly, double-stranded cDNA's were synthesized using oligo(dT) beads and cDNA's were digested with NlaIII or DpnII restriction enzymes and ligated to defined gene expression adapter (GEX NlaIII Adapter 1, containing another restriction enzyme MmeI). Following MmeI digestion of cDNA's, which cuts 17 bp downstream, the GEX Adapter 2 was ligated at the site of MmeI cleavage. The GEX Adapter 2 contains sequences complementary to the oligos attached to the flow cell surface. Tags flanked by both adapters were enriched by PCR using primers that anneal to the ends of the adapters. The PCR products were gel purified before loading onto the illumina cluster station for sequencing. After adapter trimming, the tags were 16-nucleotide long corresponding to 3'end of the transcript. Approximately 5.2 million DGE tags were sequenced from each library and the total counts for each unique read were determined and a unique DGE ID number was assigned to each unique
tag, resulting in approximately 85,000 tags for each library where at least one library contained at least 5 counts per tag. The sequences of the DGE sequence tags and counts in each library are shown in Additional File 1. DGE tags were aligned to the 78,774 cDNA gene models (known as Glyma models) predicted from the soybean reference genome of cv. Williams 82 [33] and available at the Phtozome web site [34] using Bowtie [35]. Using a stringent criterion of 0 mismatches within the 16 nucleotide tag alignments, most of the tags aligned to the models but large numbers of tags did not. In order to retrieve alignments where the models did not call sufficient 3'UTR sequence, we extended the Glyma models at both the 5' and 3' ends by 250 bases in each direction. Of the 5.2 million raw DGE reads for each library, approximately 4.7 million aligned to the extended Glyma models. DGE data was normalized per million aligned reads. In addition to alignments to the Glyma models, candidate soybean ESTs corresponding to the tags were used for further verification of the DGE differentially expressed tags referenced in the Table 1. First, each read was compared to the publically available soybean EST sequences available at NCBI via a BLASTN search. Each read was used to identify 100% matches, and only clones matching at least three separate ESTs were used for further analysis. The identified ESTs corresponding to each read were then compared with the non-redundant sequence database at NCBI, using BLASTX. Reads were included in the final list only if all three (or two, 100% identical to reads) had matching annotations. For differential gene expression analysis with count data using a negative binomial distribution without replication, the DESeq package in R was used [41]. #### RNA-Seq Method The RNA from multiple shoot tips was extracted using a modification of the McCarty method [45] using a 12 ml protocol with phenol chloroform extraction and lithium chloride precipitation. The shoot tips were harvested from a second biological replication of ~4-week old plants grown in green house. Library construction and high-throughput sequencing was carried out using RNA-Seq technology at using Illumina GaII instruments by the Keck Center, University of Illinois. #### RNA-Seq Allignment and Data Normalization The 75 bp reads were mapped to the 78,744 Glyma cDNA gene models [34] using Bowtie [35] with up to 3 mismatches allowed and up to 25 alignments. A total of the 91.4 and 88.7 million reads were generated in each lane of Illumina sequencing for the CS and CG libraries, respectively. Of these, 65.4 (71%) and 70.3 (79%) million reads aligned to the 78,744 target Glyma models with the Bowtie criteria used. RNA-Seq data was normalized in reads per kilobase of gene model per million mapped reads (RRKM) as the RNA-Seq depends on the transcript length [42] as the reads will map to all positions of the transcript, unlike DGE tags which are predominantly found adjacent to the first *Dpn*II site at the 3' end of the transcript. The RNA-Seq data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [55] and are accessible through GEO Series accession number GSE33155. #### Annotation of Glyma models Coding region gene models were collected from the masked soybean genome from Phytozome version 4.0 GFF file [34]. In addition to the PFAM, KOG and Panther annotations downloaded from Phytozome, the 78,744 models (that include both high and low confidence models) were further annotated using BLASTX against the non-redundant (nr) database of the National Center for Biotechnology Information [55] and trEMBL and Swiss prot of the European Bioinformatics Institute [56] on a Time Logic CodeQuest DeCypher Engine. #### **BURP Gene Cloning and Sequence Analysis** Primers from the cv. Williams 82 genomic sequence [33,34] were used to amplify the full-length BURP gene from CS and CG genomic DNA using the primers 5' ACATCATTCTAAAAGACATAGACTA3' and 5' TGACCTGTTAGCTTTATGAT3'. A cDNA sequence was amplified from CS root tissue using RT-PCR with primers designed on 5' and 3' untranslated regions (5' CCACCTAAACCATAAGTCCTATTGG3' and 5' CCTATTACTAAAATGTAGGTTCAGTAAAGGTAG3'). All genomic and cDNA sequences were cloned and confirmed by DNA sequencing. The cDNA and genomic sequences of *Glyma04g35130* from both lines, CS and CG were compared to determine the number of introns and exons in the gene. #### **RNA Blot** Total RNA was extracted from the frozen leaves, roots, hypocotyls, seed coats, and cotyledons of CS and CG using standard phenol chloroform method with lithium chloride precipitation [54]. RNA samples were quantified by spectrophotometer and the integrity was confirmed using agarose gel electrophoresis. RNA was stored at -80°C until further use. For RNA gel blot analysis, 10 μ g of total RNA was electrophoresed through 1.2% agarose/1.1% formaldehyde gels [57] blotted onto nitrocellulose membranes (Schleicher & Schuell, Keene, NH) via capillary action with 10× SSC (1.5 M NaCl and 0.15 M sodium citrate, pH = 7) overnight. After blotting, RNA was cross-linked to the nitrocellulose membranes with UV radiation by a UV cross-linker (Stratagene, La Jolla, CA). Nitrocellulose RNA gel blots were then prehybridized, hybridized, washed, and exposed to Hyperfilm (Amersham, Piscataway, NJ) as described by Todd and Vodkin (1996) [58]. A 1.4 kb probe for BURP gene was amplified from EST (Gm-r1083-3435) and labeled with $[\alpha^{-32}P]dATP$ by random primer reaction method [59]. #### **DNA Blot** For DNA blots, genomic DNA was isolated from lyophilized soybean shoot tips using the method described by Dellaporta in 1993 [60] with minor modifications. Genomic DNAs were digested with six different restriction enzymes including BamHI, HindIII, EcoRI, DraI, BglII, and EcoRV in separate reactions. Ten micrograms of digested genomic DNA from each sample was separated on 0.7% agarose gels. The gels were then treated sequentially with depurination solution (0.25 M HCl), denaturation solution (1.5 M NaCl, 0.5 M NaOH), and neutralization solution (1 M Tris, 1.5 M NaCl [pH 7.4]). The gels were then taken through the same blotting transfer protocol described above for Northern blots along with prehybridization, hybridization (with the appropriate $[\alpha^{-32}P]dATP$ labeled probed), washing, and exposure to Hyperfilm (Amersham, Piscataway, NJ). The same EST probe used for RNA blot was used in the DNA blots. #### **Additional material** Additional file 1: Alignment of DGE tags to extended Glyma model and their annotations. Additional file 2: The top 300 genes that are highly expressed in Clark standard and Clark glabrous. Additional file 3: Differential expression from DGE and RNA-Seq of Clark standard and Clark glabrous. Additional file 4: DESeq analysis of Clark standard and Clark glabrous. #### Acknowledgements We are grateful to Sean Bloomfield, Achira Kulasekara, and Cameron Lowe for help with data analysis. The research was funded by support from the Illinois Soybean Association and the USDA. #### **Author details** ¹Department of Crop Sciences, University of Illinois, Urbana, Illinois, 61801, USA. ²Department of Plant Science/McGill Centre for Bioinformatics, McGill University, Macdonald campus, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada. ³Current address: Ohio State University, Columbus, OH 43210, USA. #### Authors' contributions MH designed experiments, performed RNA and DNA extractions and blots, amplified and sequenced BURP gene from CS and CG genotypes, analyzed DGE data for functional categories, and drafted the manuscript; NK performed transcript cloning, RNA blots, analyzed DGE data using DESeq software, analyzed RNA-Seq data, BURP genome sequence data, and drafted sections of the manuscript; MS annotated Glyma models with multiple databases. LOV designed initial approach, led and coordinated the project, and edited the manuscript. All authors have read and approved the final manuscript. Received: 29 August 2011 Accepted: 26 October 2011 Published: 26 October 2011 #### References - 1. Werker E: Trichome diversity and development. Adv Bot Res 2000, 31:1-35. - Ghorashy SR, Pendelton JW, Bernard RL, Bauer ME: Effect of leaf pubescence on transpiration, photosynthetic rate and seed yield of three near-isogenic lines of soybeans. Crop Sci 1971, 11:426-427. - Nielsen DC, Blad BL, Verma SB, Rosenberg NJ, Specht JE: Influence of soybean pubescence type on radiation balance. Agron J 1984, 76:924-929. - Brodbeck BV, Andersen PC, Mizell RF III, Oden S: Comparative nutrition and developmental biology of xylem-feeding leafhoppers reared on four genotypes of Glycine max. Environ Entomol 2004, 33(2):165-173. - Herman PL, Marks MD: Trichome development in Arabidopsis thaliana. II. Isolation and complementation of the GLABROUS1 gene. Plant cell 1989, 1:1051-55 - Payne CT, Zhang F, Lloyd AM: GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 2000, 156:1349-62. - Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A: The TTG1bHLHMYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. *Development* 2008, 135:1991-1999. - Cristina MD, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G: The Arabidopsis Athb-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 1996, 10(3):393-402. - Jakoby M, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hülskamp M, Larkin J, Schnittger A: Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTAlike transcriptional regulator MYB106. Plant Physiol 2008, 148:1583-1602. - Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA: Transcriptome analysis of Arabidopsis wild- type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2009, 2:803-822 - Lee JJ, Woodward
AW, Chen ZJ: Gene expression changes and early events in cotton fibre development. Ann Bot 2007, 100:1391-1401. - Arpat AB, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA: Functional genomics of cell elongation in developing cotton fibres. Plant Mol Biol 2004, 54:911-929. - Taliercio EW, Boykin D: Analysis of gene expression in cotton fiber initials. BMC Plant Biol 2007, 7:22. - Alabady MS, Youn E, Wilkins TA: Double feature selection and cluster analyses in mining of microarray data from cotton. BMC Genomics 2008, 9:295. - Li XB, Cai L, Cheng NH, Liu JW: Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fibre. Plant Physiol 2002, 130:666-674 - Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ, Chen XY, Payton P, Sze SH, Stelly DM, Chen ZJ: Development and Gene Expression Analyses of a Cotton Naked Seed Mutant. Planta 2006, 223:418-432. - Wu AM, Ling C, Liu JY: Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. J Plant Physiol 2006, 163:426-435. - Loguercio LL, Zhang JQ, Wilkins TA: Differential regulation of size novel MYB-domain genes defines two distinc expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 1999, 261:660-671. - Sou J, Liang X, Pu L, Zhang Y, Xue Y: Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 2003, 1630:25-34. - Humphries JA, Walker AR, Timmis JN, Orford SJ: Two WD-Repeat Genes from Cotton are Functional Homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) Gene. Plant Mol Biol 2005, 57:67-81. - Luo M, Xiao Y, Li X, Lu X, Deng W, Li D, Hou L, Hu M, Li Y, Pei Y: GhDET2, a steroid 5α-reductase, plays an important role in cotton fibre cell initiation and elongation. Plant J 2007, 51:419-430. - Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY: The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plantarum 2008, 134:174-182. - Shangguan XX, Xu B, Yu ZX, Wang LJ, Chen XY: Promoter of a cotton fibre MYB gene functional in trichomes of *Arabidopsis* and glandular trichomes of tobacco. J Exp Bot 2008, 59(13):3533-3542. - Hattori J, Boutilier KA, van Lookeren Campagne MM, Miki BL: A conserved BURP domain defines a novel group of plant proteins with unusual primary structure. Mol Gen Genet 1998, 259:424-428. - Granger C, Coryell V, Khanna A, Keim P, Vodkin L, Shoemaker RC: Identification, structure, and differential expression of a BURP domain containing protein family in soybean. *Genome* 2002, 45:693-701. - Xu H, Li Y, Yan Y, Wang K, Gao Y, Hu Y: Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 2010, 10:197. - Bernard RL, Singh BB: Inheritance of pubescence type in soybeans: qlabrous, curly, dense, sparse and puberulent. Crop Sci 1969, 9:192-197. - 28. Singh BB, Hadley HH, Bernard RL: Morphology of pubescence in soybeans and its relationship to plant vigor. *Crop Sci* 1971, 11:13-16. - Lam W-KF, Pedigo LP: Effect of trichome density on soybean pod feeding by adult bean leaf beetles (coleoptera: chrysomelidae). J Econ Entomol 2001, 94(6):1459-1463. - Baldocchi DD, Verma SB, Rosenberg NJ, Blad BL, Garay A, Specht JE: Leaf pubescence effects on the mass and energy exchange between soybean canonies and the atmosphere. *Agron J.* 1983. 75:537-543. - Specht JE, Blad BL, Garay AF: Water use efficiency in soybean pubescence density isolines - a calculation procedure for estimating daily values. *Agron J* 1986, 78:483-486. - Saha S, Sparks AB, Rego C, Viatcheslav A, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE: Using the transcriptome to annotate the genome. Nat Biotech 2002, 20:508-512. - Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, et al: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183. - 34. **Joint Genome Institute/Phytozome/.** [http://www.phytozome.net/soybean. - Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memoryefficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. - Zheng L, Heupel RC, DellaPenna D: The β Subunit of tomato fruit polygalacturonase isoenzyme 1: isolation, characterization, and identification of unique structural features. Plant Cell 1992, 4:1147-1156. - 37. Watson CF, Zheng L, DellaPenna D: Reduction of tomato polygalacturonase β subunit expression affects pectin solubilization and degradation during fruit ripening. *Plant Cell* 1994, **6**:1623-1634. - Shinozaki KY, Shinozaki K: The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 1993, 238:17-25. - Wang A, Xia Q, Xie W, Datla R, Selvaraj G: The classical ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc Natl Acad Sci USA 2003, 100:14487-14492. - Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman LA, Hu M, Lantin S, Johnson DA, Miki BL: SCB1, a BURP-domain protein gene, from developing soybean seed coats. *Planta* 2002, 215:523-532. - 41. Anders S, Huber W: Differential expression analysis for sequence count data. *Genome Biol* 2010, 11:R106. - Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628 - Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD: A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 1991, 67:483-493. - Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC: The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 1999, 11:1337-1350. - Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A: A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 2003, 130:4859-4869. - Wada T, Tachibana T, Shimura Y, Okada K: Epidermal cell differentiation in Arabidopsis determine by a Myb homolog, CPC. Science 1997, 277:1113-1116. - Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hulskamp M: TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 2002, 21:5036-5046. - Wang S, Kwak SH, Zeng Q, Ellis BE, Chen XY, Schiefelbein J, Chen JG: TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 2007, 134:3873-3882. - Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY: Temporal control of trichome distribution by microRNA 156- targeted SPL genes in Arabidopsis thaliana. Plant Cell 2010, 2322-2335. - Zabala G, Vodkin LO: The wp mutation of Glycine max carries a genefragment-rich transposon of the CACTA superfamily. Plant Cell 2005, 17:2619-2632. - O'Rourke JA, Charlson DV, Gonzalex DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC: Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines. BMC Genomics 2007, 8:476. - Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO: Endogenous, tissuespecific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 2009, 21:3063-3077. - Severin AJ, Peiffer GA, Xu WW, Hyten D, Bucciarelli B, O'Rourke JA, Bolon YT, Grant D, Farmer AD, May GD, Vance CPI, Shoemaker RC, Stupar RM: An integrative approach to genomics introgression mapping. *Plant Physiol* 2010, 154:3-12. - 54. McCarty DR: A simple method for extractions of RNA from maize tissue. Maize Genetics Cooperation News Letter 1986, 60:61. - National Center for Biotechnology Information. [http://www.ncbi.nlm.nih. gov/l. - 56. European Bioinformatics Institute. [http://www.ebi.ac.uk/uniprot/]. - Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989. - Todd JJ, Vodkin LO: Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 1996, 8:687-699. - 59. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. *Anal Biochem* 1983, 1326-132 - Dellaporta SL: Plant DNA miniprep version 2.1-2.3.Edited by: Freeling M, Walbot V. The Maize Handbook Springer-Verlag, New York; 1993:522-525. #### doi:10.1186/1471-2229-11-145 Cite this article as: Hunt *et al.*: Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. *BMC Plant Biology* 2011 11:145. ### Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit