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Abstract

thinning programs in apple.

Background: Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in
apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality.
However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit
drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete
understanding of the mode of action of NAA in promoting fruit abscission.

Results: Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling
performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with
significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both
treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were
downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and
signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA
and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to
the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were
affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to
shading, directly interfered with leaf photosynthesis by repressing photosystem I (PSIl) efficiency within 10 minutes
of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced
photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission.

Conclusions: This study provides an extensive transcriptome study and a good platform for further investigation of
possible regulatory genes involved in the induction of young fruit abscission in apple, which will enable us to
better understand the mechanism of fruit thinning and facilitate the selection of potential chemicals for the

Background

Most apple trees tend to bear more fruit than they can
support to maturity. While such over-cropping may
help ensure reproductive success, it can lead to branch
damage, low quality fruit and drastic reductions in

* Correspondence: chris.dardick@ars.usda.gov

2Appalachian Fruit Research Station, United States Department of
Agriculture, Agricultural Research Service, Kearneysville, WV, 25430, USA
Full list of author information is available at the end of the article

( BiolMed Central

cropping in the following year. Consequently, over-crop-
ping is an undesirable trait. Although a self-thinning
process known as the “June drop” can help alleviate the
negative impact of excessive fruit bearing, apple growers
often find it necessary to apply chemical thinners to
remove excess fruit at an early stage of fruit develop-
ment. Naphthaleneacetic acid (NAA) is one of the most
commonly used chemical thinners, but its efficacy varies
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among different varieties and is affected by environmen-
tal conditions following the application.

The physiological mechanisms by which NAA pro-
motes the abscission of young apple fruitlets have been
discussed [1-3]. Principal among these mechanisms is a
reduction in carbohydrate availability to the developing
fruit either by interference with photosynthesis [4,5] or
by reduced translocation of metabolites, including
photosynthates, from leaves to the fruit [6]. The impor-
tance of photosynthesis and photosynthate translocation
in fruit retention is further illustrated by experiments
involving shading or removal of leaves, two treatments
that cause extensive apple fruit abscission [7,8]. More-
over, normal fruitlet abscission, which can occur both
shortly after anthesis and during the “June drop”, has
been at least partly attributed to the competition for
carbohydrates among young fruit and between fruit and
vegetative shoots [7,9]. Together these findings indicate
that photosynthesis is critical for fruit development and
treatments that alter the levels of carbohydrates avail-
able for translocation to the developing fruit can influ-
ence the fruit set of apple trees.

In addition to its effects on carbohydrate levels, NAA
application apparently enhances apple fruitlet abscission
through increased ethylene production [10-13]. Applica-
tion of ethephon, which releases ethylene, effectively
promoted the abscission of young fruit in apple [14],
while aminoethoxyvinylglycine (AVG), a strong inhibitor
of ethylene biosynthesis, reduced fruit ethylene produc-
tion and young fruit abscission in apple [13,15]. The
NAA-induced increase in ethylene production is posi-
tively correlated with changes in the expression of ethy-
lene biosynthesis and signal transduction genes,
including five ACC synthase genes (MdACS), one ACC
oxidase gene (MdACO), four ethylene receptor genes
(MAETR and MdERS) and one ethylene signal transduc-
tion gene (MdCTRI) [12,13,16]. It has been reported
that apple fruitlet abscission is preceded by a stimula-
tion of ethylene biosynthesis and an acquisition in the
sensitivity to ethylene [12]. Also, a recent microarray
analysis of the abscission-related transcriptome in
tomato flower abscission zone (AZ) revealed a link
between the acquisition of ethylene sensitivity in the AZ
and altered expression of auxin-regulated genes due to
auxin depletion [17].

Cell wall breakdown and cell separation are required
within the fruit abscission zone (FAZ) for fruit abscis-
sion. Cell wall remodeling genes are induced in the FAZ
[18,19] and the activities of cell wall remodeling and
degrading enzymes, including expansin, pectate lyase,
polygalacturonase and f3-1,4-glucanase, have been shown
to markedly increase, concomitant with increased ethy-
lene production, catalyzing the loosening and break-
down of the cell wall and promoting fruit drop [20-23].
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The findings summarized above suggest that abscis-
sion-associated carbohydrate-, ethylene- and auxin-
responsive signaling pathways engage in crosstalk with
each other and with other signaling pathways to coordi-
nate abscission. Increasing knowledge of changes in
gene expression associated with abscission will aid in
the development of strategies for more predictable thin-
ning results and set the stage for the development of
improved thinners. Moreover, the identification of regu-
latory networks that are central to apple fruit abscission
will enhance our basic understanding of organ abscis-
sion, which is a fundamental aspect of plant develop-
ment. In this study, we compared NAA and shading-
induced abscission, through transcriptome analysis, to
reveal the molecular mechanism controlling the induc-
tion of apple fruitlet abscission. Results show that NAA,
like shading, imposes a stress signal through photo-
synthesis impairment and causes altered hormone sig-
naling and triggers fruit abscission.

Results

Effects of NAA and shading on young fruit abscission and
ethylene production by young fruit and leaves

A comparison of the relative effectiveness of NAA and
shading as inducers of fruit abscission revealed significant
treatment-specific differences in abscission rates and
totals. For example, while both treatments promoted
detectable increases in abscission rates within the first 7 d
post-treatment, the NAA-induced abscission rate
remained essentially unchanged from 7 to 13 d, whereas
shading resulted in a relatively steady increase in the rate
of fruit abscission for the same period (Figure 1A). By 15
d, however, similar rates of abscission were observed for
both treatments and rates were near or below control
rates by 19 d for both treatments. Ultimately, shading was
significantly more effective in promoting fruit drop, caus-
ing 98% of the fruit to abscise within the 19-d period of
the study, compared to a 75% loss in the same period fol-
lowing NAA treatment. Interestingly, the pattern of abscis-
sion exhibited by controls roughly mirrored that of treated
trees but resulted in less than 10% of the fruit being shed,
indicating that the NAA and shading treatments were able
to act additively or synergistically with the endogenous
early fruit abscission program (Figure 1B).

Previous studies have documented the link between
NAA- and shading-induced abscission and ethylene pro-
duction. We confirmed that the major increases in ethy-
lene production preceded the onset of fruit abscission
(Figure 2A compared with Figure 1A). The maximum
level of NAA-induced fruit ethylene production was
detected at 1 d and had decreased to control level by 7
d after treatment. Shaded fruit also released higher
levels of ethylene relative to the control between 1 and
5 d, but levels reached only 50% of those from NAA-
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Figure 1 Effect of NAA and shading treatments on fruit abscission of ‘Golden Delicious’ apples. (A) NAA and shading increase fruit
abscission rate. (B) NAA and shading treatment also increase the percentage of total fruit drop. Results represent the mean (+ SE) of three
replicates. Different letters indicate significant differences among means according to Duncan’s multiple range test (P < 0.05).
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Figure 2 Effect of NAA and shading treatments on ethylene
production of ‘Golden Delicious’ apples. (A) NAA and shading
induce ethylene in young fruit. (8) NAA and shading also induce
ethylene in leaves. Results represent the mean (+ SE) of three
replicates.

treated fruit (Figure 2A). A similar pattern of ethylene
release was detected for leaves, where the ethylene pro-
duction of both shaded and NAA-treated leaves peaked
at 1 d, but decreased to control level by 5 and 7 d after
treatment, respectively. However, at its peak rate, mea-
sured at 1 d, almost 70-fold more ethylene was released
by leaves compared to fruit (Figure 2B).

Expression profiling of young fruit abscission induced by
NAA and shading

To identify genes whose expression patterns correlated
with the fruit abscission induced by NAA and shading,
gene expression profiling was performed using the FAZ
at three time points (D1, D3 and D5), a period spanning
the earliest phase of the treatment-dependent increase
in abscission above control levels (Figure 1). For each
time point, labeled cDNA from the FAZ of NAA- or
shading-treated trees was hybridized to reference cDNA
from the FAZ of non-treated trees for the same time
point, so as not to confound the changes in gene
expression caused by treatments with those occurring
during fruit development.

Seven-hundred-twenty-two genes from NAA-treated
sample hybridizations and 1057 genes from shading-
treated sample hybridizations showed statistically signifi-
cant changes in expression (Additional file 1, Table S1).
Of these genes, 168 were differentially expressed in
FAZs from both NAA- and shading-treated samples,
and 86% (145) of those displayed similar expression pat-
terns, indicating that NAA- and shading-induced abscis-
sion share some common signaling pathways.
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Time points and selected genes were grouped accord-
ing to expression pattern by hierarchical cluster analysis
(Additional file 2, Figure S1). Following NAA treatment,
the largest number of differentially expressed genes was
detected at 3 d, followed by 5 and 1 d after NAA treat-
ment, suggesting that NAA caused a transient effect
during the abscission induction. In contrast, shading led
to a sustained increase in the number of differentially
expressed genes from 1 to 5 d. For both treatments,
there were approximately equal numbers of genes show-
ing upregulation or downregulation by 1 d, but induced
genes outnumbered repressed genes for 3 and 5 d.

The two array datasets were further analyzed using K-
means clustering (KMC) for genes whose expression
pattern was correlated with the induction of fruit abscis-
sion (Additional file 3, Table S2). The cluster names
were assigned upregulated (), unchanged (o) or down-
regulated (d) for each time point. NAA-responsive genes
were classified into 8 main clusters. As shown in Addi-
tional file 4 (Figure S2), the largest group (comprised of
clusters 2 and 6) of differentially regulated genes was
detected at 3 d. Shading-responsive genes were divided
into 10 clusters. Similar to the NAA dataset, most clus-
ters reflected either up- or down-regulation at one or
two time points. In contrast to the NAA treatment, two
clusters in the shading dataset (2 and 7) showed a per-
sistent repression or induction at all three time points,
and one cluster (5) comprised 51 genes that were first
downregulated at 1 d, but later upregulated at 5 d after
treatment (Additional file 4, Figure S2).

We examined gene expression patterns to identify
functional categories correlated with fruit abscission.
Genes probed by the apple array have both annotation
and gene ontology (GO) information. However, as some
annotations and GO categories do not provide detailed
information on the biological mechanisms, additional
manual annotations and literature validations were con-
ducted for the entire list of differentially expressed
genes. The resulting 15 functional categories included
eight categories (photosynthesis, metabolism, mem-
brane/cellular trafficking, cell cycle, hormone response,
cell wall modification, protein metabolism and transcrip-
tion factors) that accounted for over 70% of all the dif-
ferentially expressed genes for both treatments (Figure
3A-B). After further gene categorization, we found that
some categories and their subcategories showed trends
where most members were either up- or downregulated
by one or both treatments. To determine if such expres-
sion trends were statistically significant or just occurred
by chance, % and Fisher’s exact tests were performed
on these categories and their subcategories, showing
most, but not all categories and subcategories with non-
random expression trends. A similar approach was used
by Dardick et al (2007) for the enrichment analysis [24].
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Those statistically significant categories and subcate-
gories were shown in Figure 3C. All the resulting classi-
fications were displayed in Additional file 5 (Table S3)
and used for the subsequent analysis.

Photosynthesis-related genes

The chloroplast is the site of the energy transduction
and Calvin Cycle phases of photosynthesis and starch
metabolism. Reductions in chloroplast function in
response to shading have been reported previously [7]
and were consistent with our transcript profiles from
shading-treated trees. We found that NAA treatment
also led to strong reductions in photosynthesis-related
gene expression, which supported a previous report [4].
Although shading downregulated a larger number of
photosynthesis-related genes than NAA, in both treat-
ments over 90% of the differentially expressed genes
related to chloroplast function were repressed (Addi-
tional file 5, Table S3). The affected genes function in
light-harvesting, oxygen evolution, electron transport
and carbon fixation. Shading-repressed genes were also
involved with chlorophyll biosynthesis, chloroplast DNA
binding, thylakoid formation and carbon utilization.
However, only a small overlap was observed between
this latter group of shading-repressed genes and those
repressed by NAA, indicating that NAA and shading
repress photosynthesis-related processes through par-
tially distinct mechanisms.

Carbohydrate metabolism and sugar sensing

Not surprisingly, the repression of photosynthesis-
related gene expression caused by both treatments was
linked with changes in the expression of genes in the
metabolism category, with the largest subset of differen-
tially expressed genes belonging to carbohydrate meta-
bolism. Affected genes within this category include
those associated with glycolysis, the cleavage of glycosi-
dic bonds, sugar phosphorylation and signal transduc-
tion. Thirty-eight carbohydrate metabolism genes
showed significantly altered expression in response to
NAA, while 149 genes were regulated by shading (Addi-
tional file 5, Table S3). NAA-induced genes included
those involved with glycolysis and starch degradation,
such as pyruvate kinase, alcohol dehydrogenase, amylase
and limit dextrinase. Similarly, shading treatment
induced genes associated with glycolysis, but also led to
changes in the expression of genes for carbohydrate
active enzymes, i.e., induction of beta-glycosidases and
glycosyltransferase and repression of alpha-glycosidases.
Genes related to sucrose metabolism, e.g., sucrose phos-
phate synthase (SPS) and sucrose phosphate phospha-
tase (SPP), were inversely regulated by the two
treatments: NAA repressed SPS and induced SPP, while
shading induced SPS and repressed SPP. A group of
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Figure 3 Functional categories of statistically significant genes. (A) Differentially expressed genes are categorized from NAA-treated FAZ. (B)
Differentially expressed genes are categorized from shading-treated FAZ. The functional categorization is based on the annotation and GO
information. Category names are indicated near each pie slice, along with the proportion of each category. (C) Functional categories showing
non-random expression trends. Statistically significant values are highlighted (P < 0.05).

genes identified as cytosolic and cell wall invertases were
induced by shading in the FAZ, indicating a possible
increase in sucrose breakdown in the FAZ. These same
invertases were not differentially regulated by NAA,
however. The expression of three distinct putative alka-
line/neutral invertase genes was reduced after both
NAA and shading treatments. Sorbitol dehydrogenase
(SDH) was repressed by both NAA and shading, while
NADP-dependent D-sorbitol-6-phosphate dehydrogen-
ase (S6PDH) was induced by NAA but repressed by
shading. Many ADP/UDP-glucose pyrophosphorylase
genes responsible for starch synthesis were downregu-
lated by shading, but none was differentially regulated
by NAA.

Sugar signals are generated from various source
organs in response to stresses and changes in metabolic
fluxes [25]. Hexokinase (HXK) senses glucose levels and
SNEF-related protein kinases (SnRKs) are important to
metabolic reprogramming in response to changes in car-
bohydrate levels [26]. Shading altered the expression of

various carbohydrate kinases, but HXK was upregulated
by NAA only in the FAZ.

Trehalose serves as a storage carbohydrate and stress
protectant, which usually accumulates during starvation
conditions [25,27]. Trehalose metabolism genes were
downregulated by shading but not by NAA treatment.
Specifically, genes encoding trehalose-6-phosphate
synthase (7PS) and trehalose-6-phosphate phosphatase
(TPP) were repressed in the shading-treated FAZ, sug-
gesting a decreased trehalose level in the FAZ resulted
from shading.

Transport

A large group of transporters for sugars, lipids, amino
acids and metal ions were differentially expressed in
response to both treatments. The expression of all sorbi-
tol/sucrose transporter genes was consistently repressed
by both treatments, while shading downregulated more
genes related to general sugar transport, such as hexose
transporters. A class of genes related to membrane and
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cytoskeleton function, including microtubule, vesicle-
mediated membrane transporter and cell adhesion
genes, were found exclusively repressed by NAA. In all,
twice as many transport-related genes were affected by
shading compared to NAA, among which several ion
transporters, especially for calcium and potassium, were
significantly upregulated by shading while others for
water transport were downregulated. Another group of
transporters, ATP-binding cassette transporters (ABC
transporters), were induced by both treatments.

Cell cycle-related genes

Similar numbers of cell cycle genes were identified in
the two datasets of differentially expressed genes, includ-
ing two classes of regulatory genes, cyclin and cyclin-
dependent kinase (CDK), being repressed by both NAA
and shading. Several cell division control proteins were
also downregulated while one CDK inhibitor was upre-
gulated in the FAZ.

Hormone synthesis and signaling

Many genes involved in different hormone synthesis and
signaling pathways showed significant expression
changes in response to both treatments. ABA has been
implicated as a regulator of stress-induced senescence
[28,29]. In this study, NAA appeared to have limited
effect on ABA-related genes in that it only upregulated
three 9-cis-epoxycarotenoid dioxygenase (NCED) genes
and a zeaxanthin epoxidase gene, which encode key
enzymes in ABA biosynthesis. In contrast, shading
altered 26 ABA-related genes involved in biosynthesis,
including NCED, short chain dehydrogenase/reductase
(SDR) and abscisic aldehyde oxidase (AAO), and several
genes related to ABA signaling, including protein phos-
phatase type 2C and ABA responsive elements-binding
factors.

A divergence in auxin-related gene expression was
noted for shading- versus NAA-treated trees. Only two
auxin-induced SAUR-like and two auxin transport genes
showed significant changes in response to shading.
However, 21 auxin-related genes were differentially
altered by NAA and these genes included IAA-amido
synthase, auxin-amidohydrolase, AUX/IAA proteins and
various auxin response factors (ARFs). Genes related to
auxin polar transport were also affected by NAA, with
auxin influx carriers induced and efflux carriers largely
repressed. The latter effect diverged from that observed
for shading-treated trees, where the same auxin efflux
carrier genes were induced (Additional file 5, Table S3).

In response to both treatments, genes for ethylene
biosynthesis and perception were upregulated, including
1-aminocyclopropane-1-carboxylate synthase (ACS) and
oxidase (ACO) and two classes of ethylene receptors
(ERS and ETR). Coinciding with the increased ethylene
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biosynthesis (Figure 2), the expression of spermidine
synthase gene, a key gene related to polyamine biosynth-
esis, was consistently reduced by both treatments.

Genes involved with cytokinin and gibberellic acid
(GA) signaling pathways were downregulated by shading
and NAA. Also, shading increased the expression of a
GAZ2-oxidase gene, which is responsible for GA catabo-
lism. Regarding brassinosteroid (BR)-related genes
affected by shading, a BR oxidase gene was repressed,
while a BR-signaling kinase gene was induced 3 d after
shading. In contrast, expression of BR-related genes was
not affected by NAA treatment.

Cell wall modification

A shared set of 11 genes associated with cell wall bio-
synthesis, loosening and degradation was responsive to
both treatments, with most exhibiting changes at 3 and
5 d after treatment. Specifically, cellulose synthase genes
were repressed while other genes related to cell wall
loosening and hydrolysis, including -1,3-glucanase,
polygalacturonase and expansin, were all induced.

Proteolysis and programmed cell death

A number of genes putatively involved in the ubiquityla-
tion pathway were upregulated. Several upregulated
genes within the NAA dataset encode F-box proteins
and other members of ubiquitin E3 ligase complex,
including cullin and ubiquitin-conjugating enzymes. In
comparison, shading caused a more widespread induc-
tion of genes responsible for protein ubiquitylation and
degradation. Shading also had greater impact on the
expression of 26S proteasome subunit genes. Another
group of genes co-induced by both treatments included
those possibly involved in programmed cell death, such
as clp and cysteine proteases and autophagy genes. Simi-
lar to the pattern observed for cell wall degrading genes,
the induction of almost all genes identified in cell death
category was detected at 3 and 5 d.

Transcription factors (TFs)

Several classes of TFs exhibited significant changes in
expression. Ten TFs were co-regulated by shading and
NAA, including ERF/AP2 transcription factors, bZIP
proteins, MADS-box and MYB domain proteins. The
differentially expressed ERF/AP2 TFs were co-expressed
with the genes for biosynthesis and signaling of ethylene
and ABA, consistent with their roles in these two hor-
mone signaling pathways [30,31]. Interestingly, a homo-
log of the JOINTLESS gene (JNT), which encodes a
MADS-box TF and regulator of abscission zone forma-
tion [32], was upregulated by both treatments. While
there were both up- and down- regulated NAC domain
genes in the shading dataset, NAC genes were not dif-
ferentially expressed in response to NAA. Distinct sets
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of WRKY TFs were induced by NAA and repressed by
shading (Additional file 5, Table S3).

Validation of array data in the FAZ and analysis of
selected genes in other tissues via RT-qPCR

Subsets of genes from the above categories were selected
for validation of array data in the FAZ by RT-qPCR
(Additional files 6 and 7, Table S4 and S5). cDNA sam-
ples derived from three additional time points (DO, D7
and D9 after treatment) were included to expand the
expression pattern data for these genes. The relative
expression levels measured by RT-qPCR were converted
to fold change relative to the value obtained from the
array data for reference control samples to enable direct
comparison to the RT-qPCR results. Generally, the RT-
qPCR results from the FAZ samples were consistent
with the array data in terms of the overall expression
pattern but variations were also observed (Figures 4, 5,
6 and 7). To further explore the effects of NAA and
shading on source-to-sink relationships, we analyzed tis-
sue-specific expression pattern of selected genes
involved in photosynthesis, sugar metabolism and hor-
mone metabolism and signaling using cDNA derived
from leaf and fruit cortex (FC) (Figures 8 and 9).

In both FAZ and FC, the expression of MdANCED was
induced by both shading and NAA from 3 d. In addi-
tion, genes encoding a SDR family protein and a tran-
scription factor (AHAP), for the regulation of ABA
signaling were induced in the FAZ from 1 to 5 d. In the
FC, the expression of those genes was consistently
increased by both treatments, especially on 3 and 5 d
after treatment (Figure 4). An upregulation of genes
encoding ethylene biosynthesis and signaling (MdACS,
MAACO, MAETR and MdERS) was confirmed by RT-
qPCR for NAA- and shading-treated FAZ and mirrored
in the FC. Overall, the induction of these ethylene-
related genes in the FC was greater in response to NAA
than shading, corresponding with the higher levels of
ethylene released by fruitlets treated with NAA versus
shading (Figure 5 compared to Figure 2). Consistent
with the microarray data, both sorbitol and sucrose
transporter genes (MdSOT and MdSUT) were repressed
in the FAZ by NAA and shading from 1 to 5 d. In con-
trast, the expression of these transporters in the FC was
increased from 3 through 7 d after both treatments. As
for auxin polar transport, a PIN-like auxin transporter
gene (PIN) and an auxin efflux carrier gene (AEC) both
showed consistently decreased expression from 3 d in
NAA-treated FAZ and FC (Figure 6). Concerning AZ
formation and cell wall degradation, the Md/NT gene
expression in the FAZ was increased by both NAA and
shading from 3 d after treatment and remained higher
than the control. We also observed an increase of
expansin (EXP) gene expression in both NAA- and
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shading-treated FAZ as early as 1 d after treatment,
concurrent with the burst of fruit ethylene production
(Figure 7 compared to Figure 2). MdPG2 expression in
the FAZ was induced by NAA and shading from 5 d
onward, corresponding with the increased rate of fruit
abscission (Figure 7 compared to Figure 1).

Since a widespread repression of chloroplast-related
genes in the FAZ was evident from the array data, we
further tested leaves to see if photosynthetic organs
were similarly affected, RT-qPCR results showed a sus-
tained repression of the selected genes involved with
light-harvesting (CAB), oxygen evolving enhancement
(PSB) and Rubisco activation (RuBACT) in NAA-treated
leaves as early as 1 d after treatment (Figure 8). The
expression of genes encoding transporters for both sor-
bitol and sucrose (MdSOT and MdSUT) was also found
to be repressed in leaves. The expression of three other
genes related to sugar metabolism was tested in the FC,
which is a site of active carbohydrate metabolism. As
shown in Figure 9, HXK expression was significantly
induced by shading, with maximum levels detected at 7
d. HXK expression was most increased by NAA on 5 d,
and remained higher than the control level thereafter.
The expression of SDH gradually increased in the con-
trol fruit, but was significantly repressed by NAA and
shading. Although our array data showed a consistent
downregulation of TPS in the FAZ from shading-treated
trees, and no effect on TPS expression due to NAA,
both NAA and shading were shown to cause an early
induction of TPS in the FC (Figure 9), implicating TPS
in fruit-specific aspects of abscission independent of the
method of induction.

Effects of NAA on leaf photosynthesis

From our array data, a large group of genes related to
photosynthesis were identified as strongly repressed by
NAA in the FAZ at an early stage, implying that NAA
might directly interfere with photosynthesis. Therefore,
we measured the effect of NAA on the leaf by moni-
toring the Fy/Fy; value which provides a useful relative
measure of the maximum quantum yield of PSII pri-
mary photochemistry. The NAA-affected leaves dis-
played a unique pattern where the Fv/Fm readings
were significantly decreased under fluorescence ima-
ging system, indicating that the leaves were under
stress. We also found that NAA at various rates (15,
150, 450 and 900 mg L'l) caused concentration-depen-
dent impairment of PSII in the leaves of young seed-
lings in the growth chamber (Figure 10A). NAA at 15
mg L}, the working concentration used in the thinning
experiment, caused significant photoinhibition of leaf
PSII efficiency (Figure 10B-D). Such inhibition was
observed as early as 10 min post-treatment and lasted
for 8 or more hours, from which the leaves typically
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recovered within 1 d. Next, a field trial on fruit-bearing
trees was performed. More severe effects of NAA at 15
mg L' on leaf photosynthesis were found and these
effects lasted longer than in young seedlings (Figure
10E-G). This increase in severity is not surprising

given the higher light levels in the field (full sunlight)
versus greenhouse conditions. It is also important to
note that under field conditions, the leaves showed
visible necrosis by 24 h post-treatment, specifically
near the petiole where photoinhibition was most
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strongly observed. It is not clear if this spatial imbal-
ance was caused by pooling of the NAA solution near
the base of the leaf or whether this portion of the leaf
is particularly sensitive to NAA. Taken together, these
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findings indicate that NAA application has rapid and
severe impacts on leaf photosynthetic efficiency.

Discussion

In apple, shading and NAA application are two treat-
ments often applied by researchers to promote fruitlet
abscission, while NAA has been widely used by growers
to reduce excessive bearing of apple trees. While the
transcriptomes associated with abscission in Arabidopsis
[33-35] and fruit development in apple have been
reported [36,37], detailed information on the molecular
mechanisms involved in fruit abscission following induc-
tion by multiple means remains limited. Using suppres-
sion-subtractive hybridization (SSH), various transcripts
from shaded small apple fruit have been identified as
differentially expressed and over 20% of these are related
to carbohydrate metabolism [38]. A recent transcrip-
tome study focusing on the role of benzyladenine (BA)
in apple fruit abscission, led to the hypothesis that BA
treatment imposes a nutrient stress perceived primarily
by the fruitlet cortex and then by the seed, likely
through ROS-sugar-ABA signaling, finally leading to
abscission zone activation [39]. These findings were spe-
cific for the fruit cortex and seed, so did not include
information on changes occurring in the FAZ or leaves.
It has also been proposed that an increase in ethylene
production preceding abscission might hamper the polar
auxin transport from the seeds down through the FAZ
and cause the fruitlet abscission [40]. The potential
importance of auxin-ethylene crosstalk was also partly
supported by a tomato flower AZ transcriptome analysis
[17], where auxin depletion caused altered expression of
auxin-regulated genes in association with the acquisition
of ethylene sensitivity in the AZ. While these findings
implicate auxin-ethylene crosstalk in abscission, they did
not focus on plant stress response linked with metabolic
reprogramming as a factor that influences hormone sig-
nalling for abscission. In addition, these studies have not
examined whether distinct treatments for inducing
abscission, such as shading and NAA, converge on com-
mon genetic pathways leading to abscission.

In this study, by comparing the gene expression pro-
files of young fruit abscission caused by NAA and shad-
ing, we found that the number of genes affected by
these two treatments was positively correlated with the
severity of the thinning responses. Our microarray
experiments involved sampling during induction of
abscission and the beginning of a detectable increase in
the rate of abscission rather than during the abscission
process itself. Hence, additional work is required to
determine changes in gene expression occurring during
later stages of abscission. Although any large changes in
expression limited to narrow windows of either tem-
poral or spatial regulation in the abscission zone were
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Figure 8 Expression of genes related to photosynthesis and sugar availability as determined by RT-qPCR. Gene expression in leaf from
‘Golden Delicious’ apple trees after application of NAA. The values of transcript levels in the leaf from control trees were arbitrarily set to 1. The
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likely attenuated due to sampling that included mixed
fruitlets of different abscission potentials, the changes in
gene expression we observed confirm earlier reports of
the involvement of two important hormone signaling
pathways, ethylene and ABA [12,13]. Moreover, our
array data showed that NAA may exert its thinning
effect through interfering with leaf photosynthesis, as
well as sugar sensing and carbohydrate partitioning

within the tree, which is similar to pathways involved in
the shading-induced young fruit abscission in apple.

Hormone regulation in fruit abscission

Our microarray results are consistent with previous
observations that ethylene is a key signal for the coordi-
nation of young fruit abscission induced by the chemical
thinner NAA in apple [12,13,41]. In this study, ethylene
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Figure 9 Expression of genes related to sugar metabolism as
determined by RT-qPCR. Gene expression in fruit cortex (FC) from
‘Golden Delicious’ apple trees after application of NAA and shading.
The value of transcript levels in the FC from control trees were
arbitrarily set to 1. The transcript levels were normalized using actin.
Results represent the mean (+ SE) of three replicates.

\

production increased and peaked in fruitlets and leaves
treated by NAA and shading, coincident with upregula-
tion of genes encoding ethylene biosynthesis and signal-
ing components but prior to the onset of fruitlet drop
(Figures 1, 2 and 5). These results were consistent with
a previous report that apple fruitlet abscission is pre-
ceded by an increase in ethylene biosynthesis and
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sensitivity [12], although ethylene independent pathways
may also promote fruit abscission [41].

It has also been hypothesized that preventing abscis-
sion requires a constant auxin transport through the
abscission zone from the fruit and that the sink strength
of organs is related to their capacity to produce and
export auxin [42,43]. Auxin export is mediated by PIN-
formed proteins and ATP-activated phosphoglycopro-
teins (PGPs) [44,45]. We found that two auxin trans-
port-related genes (PIN and AEC) were repressed by
NAA in the FAZ and FC, i.e., starting from 3 d, and
their expression levels remained lower than the control,
indicating that auxin efflux from the fruitlets was
blocked (Figure 6). Auxin transporter downregulation
was associated with increases in ethylene production
and the expression of ethylene biosynthesis and signal-
ing-related genes (Figures 5 and 6). Using the tomato
flower AZ model, Meir and colleagues [17] noted that
the acquisition of ethylene sensitivity was associated
with altered expression of auxin-regulated genes and
that ethylene acted as a trigger in the abscission process,
although these authors did not measure the expression
of PIN genes. Taken together, the patterns of ethylene-
and auxin-related gene expression in the FAZ and FC
suggest that ethylene may serve as a feedback inhibitor
controlling auxin transport from fruitlets, and increasing
the ethylene sensitivity of the FAZ.

Abscisic acid has been implicated in the regulation of
stress-induced senescence [29], and it has been pro-
posed that ABA might sense nutrient stress and be cor-
related with the ethylene-associated abscission activation
in citrus fruitlets [46]. We observed a widespread induc-
tion of genes involved with ABA biosynthesis and sig-
nalling in response to shading and an increase in the
expression of genes for ABA biosynthesis with NAA
treatment (Additional file 5, Table S3, Figure 4). These
differences in ABA-related responses suggest that the
ABA signaling pathway is responsive to both treatments,
but is more active in shading-induced fruit abscission.
As mentioned above, more genes associated with sugar
metabolism and sugar signaling were altered by shading
than NAA, implicating a close crosstalk between sugar
and ABA for the induction of senescence as previously
reported [47].

Repression of photosynthesis-related genes

Decreased light intensity can inhibit photosynthesis and
result in the abscission of leaves and fruitlets [7], which
was confirmed by our shading experiment. We also
found that NAA caused observable leaf necrosis and
diminution of overall PSII efficiency (Figure 10), which
agreed with a previous report [48], where NAA consis-
tently reduced whole-tree canopy photosynthesis.
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NAA@15 ppm_10 min NAA@15 ppm_4 h

NAALSDO ppm

NAA@15 ppm_5 h

-
NAA@15 ppm_1d
Figure 10 Effect of NAA at 15 mg L' on apple leaf. (A) White light image of the effect of NAA at various rates on the leaves of young
seedlings in growth chamber. Necrosis was observed in a concentration-dependent manner. (B-D) CFl image of the leaves of young seedlings in
growth chamber treated with NAA at 15 mg L. Areas with pale blue color indicate PSII photoinhibition. (E-G) CFl image of the leaves of fruit-
bearing trees in the field treated with NAA at 15 mg L. Areas with dark green color indicate PSII photoinhibition, corresponding with the

numerical values (the right column) in the inserted table. Insert table: Effect of NAA at 15 mg L' on leaf PSIl efficiency. F\/Fy values were

recorded three times independently from both control and NAA-affected leaves of fruit-bearing trees in the field. Results represent the mean (£
SE) of three replicates. Different letters indicate significant differences among means according to Duncan’s multiple range test (P < 0.05).

Control | NAA at 15 mg L
10 min later | 0.770 a 0.680 b
1 h later 0772a 0664 b
4 h later 0.792 a 0524 ¢
1dlater 0.801a 0681b

Repression of a group of chloroplast-related genes was
also observed for NAA-treated leaves (Figure 8), and
these gene expression patterns also agreed with the
array data for FAZs from NAA-treated trees, indicating
that NAA affected photosynthesis in both leaf and stem
tissues. The negative effect of NAA on leaf photosynth-
esis and PSII activity implicates NAA in causing a car-
bohydrate stress that ultimately affected sink tissues,
including the fruitlets.

Impacts on sugar metabolism, sensing and transport

It has been reported that dark-induced fruit abscission
can be reversed with trunk injection of sorbitol, the pri-
mary translocated form of carbohydrate in apple [49],
which supports the currently accepted hypothesis that a
limitation of assimilate supply at least partly reduces
fruit growth and induces fruit drop. Plant hexokinase
has been implicated in sugar signaling and the regula-
tion of senescence [50,51]. As a kinase and glucose sen-
sor, the HXK gene has been demonstrated to have dual

functions in both glucose metabolism and signaling
[50,51]. In this study, we found that a homolog of the
HXK gene in the FC was induced by both shading and
NAA treatments (Figure 9), suggesting a HXK-depen-
dent sugar-signaling pathway is active during the abscis-
sion induction. It has been reported that transgenic
tomato plants that overexpress Arabidopsis HEXOKI-
NASE]I showed inhibited growth and rapid senescence
[52], while Arabidopsis glucose insensitive2 (gin2) mutant
plants displayed a delayed senescence phenotype [51].
Thus the elevated expression level of HXK observed in
this study might partly account for the inhibited fruit
growth and accelerated fruit abscission.

Sorbitol comprises over 80% of the carbohydrate
translocated in the phloem of apple, and thus is the
main carbon resource imported by fruit sinks [49]. Sor-
bitol dehydrogenase has been identified as a key enzyme
in sorbitol metabolism, converting sorbitol into fructose
[53,54]. In this study, the expression of SDH gradually
increased in the control fruit, indicating its role in
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regulating early fruit development. However, NAA and
shading both repressed the expression of SDH in the FC
(Figure 9), suggesting that sorbitol catabolism was lar-
gely inhibited and fruit sink strength was impaired [55],
resulting in abscission. Another important sorbitol-
metabolizing enzyme is sorbitol-6-phosphate dehydro-
genase (S6PDH) that synthesizes sorbitol in leaves for
the translocation to sink tissues [56]. Previous studies
have reported a relation between an increase in soluble
carbohydrates and stress tolerance in some Rosaceae
fruit trees [57,58], and S6PDH has been revealed as an
ABA-inducible gene [59]. We observed a strong induc-
tion of S6PDH expression in NAA-treated leaves (Figure
8), and the induction of genes related to ABA biosynth-
esis and signaling in both FAZ and FC preceded the
increased S6PDH expression in leaf (Figure 4), consis-
tent with S6PDH being an ABA-mediated stress
response gene.

NAA and shading both significantly inhibited certain
sugar transporter genes in the FAZ and leaves, indicat-
ing that the carbon allocation to the fruitlets was ham-
pered. However, the expression of these transporters in
the FC was increased after both treatments (Figure 6).
Also, the array data revealed that many transporter
genes were induced by NAA, including a number of
ABC transporters and several cation transporters, which
was consistent with previous findings [33]. Also induced
in this study were several nitrate and sulfate transporter
genes. The upregulation of these transporters, especially
those involved in sugar transport, might reflect the shift-
ing function of abscising fruitlets, as they become a
source tissue for the mobilization of nutrients to non-
abscising fruitlets.

Induction of genes associated with FAZ formation and
cell wall degradation

The cells comprising the AZ are often morphologically
distinguishable before the onset of abscission [60] and
abscission could not be induced until those cells are
formed [61]. The tomato JOINTLESS gene is a MADS-
box gene that plays a key role in controlling abscission
zone development [32]. In this study, the MdJNT
expression in the FAZ was gradually increased by both
NAA and shading, suggesting that this transcription fac-
tor involvement in abscission zone formation in apple
and tomato is conserved.

Enlargement of abscission zone cells involves cell wall
loosening. Wall loosening can be aided by expansins
and several reports have shown that expansins are
expressed abundantly in abscission zones [22,62]. We
also observed an increase in expansin (EXP) expression
in both NAA- and shading-treated FAZ as early as 1 d
after treatment, concurring with the burst of fruit ethy-
lene production. It has been reported that certain types
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of AZ cells enlarge in response to ethylene [61].
Together these results support a role of expansins in
cell enlargement associated with ethylene-mediated
abscission.

Some reports have indicated that an increase in poly-
galacturonase (PG) activity correlates with fruit abscis-
sion [18,63]. However, MdPG1 expression was not
detected in the FAZ or the FC from ‘Golden Delicious’
or ‘Delicious’ apples [13], which contrasts with other
work showing that MdPG1 was involved in apple fruit
softening and that its expression was suppressed by 1-
MCP and AVG treatment [16,64]. In this study, MdPG1
was not identified from the array but the expression of
MdPG2 in the FAZ was induced by NAA and shading
by 5 d, occurring with the increase in the rate of fruitlet
abscission. This result was in agreement with our pre-
vious work with NAA in ‘Delicious’” apple [13]. Another
report showing an MdPG2 downregulation concomitant
with an NAA-dependent reduction in preharvest fruit
drop [16] supports our current view that MdPG2 rather
than MdPG1 appears to be strongly associated with
fruitlet abscission.

Conclusions

The objective of this study was to compare global
gene expression changes at early stages during apple
fruitlet abscission caused by two different abscission
inducers: the chemical thinner NAA and shading. A
model has been proposed here to illustrate the associa-
tion of gene expression changes in common with both
abscission inducers during the early induction of fruit-
let abscission (Figure 11). In summary, NAA, like
shading, imposes a stress signal on leaf, or globally on
any other photosynthetically-active tissues within the
tree, causing photosynthesis repression and associated
nutrient stress. As the nutrient stress is perceived at
the fruit level, its growth is inhibited by a sugar trans-
port block, resulting in a lower sink strength of the
fruitlet. Meanwhile, ethylene and/or ABA are produced
in response to photosynthesis inhibition and through
sugar signaling. The elevated ethylene level decreases
auxin transport to the FAZ and increases its sensitivity
to ethylene, causing the differentiation of the FAZ and
the execution of fruit abscission. The differential gene
expression data presented in this study allows for the
development of novel hypotheses regarding genes that
are important regulators of fruit abscission. These
hypotheses can be functionally tested, using RNA
interference or virus-induced gene silencing, with
genes identified through the recent release of the apple
genome [65]. Moreover, the results of this study may
facilitate the selection of new chemicals or genetic
strategies for the development of more effective apple
fruit thinning programs.
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Figure 11 A hypothetical model for NAA-induced young fruit
abscission in apple. NAA, like shading, imposes a stress signal on
leaf, or globally on any other photosynthetically-active tissues within
the tree, causing photosynthesis repression and associated nutrient
stress. As the nutrient stress is perceived at the fruit level, its growth
is inhibited by a sugar transport block, resulting in a lower sink
strength of the fruitlet. Meanwhile, ethylene and/or ABA are
produced in response to photosynthesis inhibition and through
sugar signaling. The elevated ethylene level decreases auxin
transport to the FAZ and increases its sensitivity to ethylene,
causing the differentiation of the FAZ and the execution of fruit
abscission.

Methods

Plant materials and sample collection

Thirty-six uniform 12-year-old ‘Golden Delicious’ apple
trees on M.9 rootstock were selected and divided into
three blocks of 12 trees each. Four trees from each
block were treated with: 1) Control (water); 2) NAA
(Fruitone N; AMVAC, Newport Beach, CA) at 15 mg L~
'; 3) Shading (92% polypropylene shade over the entire
tree for five consecutive days and then removed),
respectively. Treatments were applied when the fruit
size was ~10 mm in diameter. Three biological repli-
cates were conducted independently. Young fruit was
collected at 0, 1, 3, 5, 7, 9 d after treatment. At each
collection time, about 80 fruit were collected from each
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tree, with fruit cortex (FC) and fruit abscission zone
(FAZ) separated. FAZs were collected by cutting 1 mm
at each side of the abscission fracture plane at the base
of the pedicel [41]. All samples were promptly frozen in
liquid nitrogen and stored at -80°C for future RNA
extraction.

Fruit abscission pattern and leaf/fruit ethylene production
To determine the fruit abscission rate, two limbs on
each tree were tagged and fruit on tagged limbs were
counted on 0, 1, 2, 3, 7, 9, 11, 14, 16, 18, 21, 25 and 26
d after treatment. For ethylene production measure-
ments, 15 fruit and 20 leaves were collected from each
of three replicate trees 0 and 6 h and 1, 3, 5, 7, 9, 11
and 14 d after treatment and enclosed in a 100-mL (for
fruit) or 1000-mL (for leaves) container. After a 2-h
incubation period, a 1-mL gas sample was withdrawn
from the sealed container through the rubber septum
affixed to the lid, and the ethylene concentration was
measured with a gas chromatograph equipped with an
activated alumina column and FID detector (model
3700; Varian, Palo Alto, CA) and expressed as pL C,H,
kg hh.

Experimental design and microarray hybridization

An apple 70-mer oligonucleotide microarray consisting
of ~33,825 unique sequences and ~ 6,000 controls was
used [66]. RNA from three time points (D1, 3 and 5)
were represented by three biological replicates analyzed
in a dye swap design (six hybridizations per time point)
for a total of 18 slides for the NAA treatment and for
the shading treatment. A control RNA (the untreated
samples of the same time point) was hybridized along
with the treatment RNA but with the opposite dye. A
total of 50 pmol of incorporated dye with at least a FOI
of 2.0 (calculated using Base/Dye Ratio Calculator from
Invitrogen) was used for each sample cDNA and the
reference cDNA in the hybridization.

RNA extraction, aRNA amplification and labeling

Total RNA was extracted from the FAZ for each biolo-
gical replicate as previously described [16], and DNased
using TURBO DNA-free™ Kit (Ambion, Austin, TX).
RT-PCR was performed using primers that span an
intron in MdACO to confirm that each RNA sample
was free of genomic DNA contamination. The RNA was
quantified using the NanoDrop ND-1000 (Thermo
Scientific, MA) and the quality checked using the Bioa-
nalyzer 2100 (Agilent, CA) according to manufacturer’s
instructions. According to the Instruction Manual of
Amino Allyl MessageAmp™ II aRNA Amplification Kit,
cDNA was synthesized from mRNA in 1 pg of total
RNA. Purified cDNA was transcribed to aRNA using
IVT Master Mix which contains 5-(3-aminoallyl)-UTP
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(50 mM), ATP/CTP/GTP Mix (25 mM), UTP (50 mM),
T7 10 x Reaction Buffer and T7 Enzyme Mix. Purified
aRNA was labeled with either AlexaFluor555 or Alexa-
Fluor647 (Invitrogen, CA) for hybridization following
the manufacturer’s instructions. Labeled samples (10 pL)
were mixed with 1 x Slide Hyb Glass Hybridization Buf-
fer (Ambion) and injected into the slide chambers
which were heated to 65°C. The chambers were incu-
bated at 42°C overnight. The next day, the slides were
washed with 1 x SSC, 0.2% SDS for 5 min, 0.1 x SSC,
0.2% SDS for 5 min and twice with 0.1 x SSC.

Data scanning and analysis

Microarray slides were dried and dual channel images
were captured using GenePix 4000B microarray scanner
(Axon Instruments, CA). Automated spot alignment was
augmented with manual checking of each slide to
remove substandard spots. GenePix Pro software (Axon
Instruments, CA) was used for data normalization and
statistical analysis. LIMMA package for R programming
environment was used by applying linear model meth-
ods [67]. Each probe was tested for changes in expres-
sion over the time points using a moderated F test,
which is similar to an ANOVA method for each probe
except that the residual standard errors are moderated
across genes [68]. The linear models allow for general
changes in gene expression between successive time
points. The use of dye-swaps in the experimental design
eliminated a dye-effect for each probe, which increased
the precision with which differential expression could be
detected. The computed P values were adjusted for mul-
tiple testing to control the false discovery rate (FDR)
[69]. Genes were considered significantly expressed if
the adjusted P values were <0.01 (i.e. expected FDR less
than 1%).

Gene clustering and categorization

Hierarchical clustering was performed using the statistic
package for R utilizing the Euclidean distance. Figure of
merit (FOM) analysis was performed to determine the
number of clusters needed for the explanation of the
majority of variation in expression patterns [70]. Then a
cluster number was assigned for K-means clustering
(KMC) analysis to divide the data into distinct expres-
sion clusters based on similarities in their expression
patterns, using the TM4 package [70]. Default statistical
parameters were used in those analyses and data were
scaled for hierarchical and KMC clustering based on
fold-change and log, ratio in gene expression. The exist-
ing apple gene annotation was complemented by the
application Blast2Go [71] and further supplemented
with manual BLASTX, conserved domains and literature
searches, mostly based on Arabidopsis database. Using
this combined information, a functionally driven
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classification was created manually. Larger categories
were further divided into subcategories to cover all the
related genes.

RT-qPCR
Purified total RNA (1 pg) from each sample was used to
synthesize cDNA in a 20-uL reaction using the High-
Capacity cDNA Reverse Transcription kit (Applied Bio-
systems, Fosters City, CA). Each qPCR reaction was run
in triplicate using 40 ng of ¢cDNA in a 15-ul reaction,
using Power SYBR Green qRT-PCR Kit (Applied Biosys-
tems). Gene-specific primer sets were designed from
available apple ESTs sequences using Primer Expression
3.0 and synthesized by Integrated DNA Technologies
(Coralville, IA) [13]. Upon the release of the apple gen-
ome [65], we checked if our qPCR primers were specific
to a single gene or could potentially amplify multiple
gene family members using BlastN searches. Those that
could amplify more than one gene were discarded
(Additional file 7, Table S5). The reactions were per-
formed on a 7500 Real-time PCR Cycler (Applied Bio-
systems, CA). Quantification was achieved using a
relative standard curve derived from a standard RNA
run in parallel with each primer set. A primer set
designed to amplify Malus actin RNA was run on all
samples and used to normalize the data. A dissociation
curve was run to verify that a single desired amplified
product was obtained from each reaction (Applied
Biosystems).

Measurement of leaf photosynthesis efficiency

NAA was directly applied to the leaves of both young
apple seedlings in a growth chamber (21-24°C, 50%
humidity, light-dark cycle of 16:8 h; the seedlings were
treated 4 h after the light cycle began) and mature fruit-
bearing apple trees in the field (4 h after sunrise, full
sunlight). After treatment, the young seedlings and sepa-
rate leaves from the mature trees were collected at
intervals (10 min, 1 h and 5 h for young seedlings; 10
min, 4 h and 1 d for mature trees). Chlorophyll fluores-
cence images (CFI) were taken and Fv/Fm values were
recorded to monitor the changes in PSII efficiency,
using an IMAGING-PAM Fluorometer with Walz Ima-
gingWin software V2.32. F\/Fy values were recorded
three times independently from both control and NAA-
affected leaves of fruit-bearing trees in the field.

Additional material

Additional file 1: Supplementary Table S1. Table S1 - Statistically
significant genes derived from apple fruit abscission zone
microarray study.

Additional file 2: Supplementary Figure S1. Figure S1 - Hierarchical
cluster of 722 selected genes from NAA-treated FAZ (A) and 1057
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selected genes from shading-treated FAZ (B) from the 40 K apple
microarray. The fold changes in gene expression are scaled from 0.5 to
2.0 to allow clustering by expression pattern, with intense red
representing maximum expression and intense green representing
minimum expression.

Additional file 3: Supplementary Table S2. Table S2 - K-means
clustering for NAA- and shading-treated apple fruit abscission zone
microarray data.

Additional file 4: Supplementary Figure S2. Figure S2 - Clusters of
NAA-responsive genes (A) and shading-responsive genes (B) with
average values (pink line) and standard deviation (grey area) of the
expression levels of the selected genes are presented. In these
diagrams, "y" axis represents log,-fold change and “x” axis represents the
different time points for sampling. The cluster names are assigned
upregulated (u), unchanged (o) or downregulated (d) for each time
point.

Additional file 5: Supplementary Table S3. Table S3 - Categorization
of significant genes encoding enzymes with a variety of biological
functions. In this table, eight functional categories of genes showing
differential expression patterns after NAA and shading treatments, from
the array data are presented. A comparative heat map is also included.
The fold change scale is shown at top along with the time points and
gene categories are listed along with the color bars.

Additional file 6: Supplementary Table S4. Table S4 - Summary of
array-measured expression of genes modified at early stages (D1, 3
and 5) after NAA and shading treatments. '+' and ' signs represent
up- and down-regulation of genes, respectively, while O represents no
change.

Additional file 7: Supplementary Table S5. Table S5 - Real-time
qPCR primers. A list of primer sequences and gene accession numbers

used for quantitative polymerase chain reaction studies.
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