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Background: Biochemical models predict that photosynthesis in C5 plants is most frequently limited by the slower
of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (V. max), Or the regeneration
of RuBP via electron transport (J). At current atmospheric [CO-] levels Rubisco is not saturated; consequently,
elevating [CO,] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is
also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP
regeneration, as [CO,] is predicted to exceed 550 ppm by 2050. The C5 cycle enzyme sedoheptulose-1,7
bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at

Results: We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater
stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO-] (585 ppm)
under fully open air fumigation. Growth under elevated [CO,] stimulated instantaneous A and the diurnal
photosynthetic integral (A) more in transformants than WT. There was evidence of photosynthetic acclimation to
elevated [CO,] via downregulation of V. in both WT and transformants. Nevertheless, greater carbon
assimilation and electron transport rates (J and J,,) for transformants led to greater yield increases than WT at

Conclusion: These results provide proof of concept that increasing content and activity of a single photosynthesis
enzyme can enhance carbon assimilation and yield of C5 crops grown at [CO,] expected by the middle of the 21st

Keywords: climate change, photosynthetic carbon reduction cycle, C3 plants, RuBP regeneration, electron trans-

Background

Biochemical models of C3 photosynthesis (A) predict
that A is limited by the slowest of three processes: the
maximum carboxylation capacity of the enzyme Rubisco
(Ve,max), the regeneration of Ribulose-5-phosphate
(RuBP) via whole chain electron transport (J or J.,), or
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the inorganic phosphate release from the utilization of
triose phosphates (TPU or Pi limited) [1,2]. At current
atmospheric [CO,], and under non stressed conditions,
light saturated A operates at the transition between
Rubisco and RuBP regeneration limitation. Globally,
[CO,] is expected to increase from current levels of 390
ppm [3] to over 550 ppm by the middle of this century
[4,5]. Elevating [CO,] stimulates C3 photosynthesis by
increasing the substrate for carboxylation, CO,, and by
reducing photorespiration [6,7]. Therefore, as atmo-
spheric carbon dioxide concentration increases, the
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control of photosynthesis will shift away from Rubisco
limitation toward RuBP regeneration limitation.

Although photosynthetic stimulation at 550 ppm
[CO,] could in theory increase production by 34%, the
observed increase in field C;3 crops is only 15% [7,8].
Additional future increases in yield potential of the
world’s major crops through an increase in the propor-
tion of biomass allocated to grain or an increase in the
efficiency of light capture will be small, as conventional
breeding programs are reaching the theoretical maxi-
mum with diminishing returns [9-11]. In contrast,
model simulations demonstrate that increasing photo-
synthetic efficiency under current [CO,] by optimizing
the biochemistry of photosynthesis could increase the
energy conversion efficiency of a given crop in less time
than conventional breeding programs [10,12]. At current
levels of crop productivity, global food requirements
may outpace current crop production by the middle of
this century [11,13,14]. Taken together, these observa-
tions suggest that direct improvements in photosyn-
thetic efficiency will be needed if we are to meet global
food needs in the future.

A common acclimation response of plants grown at
elevated [CO,] is to allocate fewer resources to Rubisco,
thereby downregulating maximum carboxylation capa-
city (Vemax)- This so called photosynthetic acclimation
makes more resources available for other metabolic pro-
cesses [6,15]. The implication is that plants could reallo-
cate resources in the photosynthetic carbon reduction
(PCR) cycle to increase the efficiency of N use in ele-
vated [CO,] [6,7]. In practice, however, plants’ photo-
synthetic resources are not optimally allocated for
current [CO,] nor is their acclimation response optimal
in elevated [COg [12]. Theoretically, and by reference to
a biochemical model of photosynthesis [i.e., [1]], a plant
with a 15% decrease in Rubisco content and 15%
increase in RuBP regeneration capacity could translate
to a 40% increase in A and photosynthetic efficiency of
nitrogen use at elevated [CO,] [Figure 1 in [7]]. It fol-
lows that plants engineered with an increased capacity
for RuBP regeneration would have a greater increase in
productivity in elevated [CO,] when compared to wild
type plants [16-18].

While 11 enzymes are involved in the PCR cycle,
modeling and metabolic control analyses have consis-
tently demonstrated that four enzymes are expected to
exert the greatest control of flux in the cycle: ribulose
bisphosphate carboxylase-oxygenase (Rubisco), sedo-
heptulose-1,7-bisphosphatase (SBPase), aldolase and
transketolase [19-21]. Two enzymes, Rubisco and
SBPase, are predicted to have the greatest control over
carbon assimilation [21,22]. Rubisco is well known to
be highly abundant, containing 25% of leaf nitrogen
(N) [23] and may in some cases account for up to half
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of leaf N [24]. All attempts to improve photosynthesis
by manipulating Rubisco expression, activity, or speci-
ficity have yielded poor results, in part because of
inherent tradeoffs between activity and specificity of
the enzyme and limited capacity to add more of this
highly abundant protein [25-27]. An additional hurdle
to engineering “better” Rubsico is that the functional
enzyme requires the coordinated assembly of eight
plastid encoded and eight nuclear encoded subunits to
form the large (rbcL) and small (rbcS) units of the
hexadecameric enzyme[28,29]. With the exception of
Rubisco, the other enzymes exerting the greatest con-
trol on photosynthesis all function in the RuBP regen-
eration portion of the PCR cycle. Thus, near term
future improvements in photosynthetic biochemistry in
C; plants are more likely to be achieved by improving
content or activity of enzymes other than Rubisco [e.g.,
[18,21,30,31]].

Sedoheptulose-1,7-bisphosphatase (SBPase) is positioned
at the branch point between regenerative (RuBP regenera-
tion) and assimilatory (starch and sucrose biosynthesis)
portions of the PCR cycle. It functions to catalyze the irre-
versible dephosphorylation of sedoheptulosel,7-bispho-
sphate (SBP) to sedoheptulose-7-phosphate (S7P).
Transketolase then catalyzes the transfer for a two carbon
ketol group from S7P to glyceraldehyde-3-phoshpate
(G3P) to yield xylulose-5-phosphate (X5P) or ribose-5-
phosphate (R5P) [32]. SBPase is therefore critical for main-
taining the balance between the carbon needed for RuBP
regeneration and that leaving the cycle for biosynthesis
[20].

Previous experiments have demonstrated that tobacco
transformants overexpressing SBPase accumulated more
biomass than WT in controlled environment chambers
at ambient CO,[16]. Smaller increases in biomass were
reported for mature SBPase overexpressing plants grown
in greenhouse conditions [16]. Additionally, overexpres-
sion of SBPase in rice did not increase biomass relative
to WT for plants grown at ambient CO, levels in two
controlled environments [33,34]. The variance in the
realized benefit of SBPase overexpression coupled with
the fact that RuBP regeneration is highly sensitive to
environmental conditions underscores the need to test
the response of plants with this single gene manipula-
tion in agronomically relevant conditions [30]. More-
over, models predict that as atmospheric [CO,]
increases so will the benefit of increasing RuBP regen-
eration capacity in plants [1,21,35]. Therefore, we com-
pared WT and SBPase overexpressing plants under field
conditions at ambient and elevated (ca. 585 ppm) [CO,],
and we tested the prediction that transformants would
exhibit greater stimulation of photosynthesis and yield
than WT plants when grown under fully open air CO,
fumigation.
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Methods

Plant Material

Wild type tobacco (Nicotiana tabacum L. cv. Samsun)
and sense tobacco plants (T5 generation Nicotiana taba-
cum L. cv. Samsun) overexpressing a full length Arabi-
dopsis thaliana SBPase cDNA, driven by CaMV 35S
promoter and the nopaline synthase termination
sequence [16], were germinated in Petri dishes and
transferred to soil when true leaves emerged. Sense
plants (hereafter referred to as ‘transformants’) were ger-
minated on hygromycin (30 ug/ml) medium. One indivi-
dual from each of two transgenic lines overexpressing
SBPase with varying SBPase levels and several randomly
selected wild type (WT) individuals were selected for
the experiments. Individuals were subsequently clonally
propagated by rooting cuttings in peat pots on misting
benches and then planted directly in the field at Soy-
FACE on July 7 2009.

SoyFACE site

The SoyFACE facility is located in the Experimental
Research Station of the University of Illinois at Urbana-
Champaign [36]. Soybean (Glycine max) is grown in
eight plots (rings 18 meters in diameter) located within
a typically managed soybean field of ca. 40 hectares (ha).
Four rings are fumigated with pure [CO,] and four rings
are non-fumigated controls. Six cuttings of each SBPase
genotype (11 and 30) and six of WT were planted in
subplots within each ring.

Ambient atmospheric [CO,] at the beginning of the
2009 field season was ca. 385 ppm and the target
[CO,] for elevated rings in 2009 was 585 ppm [CO,].
In the fumigated rings, 89% of [CO,] values recorded
every ten minutes from June 19 to September 24,
2009, were within 10% of the target value of 585 ppm.
The mean daily [CO,] in elevated rings at Soyface dur-
ing that time was 586.6 + 19.4 (sd) ppm. Elevated
rings were fumigated using a modification of the
method of Miglietta et al. [37].

Leaf protein and western blotting

Prior to planting, leaf discs were collected from cuttings
and immediately frozen in liquid nitrogen to confirm
that sense plants had greater SBPase content than WT.
Protein quantifications and western blots were per-
formed following [19]. Sample lanes were loaded on an
equal protein basis, separated using 10% (w/v) SDS-
PAGE, transferred to polyvinylidene difluoride mem-
brane, and probed using antibodies raised against
SBPase and transketolase. Antibody target proteins were
detected using horseradish peroxidase conjugated to the
secondary antibody and ECL chemiluminescence detec-
tion reagent (Amersham, Bucks, UK). Western blots
were quantified by densiometry using the molecular
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imaging Gel Doc XR system (Bio-Rad, Hercules, CA,
USA) and imaging software.

In situ measurements of gas exchange and
photosynthetic parameters

The diurnal course of photosynthesis at the SoyFACE
site was measured on two young fully expand leaves
from each genotype at ambient conditions at both nor-
mal (385 ppm) [CO,] and elevated (585 ppm) [CO,] at
five time points on two dates in August, 2009. To
ensure that each plant was measured in similar environ-
mental conditions, the LEDs of the controlled environ-
ment cuvettes of the gas exchange system (LI-6400, LI-
COR, Lincoln, Nebraska) were set to deliver the same
ambient light PPFD. Temperature and relative humidity
were similarly set to ambient conditions and kept con-
stant for the duration of each measurement period in
the diurnal course. To estimate the total daily carbon
gain (A’), photosynthesis was assumed to increase line-
arly from 0 pumol CO, m™> s at dawn (sunrise) to the
first measured value and decrease linearly from the last
measured values to 0 pumol CO, m? s at dusk (sunset).
Sunrise and sunset data were determined using the US
Naval Observatory website: http://aa.usno.navy.mil/data/
docs/RS_OneYear.php. Dew on the leaves prevented us
from measuring photosynthesis until about 10:00 h. We
estimated A’ for each block by integration using the tra-
pezoidal rule and then performed analyses on the inte-
grals [38].

In vivo values of three photosynthetic parameters:
maximum carboxylation capacity (V¢ max), maximum lin-
ear electron transport through photosystem II (J.,.x) and
respiration in the light (R4) were determined by measur-
ing the response of A to intercellular [CO,] (Ci) on
August 1 and August 15 2009. A vs. Ci curves were
measured in situ on one young fully expanded leaf of
each genotype in all blocks of each treatment (n = 4)
with an open gas exchange system (LI-6400, LI-COR,
Lincoln, Nebraska). Initially, plants were allowed to
reach steady state photosynthesis at their growth [CO,]
(i.e., 385 ppm or 585 ppm [CO,]) at a saturating light
level of 1500 pmol m™ s™. Mean leaf to air vapor pres-
sure deficit (VpdL) was 1.3 + 0.26 (s.d.), and mean leaf
temperature was 26 + 1°C (s.d.). Once steady state was
reached, photosynthetic [CO,]uptake rate (A) and chlor-
ophyll fluorescence parameters were recorded at the
growth [CO,]; then [CO,] was decreased in 4 or 5 uni-
form steps to 50 ppm, returned to growth [CO,], and
then increased in 4 or 5 uniform steps to 1500 ppm
[CO,]. A minimum of 11 data points were collected for
each plant following the methods outlined by Long and
Bernacchi [39]. Curves were measured in the morning
to avoid confounding treatment and genotype effects
with transient decreases in water potential, decreases in
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chloroplast inorganic phosphate concentration or
decreases in maximum photosystem II (PSII) efficiency
(Fv/Fm').

Electron transport rate (ETR), the actual flux of
photons driving PSII, and Fv’/Fm’ were calculated using
fluorescence parameters, Fs, Fm’, Fo’, [40,41]. Fluores-
cence parameters were estimated using a Licor 6400
integrated gas exchange system equipped with a fluores-
cence and light source accessory (LI-6400, LI-COR, Lin-
coln, Nebraska). Fs is the steady state light adapted
fluorescence, Fm’ is the maximal fluorescence of a light
adapted leaf following a saturating light pulse, and Fo’ is
the minimal fluorescence of a light adapted leaf that is
darkened.

Fm' — Fs
ETR = Fm ﬂaleaf

Where f; is the fraction of photons absorbed by PSII,
assumed be 0.5 for Cj plants; I is the incident photon
flux density (umol m™ s'); and a is leaf absorptance
which was constant (0.87).

A vs. Ci curves were fitted using a biochemical model
of photosynthesis [1] including the temperature
response functions determined by Bernacchi et al.
[42,43] and were solved for the parameters V¢ max Jmax
and Ry. The kinetic constants for Rubisco, Ko, Kc and
I'* in tobacco are taken from [43]. Data below the
inflection point of the curve were used to solve for V.
max and Ry using the equation for Rubisco limited
photosynthesis [1] and following the method of [39].
Data above the inflection point of the A vs. Ci curve
were similarly used to solve for J,,x using the equation
for RuBP limited photosynthesis [1].

Leaf traits and final biomass
Leaf disks (ca. 1.9 cm?) were collected from plants on
August 15 during the midday gas exchange measurements.
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Leaf disks were sealed in pre-cooled vials, placed in coolers
and disk fresh weights were determined the same after-
noon. Leaf disks were dried at 60°C for 48 hours and then
re-weighed. Dry and wet weights were used to determine
specific leaf area (SLA) and specific leaf weight (SLW).
These same disks were then ground to a fine powder and
used to determine leaf carbon (C) and nitrogen (N) con-
tent by total combustion (Costech 4010, Valencia, CA,
USA).

Statistical analyses were performed using SAS (Ver-
sion 9.1, SAS institute, Cary, NC) and Jump (Version
4, SAS Institute, Cary NC). Trait and parameter means
of SBPase transformant lines were statistically indistin-
guishable so the lines were pooled for subsequent
ANOVAs. Simple effect tests as implemented in SAS
(LSMEANS/SLICE) were used to determine if there
were significant differences 1) between types within
treatments (i.e., WT ambient vs. SBPase ambient) or 2)
between treatments within types (i.e., SBPase ambient
vs. SBPase elevated). The diurnals at SoyFACE were
analyzed as a repeated measures mixed model analysis
of variance (PROC MIXED,SAS). As above, SBPase
lines were statistically indistinguishable during the
time course and were pooled in ANOVAS. Type
(SBPase or WT), CO, concentration [CO,] (ambient or
elevated), and time of day (time) were fixed factors.
Each block contained one ambient and one elevated
CO, plot and was considered a random factor. As
there were only 4 blocks, significant probability was set
at p < 0.1 a priori to reduce the possibility of type II
errors [44,45].

Results

Protein Quantification

SBPase content was 150% (+ 4.5) greater in transfor-
mants and more uniform relative to WT plants (Figure
la and 1b). SBPase overexpressing lines did not differ
from each other in terms of the SBPase protein content

WT ambient WT elevated

SBPase ambient

~37kDa —

~49kDa —

Figure 1 Western blot and protein quantification for WT and T5 SBPase transformants. Blots were probed using antibodies raised against
SBPase and transketolase. Proteins were detected using horseradish peroxidase conjugated to the secondary antibody. Gels were loaded on an
equal protein basis. a) Upper blot is SBPase and the lower is Transketolase (TK) as a loading control. Each lane is a separate individual. b)
Quantification for SBPase and TK is based on n = 6 transformants vs. n = 5 WT in ambient CO,.

180
160 =mmm Tranketolase
SBPase elevated 140 | == SBPase -
11 1 120
WT Transformants
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(Figure 1a). Transketolase content was similar in WT
and transformants (Figure 1b).

Diurnal course of gas exchange and electron transport
rate

Diurnal trends of photosynthesis and fluorescence para-
meters were measured at their respective growth [CO,]
(i.e. 380 or 585 ppm) on July 31 and August 15, 2009
(Table 1). On July 31, photosynthetic rate (A) was signif-
icantly higher in transformants, due to significant differ-
ences around midday at elevated (585 ppm) [CO,]
(Figure 2a and 2b). On average, electron transport rate
(ETR) (Figure 2c and 2d) was significantly higher for
transformants at elevated [CO,] (simple effect test; F 15
= 8.43 p < 0.05). Differences in ETR between transfor-
mants and WT were driven by significantly lower values
for WT plants at midday in elevated [CO,] on July 31.
On August 14, A was significantly greater at elevated
CO, for both WT and transformants (Figure 3a and 3b,
Table 1), however, there were no detectable differences
in photosynthesis between WT and transformants. ETR
was similar for transformants and WT plants in ambient
and elevated CO, on August 14 (Figure 3c and 3d).

On July 31, elevating [CO,] increased A’ for WT and
transformants (F; 1, = 15.93 p < 0.01). Transformants
had significantly greater A’ than WT in elevated [CO,]
(F1,12 = 6.89 p = 0.01), but in ambient [CO,] they were
not significantly different (compare Figure 2e and 2f).

Table 1 Repeated measures analysis of variance of diurnal
variation of photosynthesis (A) and linear electron flux
through photosystem Il (ETR), for the main effects of
plant type (tranformants and WT), CO, concentration

(385 ppm, 585 ppm), and time of day (time)

31-Jul Photo ETR
df F P df F P
type 1,104 1029 0.009 1,9.11 9.16 0.014
CO, 1,104 2893 0.0003 1,9.11 2.04 0.187
type*CO, 1,104 199 0183  1,9.11 1.99 0.191
time 4,737 2183 <.0001 4,799 1604 <.0001
type*time 4,737 041 0804 4,799 035 0.846
CO,*time 4,737 575 0.000 4,799 158 0.189
type*CO,*time 4, 737 065 0627 4,799 071 0.590
14-Aug Photo ETR
df F P df F P
type 1,124 098 0342 1,109 154 0.240
CO, 1,124 658 0.024 1,109 266 0.131
type*CO, 1,124 044 0.521 1,109 0 0971
time 4,104 2948 <.0001 4,102 13552 <.0001
type*time 4,104 092 0453 4,102 1.16 0333
CO,*time 4,104 273  0.033 4 102 1.64 0.169
type*CO,*time 4,104 04 0806 4,102 045 0.775

Diurnal measurements were collected on July 31 and August 14, 2009.
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On July 31, A’ increased 14% for transformants but
only 8% for WT. In contrast, on August 15, elevating
[CO,] increased A’ by 6% for transformants but by
11% for WT (F1,12 = 6.79 p < 0.05). There were no
detectable differences in A’ between transformants and
WT in ambient or elevated [CO,] on August 15 (Fig-
ure 3e and 3f).

Photosynthetic biochemical parameters

A vs. Ci curves were measured in the field the morning
following each diurnal (i.e. August 1 and August 15)
under similar meteorological conditions as the diurnals.
On August 1°' V ... tended to be lower in elevated
[CO5] (130.02 * 5.9) than in ambient [CO,] (137.13 *
5,7) but the trend was not significant (Table 2, Figure
4a). There was a type by [CO,] interaction for the
response of J ., (Table 2). Further analysis revealed that
growth at elevated [CO,] significantly increased Jq, of
transformants but not WT (F1,16 = 8.24 p < 0.5)(Figure
4c) on August 1. Consequently, the ratio of Vi ax t0 Jinax
(V/]) was similar between WT and transformants at
ambient [CO,]. Elevating [CO,] significantly reduced V/]
in transformants (F; ;4 = 15.56 p < 0.01) but not in WT
plants on August 1 (Figure 4e). Growth at elevated [CO,]
significantly increased respiration in the light (Ry, Table
2) and transformants had significantly higher R4 than
WT in both ambient (F; 14 7.78 p < 0.05) and elevated
[CO,] (F114 16.03 p < 0.01) (Figure 4g) on August 1.

On August 15, both V.« and J., were significantly
lower for plants grown under elevated than ambient
[CO,] (Table 2; Figure 4b and 4d). Transformants had
significantly greater J,., than WT at ambient [CO,] but
not in elevated [CO,] (F; 0 = 3.87 p = 0.06). Elevating
[CO,] significantly decreased V/J in transformants and
WT (Table 2 Figure 4f). Elevating [CO,] significantly
increased Ry for WT and transformants (Figure 4h).

Leaf traits and final biomass

Specific leaf area (SLA) was significantly lower at ele-
vated [CO,] compared to ambient, and transformants
had significantly lower SLA than WT plants (Table 3,
Figure 5a). Further analysis revealed that transformant
SLA was lower than WT SLA in elevated [CO,] (Fy 15 =
8.75 p < 0.01). Elevating [CO,] significantly decreased
leaf nitrogen content (%N); consequently, the carbon to
nitrogen ratio (C:N) of leaves increased significantly in
elevated [CO,] (Table 3, Figure 5b and 5c). Transfor-
mant C:N increased more than WT (F, 5 = 9.46 p =
0.01). Above ground biomass (= yield in kg/Ha) was
greater for plants grown in elevated [CO,] and transfor-
mant biomass was greater than WT plants (Table 3).
Biomass increased more for transformants than WT fol-
lowing growth in elevated [CO;] (22% vs. 13%) (Figure
5d; Fy 15 = 6.37 p < 0.05).
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Figure 2 July 31°" diurnal. Changes in photosynthetic rate (a and b) and electron transport rate (c and d), and the integral diurnal
photosynthesis (E and F) for SBP and WT plants grown in the field at ambient (ca. 385 ppm) and elevated CO, (ca. 585 ppm) under fully open
air conditions at SoyFACE, Urbana, USA. Symbols are means for n = 3 replicate blocks (+ se) for WT and SPBase plants per time point.

Discussion

The goal of our experiments was to test the hypothesis
that tobacco plants transformed to over express the
PCR cycle enzyme SBPase would exhibit greater stimu-
lation of carbon assimilation than WT plants when
grown at elevated [CO,] under field conditions [e.g.,
[17,30,31]].

Transformant biomass increases more than WT at
elevated [CO,]

When grown under fully open air CO, fumigation,
SBPase overexpressing plants displayed up to 14%

greater light saturated photosynthetic rates (A) and up
to 21% more linear electron flux through PSII (ETR)
than WT plants. Moreover, after 12 weeks of growth at
elevated [CO,], harvested biomass increased by 13% in
WT plants and more than 22% in transformants when
compared to plants grown in ambient [CO,]. In a prior
experiment, the same transformants grown in a green-
house under prevailing light conditions at ambient
[CO,](ca. 375 ppm) accumulated 12% more biomass
than WT plants (Lefebvre et al. 2005)[16]. Here, at
ambient [CO,] (ca. 385 ppm) under field conditions,
transformants also yielded 12% more biomass than WT
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Table 2 ANOVA of photosynthetic paramaters V y.x o 25, potential electron transport rate J,ax o 25 Vemax @ 25/ max @
25 (V/)), day respiration (Ry), for WT and transformants (Type) at ambient and elevated [CO,]

1-Aug Vc,max Jmax V/J Rd
Df F p df F p df F p df F p
type 1,142 0.03 0.8661 1,16 2.58 0.1276 1,14 1.55 0.2329 1,14 2322 0.0003
CO, 1,142 0.76 0.3979 1,16 244 0.1381 1,14 5.86 0.0296 1,14 17.87 0.0008
type*CO, 1,142 0.1 0.7524 1,16 6.79 0.0191 1,14 2381 0.116 1,14 09 03592
15-Aug V¢, max Jmax V/J) Rd
Df F p df F p df F p df F p
type 1,20 24 0.1371 1,20 257 0.1243 1,20 0 0.9702 1,20 0.03 0.8753
CO, 1,20 7372 <.0001 1,20 18.18 0.0004 1,20 40.21 <.0001 1,20 14.98 0.001
type*CO, 1,20 03 0.5925 1,20 1.38 0.2531 1,20 0.87 0.3608 1,20 25 0.1293

Parameters were derived from A vs [CO,] curves measured in the field see methods for details. Only three blocks could be measured on August 1.
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Table 3 Analysis of variance of the effects of [CO,] and plant type (WT vs. Transformant) on specific leaf area (SLA),
leaf nitrogen content (%N), leaf carbon to nitrogen ration (C:N) and final biomass (Kg/ha) for n = 3 blocks

SLA %N CN Biomass
df F p F p F p F p
type 1,15 6.57 0.0217 1.22 0.2875 39 0.0671 4.05 0.0625
CO, 115 16.69 0.001 29.65 <.0001 17.36 0.0008 503 0.0404
type*CO, 1,15 263 0.1257 352 0.0809 565 0.0312 045 0.5121

plants (see Figure 5) consistent with the Lefebvre et al
(2005)[16] greenhouse study. Taken together, these
results support our hypothesis and clearly show the ben-
efit of overexpressing SBPase in field grown plants at
both current and future levels of atmospheric [CO,)].

WT biomass was 13% greater in elevated [CO,] when
compared to ambient grown WT plants, which is some-
what lower than the average increase in biomass for Cs
crops in FACE experiments [i.e. 19.8% in [46]]. Growth
at elevated [CO,] alters plant insect interaction and
increases palatability of crops [47-50]; thus it is possible
that yield stimulations were slightly lower because of
aphid and hornworm herbivory (pers obs). In tobacco in
particular, aphid infestation significantly reduced the sti-
mulatory effect of [CO,] on biomass [51]. Nevertheless,
transformant biomass increased more than WT at ele-
vated [CO,] (22.7%) and more than the average for C;
crops in FACE experiments.

Lefebvre et al. (2005)[16] reported that the greatest
differences between transformants and WT photosyn-
thetic rates occurred prior to flowering in greenhouse
plants and during early development in chamber grown
plants. The differences between young expanding and
fully expanded leaves could not be accounted for by dif-
ferential SBPase activity (Lefebvre et al. 2005). We show
that in ambient and elevated [CO,] plots, carbon uptake
was enhanced more for transformants during the vege-
tative phase (i.e. July 31) than when plants were starting
to flower (August 15). When plants were beginning to
flower, differences between transformants and WT were
no longer detectable, yet carbon uptake was consistently
stimulated for plants growing in elevated [CO,]. Ulti-
mately, even though the realized increase in A and A’
between WT and transformants falls well short of the
theoretical 40% increase in assimilation predicted if
plants were to reallocate 15% of photosynthetic
resources from Rubisco to RuBP regeneration [e.g., [7]],
increases in the carbon uptake of transformants early in
growth and prior to flowering were sufficiently large to
increase final biomass.

Several studies demonstrate that changing expression
and activity level of SBPase directly impacts carbon
assimilation, growth, and biomass accumulation in
tobacco growing at current ambient [CO,] (ca. 385
ppm) [16,19,52-55]. While the positive relationship

between SBPase activity and carbon assimilation was
clearly shown in WT and transformants [16,19], overex-
pression of SBPase in rice and tobacco has not always
increased biomass for plants grown at ambient [CO,]
levels in controlled environments [16,33,34]. For
instance, Lefebvre et al. noted that no increase in photo-
synthesis or plant yield was evident for tobacco transfor-
mants grown in winter when days were shorter and light
levels were lower[16] (S. Lefebvre, J.C. Lloyd, and C.
Raines unpublished data). The observations of Lefebvre
et al. [16] and this study are also consistent with the
notion that SBPase exerts control over CO, fixation
under light saturating conditions. By definition, the
amount of SPBase would not affect the light limited rate
of photosynthesis which depends on the rate of produc-
tion of NADPH and ATP on the photosynthetic mem-
brane. Our diurnal measurements are consistent with
these expectations, as transformants with increased
SBPase activity showed the greatest increases in carbon
assimilation relative to wild type plants around midday
when light levels were highest. In contrast, there was no
difference in assimilation rates between the SBPase over-
expressing and wild type plants at the beginning or end
of the day (Figure 2).

Acclimation to [CO,] increases nutrient use efficiency
more for transformants than WT

Both WT and transformants showed evidence of a simi-
lar decrease in V.« after a month of growth at ele-
vated [CO,],indicating photosynthetic acclimation via
down regulation of in vivo Rubisco capacity. Photosyn-
thetic acclimation to growth in elevated [CO,] is pre-
sumed to be a biochemical adjustment to optimize
nitrogen use [6]. As [CO,] increases so does the cataly-
tic rate of Rubisco, therefore less N needs to be invested
in Rubisco to fix carbon. Reallocation of N is then, for
instance, available to upregulate respiratory metabolism
in response to growth at elevated [CO,] [56]. SBPase
represents less than 1% of the N contained in the
enzymes of photosynthetic carbon metabolism [21]. It is
therefore remarkable that ca. 50% increase in the
amount of this protein in transformants results in
detectable increases in CO, assimilation. The relatively
large increase in CO, assimilation at elevated [CO,] was
associated with a significant decrease in leaf N per unit
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mass (Figure 5). Thus for a small increase in protein,
transformants had a significantly greater increases in
nitrogen use efficiency than WT at elevated [CO,]. The
results are consistent with numerous other FACE stu-
dies showing that [CO,]will stimulate growth in spite of
photosynthetic acclimation and that growth at elevated
[CO,lincreases nitrogen use efficiency [reviewed in [57]].

Transformants and WT plants grown in elevated
[CO,] tended to have higher respiration in the light (Ry)
than plants in ambient [CO,]plots. Leaves of plants
grown under elevated [CO,] accumulate larger concen-
trations of non-structural carbohydrates (i.e. sugar and
starch) [46], and this may underlie higher respiration
[58]. Recently, Leakey et al. [56] demonstrated that the
acclimation response of respiration to elevated [CO,]
was mediated via transcriptional upregulation of respira-
tory enzymes. We speculate that the reportedly greater
sucrose and starch accumulation in transformants [16]
stimulates additional acclimation of respiration to ele-
vated [CO,] and may therefore also diminish the benefit
of overexpressing SBPase. Alternatively, higher Ry4 in
transformants may be a result of the unregulated over-
expression of the enzyme. Either way, higher Ry, the
requirement for high light, and unmeasured natural
stresses all would contribute to a lower realized benefit
to overexpressing SBPase in the field.

Conclusion

The data presented in this paper have demonstrated that
transgenic tobacco plants with increased SBPase have the
potential for greater stimulation of photosynthesis and
biomass production relative to wild type tobacco when
grown at elevated [CO,]. Differences between theoretical
and realized increases in carbon assimilation are to be
expected as studies of PCR cycle antisense plants have
demonstrated that the relative importance of any one
PCR cycle enzyme is not fixed and will vary according to
environmental and developmental conditions [[20], this
study,[59]]. Nevertheless, our findings are consistent with
the notion that elevating [CO,] increases the metabolic
control of RuBP-regeneration and decreases the control
exerted by Rubisco at light saturation [6,7]. Though
smaller than theoretically predicted, the increases in
photosynthetic stimulation at elevated [CO,] demon-
strated here are indicative that C3 crop plants can be
engineered to meet a rapidly changing environment.
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