
RESEARCH ARTICLE Open Access

Effects of manganese-excess on CO2 assimilation,
ribulose-1,5-bisphosphate carboxylase/oxygenase,
carbohydrates and photosynthetic electron
transport of leaves, and antioxidant systems of
leaves and roots in Citrus grandis seedlings
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Abstract

Background: Very little is known about the effects of manganese (Mn)-excess on citrus photosynthesis and
antioxidant systems. Seedlings of sour pummelo (Citrus grandis) were irrigated for 17 weeks with nutrient solution
containing 2 μM (control) or 500 μM (excess) MnSO4. The objective of this study were to understand the
mechanisms by which Mn-excess leads to a decrease in CO2 assimilation and to test the hypothesis that Mn-
induced changes in antioxidant systems differ between roots and leaves.

Results: Mn-excess decreased CO2 assimilation and stomatal conductance, increased intercellular CO2

concentration, but did not affect chlorophyll (Chl) level. Both initial and total ribulose-1,5-bisphosphate carboxylase/
oxygenase (Rubisco) activity in Mn-excess leaves decreased to a lesser extent than CO2 assimilation. Contents of
glucose, fructose, starch and total nonstructural carbohydrates did not differ between Mn-excess leaves and
controls, while sucrose content was higher in the former. Chl a fluorescence (OJIP) transients from Mn-excess
leaves showed increased O-step and decreased P-step, accompanied by positive L- and K-bands. Mn-excess
decreased maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but
increased relative variable fluorescence at I-steps (VI) and energy dissipation. On a protein basis, Mn-excess leaves
displayed higher activities of monodehydroascorbate reductase (MDAR), glutathione reductase (GR), superoxide
dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) and contents of antioxidants, similar ascorbate
peroxidase (APX) activities and lower dehydroascorbate reductase (DHAR) activities; while Mn-excess roots had
similar or lower activities of antioxidant enzymes and contents of antioxidants. Mn-excess did not affect
malondialdehyde (MDA) content of roots and leaves.

Conclusions: Mn-excess impaired the whole photosynthetic electron transport chain from the donor side of
photosystem II (PSII) up to the reduction of end acceptors of photosystem I (PSI), thus limiting the production of
reducing equivalents, and hence the rate of CO2 assimilation. Both the energy dissipation and the antioxidant
systems were enhanced in Mn-excess leaves, while the antioxidant systems in Mn-excess roots were not up-
regulated, but still remained high activity. The antioxidant systems in Mn-excess roots and leaves provided
sufficient protection to them against oxidative damage.
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Background
Manganese (Mn) is an essential micronutrient required
for the normal growth of higher plants. Like other heavy
metals, however, Mn may become toxic when present in
excess [1]. Acid soils comprise up to 50% of the world’s
potentially arable lands. After aluminum (Al), Mn toxi-
city is probably the most important factor limiting plant
productivity in acid soils [2].
Previous studies have shown that Mn-excess can inhi-

bit CO2 assimilation in many plants including tobacco
(Nicotiana tabacum L.) [3,4], wheat (Triticum aestivum
L.) [5,6], cucumber (Cucumis sativus L.) [7], ricebean
(Vigna umbellata L.) [8], white birch (Betula platyphylla
Suk.) [9], rice (Oryza sativa L.) [10], common bean
(Phaseolus vulgaris L.) [11], mungbean (Vigna radiata
L.) [12], Alnus hirsuta Turcz., Betula ermanii Charm.,
Ulmus davidiana Planch. and Acer mono Maxim. [13].
Suresh et al. [14] observed a decrease in stomatal con-
ductance and transpiration rate with increasing Mn con-
tent in soybean [Glycine max (L.) Merr.] and concluded
that Mn interfered with stomatal regulation. Unfortu-
nately, no other parameters related to photosynthesis
were presented in this paper, and it was not possible to
determine whether decreased stomatal conductance was
a primary effect of Mn toxicity or a result of serious leaf
damage. Nable et al. [4] showed that the inhibition of
photosynthesis in tobacco leaves was not a consequence
of decreased stomatal conductance, because both inter-
cellular CO2 concentration and rate of transpiration
were not affected. Similar results have been obtained for
wheat [5], ricebean [8], rice [10] and cucumber [7].
Macfie and Taylor [6] reported that the photosynthetic
rate per unit chlorophyll (Chl) decreased in the sensitive
wheat cultivar as Mn concentration in solution
increased, indicating that Mn exerted its toxic effect on
both Chl content and photosynthesis per unit Chl. Mn-
induced decrease in photosynthetic rate through the
decrease of Chl content has also been reported for com-
mon bean [11]. In contrast, Nable et al. [4] observed
that the decline of photosynthesis in tobacco leaves pre-
ceded Chl degradation. Houtz et al. [3] concluded that
the inhibitory effect of Mn toxicity on photosynthesis
was due to Mn2+ induced modification of ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco, EC
4.1.1.39) kinetics. Kitao et al. [9] suggested that excess
Mn in white birch leaves affected the activities of the
CO2 reduction cycle rather than the potential efficiency
of photochemistry (Fv/Fm), leading to an increase in QA

reduction state and thermal energy dissipation, and a
decrease in photosystem II (PSII) quantum efficiency
(quantum yield of PSII). Similar results have been found
in Alnus hirsuta Turcz., Betula ermanii Charm., Ulmus
davidiana Planch. and Acer mono Maxim. [13].

However, Chatterjee et al. [15] showed that in vitro
Rubisco activity did not change in wheat plants treated
with excess Mn, while Hill reaction activity was lower.
The activities of photochemistry including Hill, photo-
system I (PSI) and PSII partial reactions of chloroplasts
from Mn-excess tobacco leaves were reported to remain
constant despite ultimate development of severe necro-
sis [4], but Mn-excess decreased CO2 assimilation, Fv/
Fm and PSII quantum efficiency in cucumber leaves [7].
Sinha et al. [12] showed that Mn toxicity decreased Hill
activity of chloroplast isolated from mungbean leaves
and photosynthetic rate in term of CO2 uptake. Donch-
eva et al. [16] reported that Mn-excess did not affect Fv/
Fm and PSII quantum efficiency in Mn-tolerant maize
(Zea mays L.) ‘Kneja 434’, but the two parameters sig-
nificantly decreased in Mn-sensitive maize ‘Kneja 605’ at
the highest Mn concentration. Experiment with wheat
chloroplast suggested that the decrease in photosynth-
esis by excess leaf Mn was due to the peroxidative
impairment of the thylakoid membrane function [17].
St. Clair et al. [18] observed that high Mn impaired the
photosynthetic function of sugar maple (Acer saccharum
Marsh.) and red maple (Acer rubrum L.), particularly in
high light conditions, but antioxidant enzyme and quan-
tum yield of PSII/quantum yield of CO2 fixation data
suggested that this response was not the result of
photo-oxidative stress. Therefore, the mechanisms by
which Mn-excess leads to a decrease in CO2 assimila-
tion are still not well understood.
Mn toxicity can induce oxidative stress through direct

generation of reactive oxygen species (ROS) from Mn
ions in the Fenton reaction [19] or direct transfer of
electrons in single reaction, leading to a rise ROS level
[20,21]. To minimize cellular damage caused by ROS,
plants have evolved a scavenging system composed of
antioxidants such as ascorbate (ASC) and reduced glu-
tathione (GSH) and antioxidant enzymes such as super-
oxide dismutase (SOD, EC 1.15.1.1), ascorbate
peroxidase (APX, EC 1.11.1.11), glutathione reductase
(GR, EC 1.6.4.2), monodehydroascorbate reductase
(MDAR, EC 1.6.5.4), and dehydroascorbate reductase
(DHAR, EC 1.8.5.1), catalase (CAT, EC 1.11.1.16) and
guaiacol peroxidase (GPX, EC 1.11.1.7) [22,23]. Despite
the large body of evidence concerning the effects of Mn
toxicity on the antioxidant systems in plant leaves
[7,18,21,23-26], very little is known about the effects of
Mn-excess on root antioxidant systems. Shi et al. [23]
reported that in cucumber roots, Mn-excess increased
the activities of Mn-SOD and Fe-SOD, but decreased
the activities of Cu/Zn-SOD and CAT, and Mn-excess
also affected the activities of GPX, APX, DHAR and GR.
Experiments with other heavy metals have shown that
the changes in antioxidant systems differ between roots
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and leaves in response to excess heavy metals [27-29],
and may be a response to Mn-excess. In a study, Boojar
and Goodariz [20] reported that the activities of SOD,
CAT and GPX in the roots and leaves of Datura stra-
monium, and Chenopodium ambrosioides were
enhanced in response to Mn-excess. Unfortunately, the
activities of other antioxidant enzymes and the contents
of ASC, dehydroascorbate (DHA), GSH and oxidized
glutathione (GSSG) were not presented in this paper.
Citrus belongs to evergreen subtropical fruit trees and

is cultivated in humid and subhumid of tropical, subtro-
pical, and temperate regions of the world mainly on
acid soils. Although the effects of Mn-excess on leaf
structure and chloroplast ultrastructure of Citrus volka-
meriana L. have been investigated [30], there is hardly
any information on photosynthesis and antioxidant sys-
tems of citrus in response to Mn-excess. In this study,
we investigated the effects of Mn-excess on CO2 assimi-
lation, Rubisco, carbohydrates and photosynthetic elec-
tron transport in leaves, and antioxidant systems in
roots and leaves of sour pummelo [Citrus grandis (L.)
Osbeck]. The objective of this study were to understand
the mechanisms by which Mn-excess leads to a decrease
in CO2 assimilation and to test the hypothesis that Mn-
induced changes in antioxidant systems differ between
roots and leaves.

Results
Seedling growth and specific weight
Mn-excess decreased root, stem and leaf dry weight
(DW), and specific leaf weight. Leaf and stem DW
decreased to a larger extent than root DW in response
to Mn-excess, and resulted in a greater root DW/shoot
DW ratio (Table 1).

Mn, total soluble protein, Chl and carotenoids (Car)
Mn-excess increased root, stem and leaf Mn content,
but decreased leaf soluble protein content expressed on
a leaf area (Table 2), fresh weight (FW) or DW (data
not shown) basis and root soluble protein expressed on
a root FW (Table 2) or DW (data not shown) basis.
Mn-excess did not significantly affect the contents of

Chl, Chl a, Chl b and Car, whether the data were
expressed on a leaf area (Table 3), FW or DW (data not
shown) basis. Mn-excess significantly decreased the

ratio of Chl a/b, but significantly increased the ratio of
Car/Chl (Table 3).

Leaf gas exchange and Rubisco
Both CO2 assimilation (Fig. 1A) and stomatal conduc-
tance (Fig. 1B) significantly decreased, but intercellular
CO2 concentration (Fig. 1C) significantly increased in
Mn-excess leaves compared with controls.
Both initial and total Rubisco activity was significantly

lower in Mn-excess leaves than in controls except for a
similar initial activity expressed on a leaf protein basis
between the Mn treatments (Fig. 1D-G), while Mn-
excess did not significantly affect Rubisco activation
state (Fig. 1H).

Leaf nonstructural carbohydrates
As shown in Fig. 2, there were no significant differences
in the contents of glucose, fructose, starch, and total
nonstructural carbohydrates (TNC) between the Mn
treatments regardless of how the data were expressed,
while sucrose content was significantly higher in Mn-
excess leaves. Expressed on a DW basis, Mn-excess
leaves displayed a higher content of soluble sugars (glu-
cose + fructose + sucrose), but a similar content of solu-
ble sugars on an area basis.

Leaf Chl a fluorescence (OJIP) transients and
related parameters
All OJIP transients from both Mn-excess and control
leaves displayed a typical polyphasic rise with the basic
steps of O-J-I-P. Mn-excess resulted in an increase in
the heterogeneity of samples. OJIP transients from Mn-
excess leaves showed a rise at the O-step and a depres-
sion at the P-step (Fig. 3A-B).
As shown in Fig. 3C-E, Mn-excess leaves displayed

positive ΔL-, ΔK-, ΔJ- and ΔI-bands compared with
controls around 130 μs, 300 μs, 2 ms and 30 ms, respec-
tively and decreased the maximum amplitude of IP
phase.
Compared with controls, Mn-excess leaves had

decreased total electron carriers per reaction center (Sm
or ECo/RC), reduction of end acceptors at PSI electron
acceptor side per RC (REo/RC), electron transport flux
per RC (ETo/RC), efficiency with which an electron can
move from the reduced intersystem electron acceptors

Table 1 Effects of Mn-excess on leaf, stem and root DW, and specific leaf weight in sour pummelo seedlings

Treatments Root DW
(g plant-1)

Stem DW
(g plant-1)

Leaf DW
(g plant-1)

Root DW/Shoot DW Specific leaf weight

(g FW m-2) (g DW m-2)

Control 5.83 ± 0.68 a 6.16 ± 0.64 a 10.41 ± 0.59 a 0.35 ± 0.02 b 275 ± 4 a 124 ± 3 a

Mn-excess 3.68 ± 0.62 b 3.16 ± 0.68 b 5.78 ± 0.86 b 0.41 ± 0.02 a 244 ± 10 b 109 ± 5 b

Data are means ± standard errors (n = 5 or 10). Within a column, values followed by different letters are significantly different at P < 0.05.
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Table 2 Effects of Mn-excess on Mn content of roots, stems and leaves, and total soluble protein content of roots and
leaves in sour pummelo seedlings

Treatments Mn (μ g g-1 DW) Soluble protein

Roots Stems Leaves Leaves (g m-2) Roots (mg g-1 FW)

Control 124.5 ± 11.7 b 6.5 ± 0.4 b 18.4 ± 1.8 b 8.4 ± 0.2 a 10.6 ± 0.5 a

Mn-excess 11471.2 ± 1457.8 a 583.6 ± 101.2 a 906.3 ± 123.1 a 6.5 ± 0.2 b 8.2 ± 0.5 b

Data are means ± standard errors (n = 5-8). Within a column, values followed by different letters are significantly different at P < 0.05.

Table 3 Effects of Mn-excess on Chl and Car contents in sour pummelo leaves

Treatments Chl
(mg m-2)

Chl a
(mg m-2)

Chl b
(mg m-2)

Chl a/b Car
(mg m-2)

Car/Chl

Control 587 ± 24 a 435 ± 16 a 152 ± 8 a 2.88 ± 0.04 a 118 ± 5 a 0.201 ± 0.003 b

Mn-excess 526 ± 28 a 384 ± 22 a 141 ± 5 a 2.72 ± 0.06 b 112 ± 5 a 0.213 ± 0.002 a

Data are means ± standard errors (n = 6). Within a column, values followed by different letters are significantly different at P < 0.05.
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to the PSI end electron acceptors (δRo or REo/ETo),
probability that a trapped exciton moves an electron
into the electron transport chain beyond QA

- (ψEo or
ETo/TRo), maximum quantum yield of primary photo-
chemistry (�Po or Fv/Fm or TRo/ABS), quantum yield for
the reduction of end acceptors of PSI per photon
absorbed (�Ro or REo/ABS) and total performance index
(PItot,abs), but increased dissipated energy per RC (DIo/
RC), trapped energy flux per RC (TRo/RC), absorption
flux per RC (ABS/RC) and inactivation of oxygen evol-
ving complex (OEC) (Fig. 4).

Antioxidant enzymes and antioxidants, and
malondialdehyde (MDA)
Mn-excess leaves had higher or similar APX, MDAR,
GR, SOD, CAT and GPX activities whether the results
were expressed on a leaf area or protein basis, while
DHAR activity were lower (Fig. 5). Conversely, Mn-
excess roots displayed similar or lower APX, MDAR,
DHAR, GR, SOD, CAT and GPX activities, regardless of
how the data were expressed (Fig. 6).
Mn-excess leaves showed similar contents of total

ascorbate (ASC + DHA) (Fig. 7A), total glutathione
(GSH + GSSG) (Fig. 7C) and GSH (Fig. 7D) on a leaf
area basis and ASC on a leaf area or protein basis (Fig.
7B and 7G), but higher total ascorbate (Fig. 7F), total
glutathione (Fig. 7H) and GSH (Fig. 7I) on a leaf protein
basis. The ratio of GSH to total glutathione did not sig-
nificantly differ between Mn-excess leaves and controls
(Fig. 7J), while the ratio of ASC to total ascorbate was
slightly lower in the former (Fig. 7E). There were no sig-
nificant differences in the contents of total ascorbate
(Fig. 8A and 8F), total glutathione (Fig. 8C and 8H) and
GSH (Fig. 8D and 8I) between Mn-excess roots and
controls, while the content of ASC (Fig. 8B and 8G) and
the ratios of ASC/(ASC + DHA) (Fig. 8E) and GSH/
(GSH + GSSG) (Fig. 8J) were significantly lower in Mn-
excess roots than in controls.
As shown in Fig. 9, Mn-excess did not significantly

affect MDA contents of roots and leaves.

Discussion
The present work (Table 1), like that of previous work-
ers [1,7,26,31] indicates that Mn-excess inhibits the
plant growth. The higher ratio of root DW/shoot DW
in Mn-excess plants (Table 1) agrees with the view that
plant tops are affected by Mn toxicity to a greater extent
than root systems [1]. However, Gherardi and Rengel
[31] reported that Mn toxicity did not affect the ratio of
root DW/shoot DW in lucerne (Medicago sativa L.).
The overwhelming majority of Mn was retained in the

roots (Table 2), as previously found for lucerne [31].
According to Vose and Randall [32], tolerance to Mn
toxicity is associated not only with low Mn uptake, but
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also with relatively little Mn translocation from roots to
shoots. Mora et al. [33] reported that ryegrass (Lolium
perenne L.) cultivars tolerant to Mn-excess (Kingston
and Jumbo) accumulated high Mn in roots and propor-
tionally low Mn in shoots, while the sensitive ones
(Aries and Nui) showed large Mn translocation from
roots to shoots. Thus, the relatively low Mn content in
upper parts of the Mn-excess plants (Table 2) might
contribute to their tolerance for Mn-excess.
The lower CO2 assimilation in Mn-excess leaves (Fig.

1A) was primary caused by non-stomatal factors as the
lower CO2 assimilation coincided with an increase in inter-
cellular CO2 concentration (Fig. 1C). This agrees with the
results obtained for wheat [5], tobacco [4], ricebean [8],
rice [10] and cucumber [7]. However, Suresh et al. [14]
concluded that Mn interfered with stomatal regulation.
Despite decreased CO2 assimilation (Fig. 1A), Mn-

excess leaves had similar contents of nonstructural car-
bohydrates, except for a higher content of sucrose on a
leaf area or DW basis and a higher content of soluble
sugars on a DW basis (Fig. 2). This might result from the
decreased demand for reduced C in growing sink tissues
and less dilution due to growth inhibition (Table 1).

However, Lidon [34] found that 2 mg L-1 Mn treatment
increased the content of starch, but decreased the con-
tent of soluble carbohydrates in rice shoots. In Citrus
volkameriana L., the relative volume (%) of starch grains
per chloroplast was 5-fold greater under 686 μM Mn
than in the treatments with 0-98 μM Mn [30]. Evidence
shows that soluble sugars, specifically hexoses, may
repress photosynthetic gene expression, particularly of
the nuclear-encoded small sub-unit of Rubisco, thus
decreasing Rubisco content and CO2 assimilation [35].
Although Mn-excess leaves had slightly increased sucrose
content (Fig. 2C and 2I), the contents of glucose (Fig. 2A
and 2G) and fructose (Fig. 2B and 2H) did not signifi-
cantly differ between the Mn treatments. This indicated
that the feedback repression mechanism via accumula-
tion of soluble sugars did not play a major role in deter-
mining the activity of Rubisco and the rate of CO2

assimilation in Mn-excess leaves. This inference was also
supported by the results that both initial and total
Rubisco activity in Mn-excess decreased to a lesser extent
(Fig. 1D-G) than CO2 assimilation (Fig. 1A). Therefore,
decreased CO2 assimilation in Mn-excess leaves could
not be attributed to a decrease in Rubisco activity.
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The decrease in leaf CO2 assimilation in response to
Mn-excess could not be attributed to a decrease in
Chl, because there were no significant differences in
the contents of Chl, Chl a and Chl b between the Mn
treatments (Table 3). Mn-excess led to a slight
decrease in Chl a/b ratio (Table 3), as previously found
for mungbean [12]. However, Chl a/b ratio in rice

leaves did not show significant changes in response to
Mn toxicity [10]. Aro et al. [36] reported that there
was an inverse linear relationship between the sensitiv-
ity of pea (Pisum sativum L.) leaves to photoinhibition
and Chl a/b ratio. Hence, Mn-excess leaves could be
more susceptible to photoinhibition in vivo compared
with normal ones.
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The presence of a positive ΔL-band in Mn-excess
leaves (Fig. 3D) agrees with the results obtained for Al-
stressed [37] and B-stressed [38] sour pummelo, N-defi-
cient cowpea [39] and P-deficient tea [Camellia sinensis
(L.) O. Kuntze] [40]. According to the Grouping Concept
[41] and JIP-test [39], the positive ΔL-band in Mn-excess
leaves meant that the PSII units were less grouped or less

energy was being exchanged between independent PSII
units. Because the grouped conformation is more stable
than the ungrouped one, the decreased grouping indi-
cated that the PSII units of Mn-excess leaves had lost
their stability and become more fragile. This was also
supported by our data that Mn-excess increased the het-
erogeneity of the samples (Fig. 3A and 3B).
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Our finding that Mn-excess leaves had a lower maxi-
mum quantum yield of primary photochemistry (�Po or
Fv/Fm or TRo/ABS) (Fig. 4) indicated that photoinhibi-
tory damage to PSII complexes occurred in Mn-excess
leaves [42,43]. Similar results have been obtained for
cucumber [7] and Mn-sensitive maize [16]. However,
Mn-induced decrease in CO2 assimilation was unaccom-
panied by decreased Fv/Fm in ricebean [8], white birch
[9], rice [10], Alnus hirsuta Turcz., Betula ermanii
Charm., Ulmus davidiana Planch. and Acer mono
Maxim. [13]. The decrease in Fv/Fm was due to an
increase in Fo and a decrease in Fm (Fig. 3A and 3B), as
previously found for Al-treated [37] and B-deficient [38]
sour pummelo and P-deficient tea [40]. The higher Fo
might be caused by the damage of OEC, because Mn-

excess leaves had increased inactivation (Fig. 4), or it
might relate to the accumulation of reduced QA [44],
because the physiological fractional reduction of QA to
QA

-, as indicated by the increase in approximated initial
slope (in ms-1) of the fluorescence transient V = f(t)
[Mo = 4 (F300 μs - Fo)/(Fm - Fo)] (Fig. 3C), increased in
Mn-excess leaves. Quenching of Fm in Mn-excess leaves
might arise from the photoinhibitory quenching (qI),
because an increase in Fo with a quenched Fm was
observed in Mn-excess leaves (Fig. 3A and 3B) [45].
The Mn-induced positive ΔK-band in the OJIP transi-

ent is in agreement with the results obtained for Al-
treated [37] and B-stressed [38] sour pummelo, and
chromate (Cr)-treated Lemna gibba L. [46] and Spiro-
dela polyrhiza (L.) Schleid. [47]. This indicated that the
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OEC was damaged and the energetic connectivity
between photosynthetic units was changed [48]. This
was also supported by the data that Mn-excess leaves
had increased inactivation of OEC (Fig. 4) and less
energy exchange between independent PSII units, as
indicated by the positive ΔL-band (Fig. 3D). The fraction
of electrons from the RCs at the acceptor side relates
not only to the capacity of electron donation to the
RCs, but also to the electron transport capacity from
RCs to electron acceptors. The Mn-induced positive ΔI-
band (Fig. 3C) indicated that the acceptor side of PSII
in Mn-excess leaves was damaged more severely than
the donor side of PSII, as previous suggest from in vitro
studies that inactivation of the acceptor side might be
the main mechanism underlying impairment of electron

transport [36]. This was also supported by our data that
Mn-excess leaves displayed a higher Fo compared with
controls (Fig. 3A and 3B). If the acceptor side of PSII is
photoinhibited, the Fo is significantly increased [49].
Relative variable fluorescence (VI) is a derived parameter
and its increase can be due to an increase in FI or a
decrease in Fm, or both. Because Mn-excess leaves had
lower FI and Fm compared with controls (Fig. 3A and
3B), the increased VI in Mn-excess leaves might indicate
a relative change in the proportion of QB-non-reducing
PSII RCs rather than an increase in the absolute amount
of the QB-non-reducing PSII RCs [37]. It has been sug-
gested that the amplitude of IP phase is a measure of
the amount of reduced end acceptors at PSI acceptor
side and that the IP phase represents the last and
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slowest rate-limiting step of the photosynthetic electron
transport chain [50]. Our results showed that Mn-excess
largely decreased the maximum amplitude of IP phase
(Fig. 3E). In addition, Mn-excess leaves had decreased
Sm (ECo/RC), REo/RC, ETo/RC, δRo (REo/ETo), ψEo

(ETo/TRo) and �Ro (REo/ABS), and increased DIo/RC,
TRo/RC and ABS/RC, and damaged all of the photoche-
mical and non-photochemical redox reactions, as indi-
cated by the decreases in the total performance index
(PItot,abs) (Fig. 4). Therefore, we concluded that Mn-
excess impaired the whole photosynthetic electron
transport chain from the donor side of PSII up to the
reduction of end acceptors of PSI, thus limiting the pro-
duction of reducing equivalents, and hence the rate of
CO2 assimilation.
Since CO2 assimilation was decreased in Mn-excess

leaves (Fig. 1A), only a fraction of the absorbed light
energy was used in photosynthetic electron transport.
Correspondingly, energy dissipation, as indicated by
DIo/RC (Fig. 4), increased in Mn-excess leaves. The
excess absorbed photon flux can also potentially lead to
the production of ROS [51]. In addition, heavy metals
have been demonstrated to stimulate formation of ROS
in roots and leaves [7,52]. Thus, the production of ROS

might be enhanced in Mn-excess roots and leaves.
When the production of ROS is stimulated by stress,
some protective antioxidant enzymes and antioxidants
may be affected in plants. On a protein basis, Mn-excess
leaves had higher or similar activities of antioxidant
enzymes and contents of antioxidants, except for a
lower activity of DHAR (Figs. 5H-N and 7F-I). The up-
regulation of some antioxidant enzymes has also been
found in the leaves of cucumber [7,25] and common
bean [24] plants. In contrast to the leaf antioxidant
enzymes and antioxidants, Mn-excess roots had similar
or lower activities of antioxidant enzymes and contents
of antioxidants on a protein basis (Figs. 6H-N and 8F-I).
Our results clearly showed that on a protein basis, only
DHAR activity in roots and leaves was decreased by
excess Mn (Figs. 5H-N and 6H-N). Considering that the
DHAR activity was the lowest among the enzymes in
the ascorbate-glutathione cycle, it was likely that the
DHAR-catalyzed reaction was not the main route for
the regeneration. Previous studies showed that the ratios
of ASC to ASC + DHA and GSH to GSH + GSSG
decreased under oxidative stress [53-55]. In our study,
the ratio of ASC to ASC + DHA was slightly lower in
Mn-excess leaves than in controls (Fig. 7E), while Mn-
excess did not significantly affect the ratio of GSH to
GSH + GSSG (Fig. 7J). By contrast to leaves, the ratio of
ASC to ASC + DHA was much lower in Mn-excess
roots than in controls (Fig. 8E), while Mn-excess only
slightly decreased the ratio of GSH to GSH + GSSG
(Fig. 8J). Similar MDA content in roots and leaves
between the Mn treatments (Fig. 9) indicated that the
antioxidant systems in Mn-excess roots and leaves pro-
vided considerable protection to them against oxidative
damage. Thus, the decrease in ASC/(ASC + DHA) ratio
in Mn-excess roots and leaves (Figs. 7E and 8E) and
GSH/(GSH + GSSG) ratio in Mn-excess roots (Fig. 8J)
might indicate the equilibrium between utilization and
regeneration of ASC and GSH was achieved at lower
levels of ASC and GSH in the pool, and did not neces-
sarily imply the Mn-excess roots and leaves were
damaged by oxidative stress. Therefore, decreased CO2

assimilation in Mn-excess leaves could not be attributed
to oxidative damage.

Conclusions
Mn-excess impaired the whole photosynthetic electron
transport chain from the donor side of PSII up to the
reduction of end acceptors of PSI, thus limiting the pro-
duction of reducing equivalents, and hence the rate of
CO2 assimilation. Both the energy dissipation and the
antioxidant systems were up-regulated in Mn-excess
leaves, while the antioxidant systems in Mn-excess roots
were not enhanced, but still remained high activity. The
antioxidant systems in Mn-excess roots and leaves
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provided considerable protection to them against oxida-
tive damage.

Methods
Plant culture and Mn treatments
This study was conducted outdoors from April to
November, 2008 at Fujian Agriculture and Forestry Uni-
versity (FAFU). Seeds of sour pummelo [Citrus grandis
(L.) Osbeck] were germinated in sand in plastic trays. Six
weeks after germination, uniform seedlings with a single
stem were selected and transplanted to 6 L pots contain-
ing sand. Seedlings, three to a pot, were grown outdoors
at FAFU. Each pot was supplied with 500 mL of nutrient
solution every two days. The nutrient solution contained
the following macronutrients (in mM): KNO3, 1.25; Ca
(NO3)2, 1; (NH4)H2PO4, 0.25; MgSO4, 0.5; micronutri-
ents (in μM): H3BO3, 10; MnSO4, 2; ZnCl2, 2; CuSO4,
0.5; (NH4)6Mo7O24, 0.065; and Fe-EDTA, 20. Ten weeks
after transplanting the treatment was applied for 17
weeks: until the end of the experiment, each pot was sup-
plied every other day until dripping with nutrient solu-
tion (approx. 500 mL) containing 2 μM (control) or 500
μM (excess) MnSO4. At the end of the experiment, fully-
expanded (about 7 weeks old) leaves from different repli-
cates and treatments were used for all the measurements.
Leaf discs (0.58 cm2 in size) were collected at noon under
full sun and immediately frozen in liquid nitrogen.
Approximately 10-mm-long root apices were excised
from the same seedlings used for sampling leaves and
frozen immediately in liquid nitrogen. Both leaf and root
samples were stored at -80°C until extraction.

Measurements of root, stem and leaf DW, and specific
leaf weight
At the end of the experiment, 10 plants per treatment
from different pots were harvested. The plants were
divided into their separate parts (roots, stems and
leaves). The plant material was then dried at 80°C for 48
h and the DW measured. Specific leaf weight was mea-
sured according to Syvertsen et al. [56].

Determination of pigments, total soluble protein, and Mn
Leaf Chl, Chl a, Chl b, and Car were assayed according
to Lichtenthaler [57]. Briefly, 2 frozen leaf discs were
extracted with 8 mL of 80% (v/v) acetone for 24 h in
the dark. The extracts were determined using Libra S22
ultraviolet-visible spectrophotometer (Biochrom Ltd.,
Cambridge, UK). Root and leaf total soluble protein was
extracted with 50 mM Na2HPO4-KH2PO4 (pH 7.0) and
5% (w/v) insoluble polyvinylpolypyrrolidone (PVPP), and
determined according to Bradford [58] using bovine
serum albumin (BSA) as standard. Mn content in roots,
stems and leaves was determined by atomic absorption
spectroscopy after digested with 1 N HCl.

Leaf gas exchange measurements
Measurements were made with a CIARS-2 portable
photosynthesis system (PP systems, Herts, UK) at
ambient CO2 concentration under a controlled light
intensity of 1000 μmol m-2 s-1 between 9:30 and 10:30
on a clear day. During measurements, leaf temperature
and vapor pressure deficit (VPD) were 26.9 ± 1.1°C
and 2.0 ± 0.1 kPa, respectively.

Leaf Rubisco activity measurements
Rubisco was extracted according to Chen et al. [59].
Two frozen leaf discs from the same leaf were ground
with a pre-cooled mortar and pestle in 1 mL of extrac-
tion buffer containing 50 mM Hepes-KOH (pH 7.5),
10 mM MgCl2, 2 mM ethylenediaminetetraacetic acid
(EDTA), 10 mM dithiothreitol (DDT), 1% (v/v) Triton
X-100, 5% (w/v) insoluble PVPP, 1% (w/v) BSA, 10%
(v/v) glycerol. The extract was centrifuged at 13 000 g
for 40 s in 2°C, and the supernatant was used immedi-
ately for the assay of Rubisco activity. Rubisco activity
was determined according to Lin et al. [40]. For initial
activity, 50 μL of sample extract was added to a cuvette
containing 900 μL of assay solution, immediately fol-
lowed by adding 50 μL of 10 mM ribulose-1,5-bipho-
sphate (RuBP), then mixing well. The change of
absorbance at 340 nm was monitored for 40 s. For total
activity, 50 μL of 10 mM RuBP was added 15 min later,
after 50 μL of sample extract was combined with 900
μL of assay solution to fully activate all the Rubisco.
The assay solution for both initial and total activity
measurements, whose final volume was 1 mL, contained
100 mM Hepes-KOH (pH 8.0), 25 mM KHCO3, 20 mM
MgCl2, 3.5 mM ATP, 5 mM phosphocretaine, 5 units of
NAD-glyceraldehyde-3-phosphate dehydrogenase (NAD-
GAPDH, EC 1.2.1.12), 5 units of 3-phosphoglyceric
phospokinase (PCK, EC 2.7.2.3), 17.5 units of creatine
phosphokinase (EC 2.7.3.2), 0.25 mM NADH, 0.5 mM
RuBP, and 50 μL of sample extract. Rubisco activation
state was calculated as the ratio of initial activity to total
activity.

Assay of leaf nonstructural carbohydrates
Sucrose, fructose, glucose and starch were extracted and
assayed according to Chen and Cheng [60].

Measurements of leaf OJIP transients
OJIP transient was measured by a Handy Plant Effi-
ciency Analyzer (Handy PEA, Hansatech Instruments
Limited, Norfolk, UK) according to Strasser et al. [61].
All the measurements were done with 3 h dark-adapted
plants at room temperature.
OJIP transient was analyzed according to the JIP test

[37,38,62,63]. The following data from the original mea-
surements were used: the fluorescence intensity at 20 μs
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(considered as minimum fluorescence Fo); the maximal
fluorescence intensity, FP, equal to Fm since the excita-
tion intensity was high enough to ensure the closure of
all RCs of PSII; the fluorescence intensity at 300 μs
(F300μs), 2 ms (J-step, FJ) and 30 ms (I-step, FI). The JIP
test represents a translation of the original data to bio-
physical parameters and the performance index. The fol-
lowing parameters that all refer to time 0 (start of
fluorescence induction) are: (a) relative variable fluores-
cence at the J-step [VJ = (FJ - Fo)/(Fm - Fo)] and at the
I-step [VI = (FI - Fo)/(Fm - Fo)]; (b) normalized total
complementary area above the OJIP transient or total
electron carriers per RC (Sm = ECo/RC) and the fraction
of OEC in comparison with control [(1-VK/VJ)treated sam-

ple/(1-VK/VJ)control, where VK is the relative variable
fluorescence at 300 μs]; (c) the specific energy fluxes per
RC for absorption (ABS/RC), trapping (TRo/RC), elec-
tron transport (ETo/RC), dissipation (DIo/RC) and
reduction of end acceptors at PSI acceptor side (REo/
RC); (d) the flux ratios or yields, i.e. the maximum
quantum yield of primary photochemistry (�Po = TRo/
ABS = Fv/Fm), the probability that a trapped exciton
moves an electron into the electron transport chain
beyond QA

- (ψEo = ETo/TRo), the quantum yield for
the reduction of end acceptors of PSI per photon
absorbed (�Ro = REo/ABS) and the efficiency with which
an electron can move from the reduced intersystem
electron acceptors to the PSI end electron acceptors
(δRo = REo/ETo); (e) the total performance index (PItot,
abs), measuring the performance up to the PSI end elec-
tron acceptors (PItot,abs = (RC/ABS) × (�Po/(1- �Po)) ×
(ψEo/(1 - ψEo)) × (δRo/(1 - δRo)); (f) the IP phase (IP
phase = (Ft - Fo)/(FI - Fo) - 1 = (Ft - FI)/(FI - Fo), where
Ft is the fluorescence intensity at time t after onset of
actinic illumination.
Extended analysis of OJIP transients was done by cal-

culation of the relative variable fluorescence [37,63]: (A)
between Fo and Fm [Vt = (Ft - Fo)/(Fm - Fo)] and (B)
between Fo and F300 μs [WK = (Ft - Fo)/(F300 μs- Fo)] and
the differences between the treated and the control sam-
ples. Clear bands are visible in these transients, where
treatments rise above the control transient which is the
reference line. Positive ΔL-, ΔK-, ΔJ- and ΔI-bands
appear around 130 μs, 300 μs, 2 ms and 30 ms, respec-
tively, and are associated with the ungrouping of PSII
units [41], the uncoupling of OEC [64], the accumula-
tion of QA

- [39] and the increased proportion of
QB-non-reducing PSII RCs [65,66], respectively.

Antioxidant enzymes, antioxidants and MDA in
leaves and roots
GPX, SOD, APX, MDAR, DHAR, GR and CAT in roots
and leaves were extracted according to Chen and Cheng
[51]. GPX was assayed at 470 nm (extinction coefficient

25.2 mM-1 cm-1) in 1 mL of reaction mixture containing
100 mM potassium phosphate buffer (pH 6.0), 16 mM
guaiacol, 5 μL of 10% (v/v) H2O2 and the enzyme extract.
The reaction was started by adding the enzyme extract
[67]. SOD activity was assayed according to Giannopolitis
and Rice [68]. APX, CAT, MDAR, DHAR and GR were
measured according to Chen and Cheng [51].
Frozen leaf discs or roots were ground in ice-cold 5%

(w/v) TCA [49]. GSH and GSSG in the extract were deter-
mined according to Griffith [69]. Frozen leaf discs or roots
were ground in ice-cold 6% (v/v) HClO4. ASC and DHA
in the extract were measured according to Chen and
Cheng [51]. MDA was extracted with 80% (v/v) ethanol
and determined according to Hodges et al. [70].

Experimental design and statistical analysis
There were 20 pots seedlings per treatment in a com-
pletely randomized design. Experiments were performed
with 4 -10 replicates (one plant from different pots per
replicate). Results represented the means ± standard
errors. Unpaired t-test was applied for comparison
between two means at P < 0.05 level.
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