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Abstract

the large and complex sugarcane genome.

Background: Unigene sequences constitute a rich source of functionally relevant microsatellites. The present study
was undertaken to mine the microsatellites in the available unigene sequences of sugarcane for understanding
their constitution in the expressed genic component of its complex polyploid/aneuploid genome, assessing their
functional significance in silico, determining the extent of allelic diversity at the microsatellite loci and for
evaluating their utility in large-scale genotyping applications in sugarcane.

Results: The average frequency of perfect microsatellite was 1/10.9 kb, while it was 1/44.3 kb for the long and
hypervariable class | repeats. GC-rich trinucleotides coding for alanine and the GA-rich dinucleotides were the most
abundant microsatellite classes. Out of 15,594 unigenes mined in the study, 767 contained microsatellite repeats
and for 672 of these putative functions were determined in silico. The microsatellite repeats were found in the
functional domains of proteins encoded by 364 unigenes. Its significance was assessed by establishing the
structure-function relationship for the beta-amylase and protein kinase encoding unigenes having repeats in the
catalytic domains. A total of 726 allelic variants (742 alleles per locus) with different repeat lengths were captured
precisely for a set of 47 fluorescent dye labeled primers in 36 sugarcane genotypes and five cereal species using
the automated fragment analysis system, which suggested the utility of designed primers for rapid, large-scale and
high-throughput genotyping applications in sugarcane. Pair-wise similarity ranging from 0.33 to 0.84 with an
average of 040 revealed a broad genetic base of the Indian varieties in respect of functionally relevant regions of

Conclusion: Microsatellite repeats were present in 4.92% of sugarcane unigenes, for most (87.6%) of which
functions were determined in silico. High level of allelic diversity in repeats including those present in the
functional domains of proteins encoded by the unigenes demonstrated their use in assay of useful variation in the
genic component of complex polyploid sugarcane genome.

Background

Sugarcane (Saccharum sp.) is a complex polyploid
belonging to the family Poaceae of the tribe Andropogo-
neae. It is an important commercial sugar producing
crop and a source of approximately 50% of the world’s
sugar and alcohol. The polyploid/aneuploid nature with
variation in chromosome number has been largely
responsible for its genetic and taxonomic complexity
[1]. Characterization of such large genomes is
greatly facilitated by the use of molecular markers.
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Microsatellite or simple sequence repeat (SSR) markers
are being preferred because of their co-dominant inheri-
tance, reproducibility, multi-allelic nature, chromosome-
specific location and wide genomic distribution. These
markers are amenable to high throughput genotyping
due to multiplexing and efficient resolution of ampli-
cons by automated fragment analysis [2,3].

In sugarcane, Cordeiro et al. (2000) [2] and Parida
et al. (2009a) [4] developed a large number of microsa-
tellite markers from the genomic sequences. Pinto et al.
(2004; 2006) [5,6] and more recently Oliveira et al.
(2009) [7] also designed such markers from the sugar-
cane ESTs, which were used for constructing high reso-
lution functional genetic linkage map of Saccharum
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spp- [8]. However, information on a limited number of
these genic microsatellite markers is available in the
public domain. Recently, the EST sequences have been
assembled into unigenes [9], which is expected to pro-
vide non-redundant, locus specific and novel gene-based
functional markers for sugarcane having a large genome
not amenable to complete sequencing. The unigene
sequences of sugarcane have not yet been analyzed for
their microsatellite constitution and compared with the
other small genome members of the grass family.

In India, systematic breeding of sugarcane has resulted
in the development of a number of varieties with high
productivity and stress tolerance by inter-specific hybri-
dization [10]. However, the genetic base of modern
Indian sugarcane cultivars is considered narrow due to
use of a limited number of parental species clones in
cross hybridization and repeated intercrossing of hybrids
[11]. Understanding the extent of natural variation at
molecular level is essential to develop new strategies for
sugarcane improvement. Earlier, molecular markers
such as RAPD (Randomly Amplified Polymorphic
DNA), AFLP (Amplified Fragment Length Polymorph-
ism), and maize and sugarcane genomic microsatellites
have been used for this purpose [4,12-15]. No effort has
yet been made to understand the genetic diversity of
Indian sugarcane cultivars based on functionally relevant
genic regions of its complex genome.

The present study was undertaken to mine the avail-
able unigene sequences of sugarcane (Saccharum sp.) to
understand the microsatellite structure and distribution
in the expressed genic component of the genome, assess
their functional significance in silico, design primers
from the flanking regions of the identified microsatel-
lites, assess the efficiency of a set of fluorescent dye
labeled primers in genotyping using automated fragment
analysis system and determine functional diversity
among different species, related genera and Indian vari-
eties of sugarcane.

Results

Frequency, distribution and organization of
microsatellites in sugarcane unigenes

The type, frequency and relative distribution of the
microsatellites in the unigene sequences of sugarcane
are given in Table 1. The perfect microsatellite (exclud-
ing the mononucleotides) frequency in the unigenes of
sugarcane was one in every 10.9 kb and the proportion
of microsatellite carrying unigenes was 3.7% (584 out of
15,582). When 1,871 (12%) mononucleotide microsatel-
lites were included, the proportion of unigenes carrying
microsatellites increased to 17.4%. The mononucleotides
in sugarcane showed a strong bias (84.6%) towards A/T
repeat, with the majority (89%) being 9 to 30 bases long
and the remaining (11%) extending up to 69 bases (Tso).
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A total of 841 perfect microsatellites were identified in
584 unigene sequences of sugarcane. One hundred
sixty-seven (28.6%) of these unigenes contained multiple
microsatellites (that accounted for 424 microsatellites)
which were interrupted by more than 100 nucleotides
and the remaining 417 (71.4%) unigenes had a single
microsatellite each. In addition to the perfect microsa-
tellites, we identified 183 compound microsatellites, of
which 74.9% were interrupting types and the rest being
non-interrupting types (Table 1). The trinucleotide
repeat motifs were the most prevalent (73.1%) class of
microsatellites followed by dinucleotide (23.8%), tetranu-
cleotide (1.8%), pentanucleotide (0.83%) and hexanucleo-
tide (0.47%) repeat motifs (Table 1). The GC rich repeat
motifs GCA/GCC/GCG/GCT (23%) coding for alanine
were most abundant followed by arginine (AGA/AGG/
CGA/CGC/CGG/CGT, 22%) and glycine (GGA/GGC/
GGT, 11%) (see Additional file 1). Among the dinucleo-
tide repeats, the most and least frequent motifs were
GA and CG, which accounted for 21% and 1.4% of all
the microsatellites, respectively (see Additional file 2).

Out of 841 perfect microsatellites identified in sugar-
cane, 587 (69.8%) were found in the ORFs and the
remaining were present either in the 3’UTRs (102,
12.1%) or in the 5’UTRs (152, 18.1%). The trinucleotide
repeat motifs were significantly more frequent (about
86%) in the ORFs. In contrast, the GA-rich dinucleotide
repeat motifs were more in the 5’ (49%) and 3’ (32%)
UTRs. The density of longer motif containing perfect
class I microsatellites was one in every 44.3 kb
sequences, which accounted for 24.6% (207) of the total
841 microsatellites identified (Table 1, Figure 1).

Development of unigene derived microsatellite (UGMS)

markers and evaluation of their polymorphic potential

The primer pairs could be designed for 810 perfect
microsatellites that was 96.3% of the total microsatellites
(841) identified in the present investigation. The primer
sequences flanking all the perfect UGMS including 207
class I microsatellites with their Tm values and product
sizes are given in the Additional file 3. Besides, the pri-
mer sequences for 151 compound class I UGMS were
designed and provided in the Additional file 4. To vali-
date the UGMS markers, 176 primer-pairs designed
from different microsatellite containing unigenes were
used in PCR amplification (see Additional file 3). One
hundred sixty seven (94.9%) of these produced clear and
reproducible amplicons, whereas remaining nine (5.1%)
did not give amplification in the S. officinarum from
which sequence the primers were designed. To verify
that the primers did amplify the expected microsatellite
repeat-motifs, the amplified products obtained with 19
of the primers in all the Saccharum species and related
genera as well as cereals were sequenced and the
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Table 1 Distribution of microsatellites in the unigene sequences of sugarcane

Characters under study Unigenes*
Number of sequences examined 15,594

Size (bp) of examined sequences 9,17,43,95
Number of identified perfect microsatellites 2,712 (17.4)
Number of perfect microsatellite containing sequences 2,230 (14.3)
Number of perfect microsatellite (excluding mononucleotides) containing sequences 584 (3.7)
Number of sequences containing more than one perfect microsatellites 167 (28.6)
Number of sequences containing single and unique perfect microsatellites 417 (71.4)
Number of mononucleotides 1,871 (12)
Number of dinucleotides 200 (23.8)
Number of trinucleotides 615 (73.1)
Number of tetranucleotides 15 (1.8)
Number of pentanucleotides 7 (0.83)
Number of hexanucleotides 4(047)
Number of perfect microsatellites excluding mononucleotides 841 (5.4)
Size (kb) of sequences containing one perfect microsatellite 10.9
Number of perfect class | microsatellites 207 (24.6)
Size (kb) of sequences containing one perfect class | microsatellite 443
Number of primer pairs designed for perfect® microsatellites 810 (96.3)
Number of compound class | microsatellite containing sequences 183

Size (kb) of sequences containing one compound class | microsatellite 50.1
Number of compound class | microsatellites 183 (1.2)
Number of compound interrupting class | microsatellites 137 (74.9)
Number of compound non-interrupting class | microsatellites 46 (25.1)
Number of primer pairs designed for compound class | microsatellites 151 (82.5)

*The number in the bracket is the proportion expressed in percentage

“Mononucleotides to hexanucleotides repeated up to 100 times without any interruption at a locus

¥ Hexanucleotides
¥ Pentanucleotides
W Tetranucleotides
® Trinucleotides

¥ Dinucleotides

Class I (>20 bp)

Figure 1 Frequency and relative distribution of class | and
class Il microsatellite repeats in sugarcane unigenes.
Comparative distribution of long hypervariable class | and
potentially variable class Il microsatellite repeats in the unigenes of
sugarcane. Trinucleotide was the most abundant repeat-motif in
both class | (56.5%) and class Il (79%) category, which was followed
by dinucleotide motifs.

Class II (12-20 bp)

presence of the target microsatellite motifs as well the
flanking sequences was observed in all the cases (see
Additional file 5).

In silico polymorphism analysis was confined to
Saccharum officinarum and five cereal species namely,
rice, wheat, maize, Sorghum and barley for which uni-
gene sequences were available in the database. The poly-
morphism based on variation in microsatellite repeat
length was observed for a maximum of 163 primers
(46.6%) between sugarcane and barley followed by 161
(42.5%) between sugarcane and wheat and least (92,
17.8%) between sugarcane and Sorghum (see Additional
file 6). The actual level of polymorphism detected by
automated fragment analysis using 47 fluorescent dye
labeled primers was much higher than that based on in
silico analysis although the trend was maintained. S. offi-
cinarum had maximum polymorphism with barley
(92.7%) followed by wheat (90.6%), rice (85.8%), maize
(67.7%) and Sorghum (61.4%). Forty-three (91.5%) of the
47 primers detected polymorphism (mean PIC of 0.85)
among the 41 genotypes belonging to Saccharum



Table 2 Evaluation of the amplification efficiency and polymorphic potential of 47 fluorescent dye labeled primers

Polymorphic potential

Sl Unigene Class | Repeat- Location Forward primer  Reverse primer Putative Actual No. Total no. Size (bp) Type of No. of Among Among
No. Accession UGMS motifs sequences (5’-3')  sequences (5'-3') functions annealing of of alleles of allele allele size  heterozygous sugarcane sugarcane
IDs’ primers® temperature locus amplified (s) distribution loci species varieties
(°Q) amplified and
genera
P/ME  PIC
1 CA297715  UGSuM2a (AT)43 CcDs CTGTGTATATGTT ~ CACTTAGTCACA Sucrose phosphate 55 2 20 206-302 Step-wise 1 P p 0.86
CGTAGTTTG CTCTCACACAC synthase
UGSuM2b 4 481-512 Mixed
2 CA278792  UGSuM5 (TA)28 CDS TCACATCCATC TCCAATGCAA Maize-Cyclin Il 55 1 23 80-170 Step-wise 0 P P 0.84
ATCCACAGC GCAAACTCAC
3 AY596609  UGSuM11 (TA)21 3'UTRs TGGTAACCCTA GTGCACCAG Fructose- 56 1 23 92-190 Step-wise 0 P P 083
GGCAGGTGA ATTTGGATGGT bisphosphate
aldolase
4 CA279221 UGSuM15a  (CCTCGC) CDS GTTTAAGACAA TACATATTTACA Hypothetical 56 2 17 170-247 Mixed 1 P P 0.80
6 GATGGTGTAGATG  TTGTTACTCCGC protein
UGSuM15b 3 360-378 Step-wise
5 CA278282  UGSuM16 (AT)18 CDS GCGTCTTCATC GCGTCTTCATC Pathogenesis- 55 1 22 150-244  Step-wise 0 P p 0.82
ATCTGCAAC ATCTGCAAC related PRMS
protein
6 CA253277  UGSuM17 (AG)18 CDS TTTCCATTCTTC GGCAGGCTGA Abcisic acid-protein 55 1 10 90-188 Step-wise 1 P P 0.78
CATTCAACTG GAGACTGTTC kinase
7 CA227482 UGSuM18a  (GA)18 CDS GGCGAGAGAGA AGGTGGAGATC Glycine 56 2 20 96-193 Mixed 1 P P 081
GAGAGAGAGAG  TTGAGGTAGGC decarboxylase
UGSuM18b 2 326-348  Step-wise
8  CA126180 UGSuM20a  (TCA)12  CDS ATCCCTTATGCT TTAGCCTAGAG Acetyl-CoA 54 2 16 190-259  Step-wise 1 P P 0.83
ACAGAAATGT GTTTGATTGAT synthetase
UGSuM20b 4 392428 Step-wise
9  CA177414  UGSuM21 (AGGA)9  CDS CGCTCCCTCA CTCCGCATCCT Transcription 62 1 20 160-252  Step-wise 0 P P 081
CCGTCATT CGTCACC regulator protein
10 CA223153  UGSuM22a  (GCG)12  3'UTRs crcccrccT CTCTTGGGTG Polyadenylate- 64 2 19 96-187 Mixed 1 P P 0.85
CCTCCCGTTG TGAACCAG binding protein
UGSuM22b 3 322-358  Step-wise
1M CA122659"  UGSuM24a Q7  5'UTRs CTGTACAACAGC  CTCGACTACGA Hypothetical 55 3 12 240-294  Mixed 1 P P 0.86
AATTATGAATCT GAGGATATGAT protein
UGSuM24b 4 398428  Step-wise
UGSuM24c 5 531-571 Step-wise
12 BU103692" UGSUM26 cmz 5'UTRs CTCGATCCCA AGTACCGAAT Beta-amylase 55 1 21 250-346 Step-wise 0 P p 0.85
GAGAGCTCCACAG  TCATTAAACTCCT
13 CA073284 UGSuM27a  (GGO)11  CDS CTGCAGTACG GTACCACCATGG 30 S ribosomal 60 2 2 50-54 Mixed 1 P P 0.84
GTCCGGAATC CTCTAGCTTC protein S16
UGSuM27b 22 154-288 Mixed
14 AY596606  UGSuM33a  (AGQ)10  CDS CGAGGCACT TGTTTGAACTG Hypothetical 58 3 17 92-189 Mixed 1 P P 0.84
GAACCCATATC GATGGCGTA protein
UGSuM33b 2 293-305 Step-wise
UGSuM33c 2 431-491 Step-wise
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Table 2 Evaluation of the amplification efficiency and polymorphic potential of 47 fluorescent dye labeled primers (Continued)

15 CA268640 UGSuM34a  (AAG)10  CDS TTACAAATG ATCTTTCCTTG Soluble acid 61 2 19 99-178 Mixed 0.83
TAGCCTTGCCTTG  CTTGCCTCTC invertase
UGSuM34b 4 333-351 Step-wise
16 CA131350  UGSuM41 (CC@)10  CDS ATCATTCTCCA AGGCTCTTCAA Unknown protein 54 1 20 120-210 Step-wise 0.80
TCATTTCTCA CCGTGCT
17 CA133924 UGSuM42a  (CTCTCC) 5S'UTRs TTCATACAGA TCCATCAGAG Auxin-independent 54 3 12 130-212 Mixed 083
5 AGAACCTCCAC ACAAGCAGA growth promoter
UGSuM42b 8 325-367 Step-wise
UGSuM42c 2 475-487 Step-wise
18 CA136599  UGSuM43a  (CCG)10  3'UTRs CAAAGTGCTG TTCAATGGGTG Ribose-phosphate 55 2 17 90-187 Mixed 0.85
TAGGGCTG ATAAGTGTGT pyrophosphokinase
1
UGSuM43b 2 332-368 Step-wise
19 CA139800 UGSuM44a  (CT)15 5'UTRs TCCATCAAGCC GCCAAGCAG Rudimentary 55 2 16 220-308 Step-wise 0.84
GTTCCTC ATAAAGAAGTG enhancer
UGSuM44b 1 419 -
20 CA171090  UGSuM45a  (AAAAG)  CDS ATCTCCTCTTAT AGCAGCGTC PAP fibrillin 56 3 5 91-141 Step-wise 0.79
6 TCGTTCTGG TTATCTGGG
UGSuM45b 2 267-287  Step-wise
UGSuM45¢ 2 368-393 Step-wise
21 CA196477  UGSuM46a  (GAQ)10  CDS ACTCCTCCCG CTCACCGAAG Hypothetical 60 2 15 101-188  Mixed 081
CCTCCACTAC CAATCAAG protein
UGSuM46b 3 341-377  Step-wise
22 CA228772 UGSuM47a  (GCO)10  CDS ATTTATGGAGG ATTACAAACAA Transport protein 55 2 3 82-97 Step-wise 0.80
AAGAAACGG GAAGAGCGG particle component
UGSuM47b 14 215-270 Mixed
23 CA161416  UGSUMS50 (TO14 CDS CTACTGCCGAG GGAAAAGTTTG Hypothetical 58 1 16 94-188 Step-wise 0.80
GAAAGATCG TGGCAAGGA protein
24 CA228375 UGSuM73a  (CGO)8 5'UTRs CTTTCAACCTC ACTAGAAGACT 40 S ribosomal 55 2 13 101-186  Mixed 0.82
TACACCTCCAC GAGAAGAACCAGT protein S11
UGSuM73b 5 354-375 Step-wise
25 CA261182  UGSuM74 (ACA)8 CDS TCAGCAGCTGT CGTCTCTTTIG Transcription 55 1 18 190-271 Step-wise 081
GAAGTTTCATT GGTTTCATCTC regulator protein
26 CA219230  UGSuM75a  (TA)12 CDS TTGTGCTGATGT CAAGAGAAGA Patatin-like protein 55 2 13 94-176 Step-wise 0.83
TTCCTGCT TGCCATTAGCC
UGSuM75b 4 333-351 Step-wise
27 CA093071  UGSuM96a  (AT)11 CDS TCAAACCAGGA GGTAGTGCCAT Putative apyrase 57 2 M 205290  Mixed 0381
TCTAAGCTCAC TGAGGTTGC
UGSuM96b 5 408-458 Step-wise
28 CA229840 UGSuM97a  (GA)1 5'UTRs GCGAGAGAGAT AGGTGCCGT Glycine 56 2 19 240-334  Step-wise 0.85
AGAGGGAGAGA TCATGAGGTAGT decarboxylase
UGSuM97b 2 453-469  Step-wise
29  CA112979  UGSuM149a (AGQ)7 CDS GTTCAATCAAAT AGCTTGGTCAG Ubiquitin-specific 60 2 4 104-141 Mixed 078
CccrcrccTc CTCCTCATCGTT protease 4 (UBP4)
UGSuM149b 3 276-297 Step-wise
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Table 2 Evaluation of the amplification efficiency and polymorphic potential of 47 fluorescent dye labeled primers (Continued)

30  CA116368  UGSuM150a (GGC)7 CDS ACACTGACCGAT  ATCAACGTGGA hAT family 60 2 12 90-167 Mixed 0.76
GGATCCTCTT CCAGATCTTCTT dimerisation
domain protein
UGSuM150b 2 279-291 Step-wise
31 CA280782 UGSuM177a (TGO)7 CDS GGTGCTGTCC GCCCTTGTTT Hypothetical 55 2 3 150-167  Mixed 0.79
CTATCACTAC CTTTGTCTACT protein
UGSuM177b 3 287-314  Step-wise
32 CA291445 UGSuM178  (GAQ)7 5'UTRs GGACTACTAC ACCTTGCTTAC O-diphenol-O- 54 1 15 100-196  Step-wise 0.80
GACTACTGCGA ATCTTCCTCT methy! transferase
33 CA244023 UGSuM186  (AG)10 cDs AACATTTCGGC GGTCTTTCTTG Ubiquitin C-terminal 56 1 4 190-232 Step-wise 0.73
ATTTGAAGC GGGATCTCTC hydrolase
34 CA231668 UGSuM187a (CN)10 CDS CAACAATTGTC TTTGCTTACCC ATP synthase 58 2 10 200-264  Step-wise 0.83
GAAGCCTCTC CCTGTTGAC
UGSuM187b 6 376-418  Step-wise
35 AY596560  UGSuM188  (GA)10 3'UTRs CCCAAGCGA TCTTCTTTCCT Hypothetical 55 1 19 95-186 Mixed 081
GCTAGAGAGAG TCGCACAGC protein
36 CA241232  UGSuM189a (CT)10 CDS CCGCGACTCT GTTCTTCTCGGCGTTCCTC  Auxin-regulated 55 2 15 106-200 Step-wise 0.80
ccrcrcrcr protein
UGSuM189b 3 345-377  Step-wise
37 CA133642 UGSuM196a (AAAG)5  5'UTRs GCTACTATGG ATGAAGAGA Cinnamoy! CoA 54 2 18 90-181 Mixed 081
ACAACAGGG CGAGACGAAGA reductase
UGSuM196b 2 373-393  Step-wise
38  CA134472  UGSuM197  (GA)10 3'UTRs GAAGGAGCAG GATTTGCCGTC Epsin N-terminal 56 1 22 200-290 Step-wise 0.84
CAGCGCCAGT CTAGGGTTT homology domain
39 CA297648  UGSuM343a (CAG)6 5'UTRs ACTCCTCCTC TCTTGTTGTAG SOUL heme- 62 2 17 250-320  Mixed 0.87
CTCGCCGT TAGCCCTTGT binding family
protein
UGSuM343b 3 438-450 Step-wise
40 CA300679  UGSuM344  (CTO6 CDS CTATCCTCTT TCCGCACCTC Nucleoside 55 1 1 260 Step-wise 00
GTTGGGTCCT CGTTCACC diphosphate kinase
protein
41 CA084691  UGSuM345  (TO)8 (@) TATACAAGAATGA  AAGCATACTCCCT DC1 domain- 55 1 2 210-220  Step-wise 0.70
AAGGTGAGAGA CTATCTCTATG containing protein
42 CA093455 UGSuM346  (AG)8 CDs TATACGTAGTAGTG  CTCCTTCGTCCAG DNA-binding 60 1 4 150-180  Step-wise 0.71
ATGATGACCG TACCAGTAG protein DF1
43 CA110745 UGSuM347a (CT)8 5'UTRs TCTGGCTTTATCG ~ GAGCCTCGTTTG Expressed protein 55 2 5 230-254  Step-wise 0.74
TAACTTGTAT GGTGGCTTTC
UGSuM347b 1 365 -
44 CA112979  UGSuM348  (CG)8 (@) CTACCTCCTCGT AACAAGGAATAT Unknown protein 61 1 2 240-261 Mixed 00
crccreccrcT GGTCCCTGAG
45  CA116458  UGSuM349a (TC)8 CDs CAAGATGTACCC ~ TGCTATACTAGC Unknown protein 55 2 3 220-236  Step-wise 073
GGACATGGCT TATCTCCTTCCT
UGSuM349b 2 385-395 Step-wise
46 CA123971  UGSuM464  (ACA)S 5'UTRs GGCTACTTCA TCTACGCATCA SNF2-domain- 55 1 1 220-232  Step-wise 0.0
GACACGCA ACCTCTCA containing protein
47 CA125310  UGSuM465  (GCA)5 CDS GCTAACCAA AGGAGATTGAC Transducin family 53 1 2 260-279  Mixed 00
CATCAGCAGT GAAGAAGAAG protein

AUGSUM stands for unigene derived sugarcane microsatellite primers as indicated in the Additional file 3

BPolymorphic (P) and Monomorphic (M)
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species, related genera, tropical and sub-tropical Indian
sugarcane varieties and five cereal species (Table 2).
This included 21 (95.5%, mean PIC of 0.81) amplifying
dinucleotide repeats, 16 (84.2%, PIC of 0.73) trinucleo-
tide repeats, two (100%, PIC of 0.87) tetranucleotide
repeats, two (100%, PIC of 0.86) pentanucleotide repeats
and two (100%, PIC of 0.83) amplifying hexanucleotide
repeats. All the 38 (100%, mean PIC of 0.82) primers
that targeted amplification of class I repeats and five
(55.6%, PIC of 0.55) of the nine that targeted class II
repeats showed polymorphism among Saccharum spe-
cies, genera, varieties and cereal species. The microsatel-
lites in the 5 and 3’UTR sequences showed higher
potential for polymorphism (15 out of 16, 94%, mean
PIC of 0.83) as compared to that from the coding
regions (28 out of 31, 90%, mean PIC of 0.77).

Due to high polyploidy and heterozygosity of the Sac-
charum genome, most (28, 65.1%) of the primers ampli-
fied two to three different loci (each locus being
designated as an UGMS marker) yielding a total of 60
loci with the number of alleles per locus ranging from 2
to 22 and the allele size varying from 82 to 408 bp
across sugarcane species, genera and varieties (Figure 2)
as well as five cereal species. The remaining 15 (34.9%)
primers gave single locus amplification (Table 2) with 1
to 23 alleles each. Overall, the 43 polymorphic primers
amplified an average of 7.42 alleles per UGMS marker
locus with a total of 722 alleles across 74 loci. Forty-two
(73 UGMS marker loci with 720 alleles, 97.7% poly-
morphic, mean PIC of 0.81) of the 43 informative pri-
mers revealed polymorphism between sugarcane species
and related genera, whereas 37 (66 UGMS marker loci
with 678 alleles, 86% polymorphic, PIC of 0.74) primers
detected polymorphism among the Indian commercial
sugarcane varieties (Figure 3). Twenty-six (34.7%) of the
75 UGMS marker loci showed heterozygosity in differ-
ent genotypes used. Maximum heterozygous loci was
detected in five sugarcane species (14, 18.7%) followed
by commercial varieties (9, 12%) and minimum (4, 5.3%)
in the three related genera and five cereal species.

Molecular basis of UGMS polymorphism and its functional
significance

Comparison of fragment size (bp) of variant alleles
amplified at 75 polymorphic UGMS loci with changes in
number of repeats among Saccharum complex, varieties
and five cereal species revealed purely step-wise allelic
distribution for 51 (68%) loci, while remaining 24 (32%)
loci showed mixed type of allele size distribution (Figure
2). To elucidate the distribution pattern of UGMS alleles
showing fragment length polymorphism, 10 amplified
size variant alleles each of two microsatellite primers
namely, UGSuM2 and UGSuM27 showing both step-
wise and mixed type of allele distribution were

Page 7 of 19

sequenced. High quality sequence alignment revealed
that the size variant alleles showing step-wise distribu-
tion contained the expected microsatellite repeat
sequences with conserved primer binding sites, but cor-
responded exactly to the step-wise multiples of the
number of repeat units. The size variation of sequenced
alleles was explained by differences in the number of
repeat units. Mixed type of allele distribution resulted
from both variation in the number of repeat-units and
insertions/deletions in the sequences flanking the
UGMS repeats. For instance, UGSuM?2 (Figure 4A) and
UGSuM27 (Figure 4B) showing both step-wise and
mixed type allele size distribution had the expected
(AT), and (GGC), UGMS motifs, respectively with vary-
ing number of repeat-units in different sugarcane spe-
cies, genera, varieties and cereals along with a small
stretch of nucleotide insertion/deletion in the flanking
regions of target microsatellites.

In order to assess the functional significance of the
UGMS, gene ontology classification of 767 unigenes car-
rying perfect and compound microsatellites was carried
out. Six hundred seventy-two (87.6%) of these (see
Additional files 3 and 4) could be functionally annotated
and were shown to encode enzymes for sugar metabo-
lism (39%), structural proteins (26%), transcription and
translation factors (18%), signal transduction pathway
proteins (8%), cell growth and development factors (5%)
and disease resistance proteins (4%) (see Additional file
7). Three hundred sixty-four (54.2%) of 672 unigenes
contained microsatellite repeats in 89 different func-
tional domains of proteins encoded by these unigenes
(see Additional file 8) which included cytochrome b/c
oxidase, chlorophyll A/B binding, FAD and ubiquitin
binding, sucrose synthase, alpha-amylase, acetyl COA,
aldehyde dehydrogenase, glyceraldehyde-3-phosphate,
lipase, S-adenosylmethionine, leucine rich repeat (LRR),
ferritin, protein kinase, chitinase, basic leucine zipper
(bZIP), zinc finger, TATA box, Myb and WRKY DNA
binding domains (Figure 5). Fifteen primers designed
from 15 different unigenes targeting such functional
domains (see Additional file 9) that gave single locus
amplification and step-wise allele distribution (Table 2)
were selected for validation. All of these primers gave
fragment length polymorphism among Saccharum com-
plex, varieties and five cereals based on variation in the
number of UGMS repeat-units within the functional
domains.

One of these primers (UGSuM26) showing polymorph-
ism targeted the amylase catalytic domain of B-amylase
(Figure 6). To understand the possible biological signifi-
cance of the variable UGMS repeat in the amylase
domain, the structure predicted from the aminoacid
sequences of the functional domain was analyzed in
silico. It revealed variation in the active binding site
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Figure 2 Different UGMS allele types detected by automated fragment analysis. Distribution of various allele types detected in Saccharum
species, genera, commercial varieties and five cereal species using the automated fragment analysis. A, C, D, F and H: Multiple alleles in a single
locus showing step-wise distribution, B, G and I: Multiple alleles in a single locus showing mixed distribution, E: Single allele in a unique locus,
and J: Multiple loci showing both stepwise and mixed distribution in different loci.

involved in formation of the Ca** ligand complexes due
to the presence of variable number of repeats encoding
Leucine-Serine aminoacid residues (Figure 6). This
would most likely alter the function of amylase gene in
respect of carbohydrate metabolism in sugarcane. Simi-
larly, the expansion/contraction of microsatellite motifs
(AG), encoding Arginine-Glutamine aminoacid residues
was observed in the protein kinase functional domain of
another sugarcane unigene which was amplified by the
primer UGSuM17. In silico analysis suggested a novel
secondary protein structure and catalytic domain bind-
ing site in the variant form that was different from the
native form which contained (AG);g microsatellite
repeats (see Additional file 10).

Assessment of functional genetic diversity
The pair-wise similarity among 36 genotypes belonging
to Saccharum species, related genera and 28 tropical

and sub-tropical Indian varieties of sugarcane based on
43 fluorescent dye labeled polymorphic primers revealed
a broad range from 0.12 to 0.91 with an average of 0.32
similarity index. The similarity among the sugarcane
species varied from 0.24 (IJ-76-3-1-9 and 1151) to 0.88
(IJ-76-3-1-9 and IM-76-256) with an average of 0.36.
Among the species, S. officinarum showed maximum
similarity (0.88) with S. robustum followed by S. barberi
with S. sinense (similarity of 0.82). S. spontaneum was
most divergent from the rest of the Saccharum species.
The similarity of the three genera of sugarcane,
namely, Erianthus, Narenga and Sclerostachya with the
sugarcane species varied from 0.22 to 0.90. Erianthus
had the least similarity with the Saccharum species.
Similarity among the 28 Indian tropical and sub-tropical
sugarcane varieties varied from 0.33 (Bo 91 and Co
8021) to 0.84 (Co 8371 and Co 8021) with an average of
0.40. The pair-wise similarity between the sugarcane
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Figure 3 Fragment length polymorphism detected among Indian sugarcane varieties using fluorescent dye labeled primers. Allelic
variation in a representative set of 14 commercial Indian tropical and sub-tropical sugarcane varieties. Fourteen alleles were amplified by a class |
UGMS marker (UGSuM17) designed from the unigene encoding Abcisic acid inducible protein kinase that contained (AG),g repeat-motif. The
amplicons generated by the fluorescent dye labeled primers were resolved in MegaBACE automated DNA sequencer and analyzed in Fragment
Profiler software. Fragment size (bp) and average peak height for all the amplified alleles are indicated.

species and varieties varied from 0.20 to 0.78 with aver-
age of 0.35, while between the three related genera and
varieties, it ranged from 0.13 to 0.80 with an average of
0.24. The average similarity between the sub-tropical
and tropical varieties (0.40) was slightly lower than the
average pair-wise similarity measures within the
sub-tropical (0.47) and tropical varietal groups (0.43).

The genetic relationship among the Saccharum spe-
cies, related genera, and tropical and sub-tropical vari-
eties is depicted in Figure 7. The UGMS markers clearly
discriminated all the 36 genotypes from each other and
resulted in a definitive grouping among different genera
and species of Saccharum with high bootstrap values
(81 to 100) that corresponded well with their known
pedigree relationships. All the clones of five Saccharum
species were included in the major cluster I in which S.
officinarum and S. robustum clones were sub-clustered
(Ia) with 98% occurrence in boot strap analysis; S. bar-
beri and S. sinense clones grouped together in a separate
sub-cluster (Ib) with 100% occurrence and S. sponta-
neum grouped distinctly from these sub-clusters with
92% occurrence. The three related genera of Saccharum
being highly divergent from the Saccharum species and
varieties, grouped in a separate cluster (III) with 98%
occurrence.

All the tropical and sub-tropical varieties were
included in a distinct and separate cluster (II) with
seven distinct sub-clusters (Figure 7) with high (88)
bootstrap value. The tropical variety Co 62175 grouped
in a major sub-cluster Ila with its tropical male parent
Co 419 (similarity 0.71) with a bootstrap value of 99%.
In this sub-cluster (IIa), the other tropical varieties
namely, Co 8021, Co 8371, Co 7704 and Co 6304 were
also grouped together with average similarity of 0.77
(supported by 93% occurrences in bootstrap) possibly
because of their common ancestry involving Co 419.
The two sub-tropical varieties, Co 8347 and Co 87263,
and three other sub-tropical varieties, CoPant 84211, Co
89003 and Co 7717, in spite of having a common ances-
tor Co 775, were included in two distantly placed major
sub-clusters; IIb and IIg, respectively. It could be due to
inclusion of two diverse sub-tropical varieties, Co 87268
and CoLk 8102 having common parent Black Cheribon
within the sub-cluster IIb. Similarly, the clustering of
two tropical varieties namely, CoC 671 and Co 87025 in
the sub-cluster IIc with average similarity of 0.69 (sup-
ported by 100% occurrences) and five tropical varieties,
Co 7219, Co 740, Co 86010, Co 86032 and Co 85002
together in another separate large sub-cluster (IIf)
with average similarity of 0.64 (supported by 92%



Parida et al. BMC Plant Biology 2010, 10:251 Page 10 of 19
http://www.biomedcentral.com/1471-2229/10/251

10 20 30 40 50 60 70 80
wil i Dot | eases Pavaasllivmay. s du.a ] e Db o Lo Pheanandfassnd Fossm 1. onailas, s e 0
Barley & Wheat_206 bp 1 CTGTGTATATGTTCGTAGTTTGTATGCCAGAAT TCTTTCTGTATCAGT TTTTCAGAAACGATTTGCCTTGGGCATATATA 80
. officinarum 224 bp 1 ICTGTGTATATGTTCGTAGT TTGTATGCCAGAATTCTTTCTGTATCAGTTTTTCAGAAACGATTTGCCTTGGGCATATATA( 80
s. robustum & Sorghum_212 bp 1  [CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGTTTTTCAGAAACGATTTGCCTTGGGCATATATA| 80
S. barberi & S. sinense_218 bp 1 [CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGTTTTTCAGAAACGATTTGCCTTGGGCATATATA| 80
S. spontaneum & Erianthus_226 1 CTGTGTATATGTTCGTAGT TTGTATGCCAGAAT TCTTTCTGTATCAGT TTTTCAGAAACGATTTGCCTTGGGCATATATA| 80
Co 87268 & CoLk 8102_232 bp 1 CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGT TTTTCAGAAACGATTTGCCTTGGGCATATATA 80
Co 86010_244 bp 1 CTGTGTATATGTTCGTAGT TTGTATGCCAGAATTCTTTCTGTATCAGTTTTTCAGAAACGATTTGCCTTGGGCATATATA( 80
Co 8021 & Co 8371_281 1  [CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGT' CGATTTGCCTTGGGCATATATA| 75
Co 85002 & Co 86032_290 bp 1  [CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGT' CGATTTGCCTTGGGCATATATA| 76
Bo91_311 bp 1 CTGTGTATATGTTCGTAGTTTGTATGCCAGAATTCTTTCTGTATCAGT CGATTTGCCTTGGGCATATATA| 75
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s. officinarum 224 bp 81 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 160
S. robustum & Sorghum_ 212 bp 81 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATAT 148
S. barberi & S. sinense 218 bp &1 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATAT! 154
S. spontaneum & Erianthus_226 381 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 160
Co 87268 & ColLk 8102_232 bp 81 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 160
Co 86010_244 bp 81 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 160
Co 8021 & Co 8371_281 bp 76 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 155
Co 85002 & Co 86032_290 bp 27 TA TATAT. ATATATATATATATATATATATATATATATATATATATATATATATATA| 156
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s. officinarum_224 bp 160 160
S. robustum & Sorghum_212 bp 148 148
S. barberi & S. sinense_218 bp 154 154
S. spontaneum & Erianthus_226 161 [ 162
Co 87268 & Colk 8102_232 bp 161 [TATATAT. 168
Co 86010_244 bp 161 [TATATATATATATATATATI 180
Co 8021 & Co 8371_281 bp 156 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA’ 216
Co 85002 & Co 86032_290 bp 157 [MATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA' 225
Bo91_311 bp 156 [TATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATATA| 235
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" L ooy DNCTEps (SRmwiny pmnnN. (Sneon GUECIGRE Sumuvng NSNS gommo pOTI. mpLwen mepom, DoGnon. erres W
Barley & Wheat_206 bp 142 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 206
~ folclnar\m 224 bp 160 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 224
S. robustum & Sorghum 212 bp 148 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 212
S. barberi & S. sinense_218 bp 154 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 218
S. spontaneum & Erianthus_226 162 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 226
Co 87268 & CoLk 8102_232 bp 168 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 232
Co 86010_244 bp 180 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCETGTCGTGAGAGTGTGACTAAGTE 244
Co 8021 & Co 8371_281 bp 216 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 281
Co 85002 & Co 86032_290 bp 225 CATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTGE 290

Bo91_311 bp 236 [TATATATATATACATTCAGCGGCACGTGGAGACAGCCGGCCATCACTGTCTCCGTGTGTGAGAGTGTGACTAAGTG 311
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S. barberi & S. sinense 173 bp 1 |CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT) 80
S. spontaneum & Narenga 161 bp 1 CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT] 80
Erianthus & Schlerostachya 179 1  (CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT) &0
Co 419 & Co 62175_174 bp 1 CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT] 80
Co 1148 & Co 8436_158 bp 1 CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT] 80
Co 89003 & Co 7717_154 bp 1 CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT] 80
CoPant84212_205 bp 1 CTGCAGTACGGTCCGGAATCCCGGGTCGATCCACGCGTCCGCCCTTTCGCCCACACGACAGCACCGCAGCCGGAGGAGGT] 30
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Rice, Barley & Wheat_179 bp 81 GGCGGCGGCGGCGGCEGCGECGECGECGECGGCGEL! 139
Maize, Sorghum, S. officinarum 381 GGCGGCGGCGGLGGCGECGGCGGCGGCGGL! 131
S. barberi & S. sinense_173 bp 81 GGCGGCGGCGGCGGCGGCGGCGGECGGCGGLGGL 136
S. spontaneum & Narenga_161 bp 81 GGCGGCGGCGGCGGCGGCGGCGGCGGL! 128
Erianthus & Schlerostachya 179 31 GGCGGCGGCGGLCGGCGGCGGCGGCGGCGECGGLCGGCGGLGG! 142
Co 419 & Co 62175_174 bp 81 GGCGGCGGCGGCGGCGECGGCGECGECGGECGGL 136
Co 1148 & Co 8436_158 bp 81 GGCGGCGGCGGCGGCEGCGGCGGL! 125
Co 89003 & Co 7717_154 bp 81 GGCGGCGGCGGCGGCGGT 119
CoPant84212_205 bp 81 GGCGGCEGCGGELGGECEECEECEECEECEECEECEECEECGECEECEECEECEECEECEECGECAGCGGCAGT 160
Bo91_220 bp 81 GGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGECGGLCGECGGLGGECGGCGGCGGCGGCAGCGGCAGL! 160
(GGO)y
170 180 190 200 210 220

Y [Tt VAU (W) | ST (U | P [ || (— | — ——
AAACCGTGGAAGCTAGAGCCATGGTGGTAG 179
AAACCGTGGAAGCTAGAGCCATGGTGGTAQ 166
RAACCGTGGAAGCTAGAGCCATGGTGGTAQ 173
CCGTGGAAGCTAGAGCCATGGTGGTAG 161

Rice, Barley & Wheat 179 bp 140

Maize, Sorghum, S. officinarum 132
S. barberi & S. sinense_173 bp 137
S. spontaneum & Narenga 161 bp 129 CTA

Erianthus & Schlerostachya 179 143 CTAGGC! CCGTGGAAGCTAGAGCCATGGTGGTAQ 179
Co 419 & Co 62175_174 bp 137 CTAGGC CCGTGGAAGCTAGAGCCATGGTGGTAG 174
Co 1148 & Co 8436_158 bp 126 CTA CCGTGGAAGCTAGAGCCATGGTGGTAQ 158
Co 89003 & Co 7717_154 bp 120 ICTA CCGTGGAAGCTAGAGCCATGGTGGTAQ 154
CoPant84212_205 bp 161 CTAGGCGATGCGA' CCGTGGAAGCTAGAGCCATGGTGGTA] 205

Bo91_ 220 bp 161 CTAGGCGATGCGATGCGATGCGATGCGATGAAACCGTGGAAGCTAGAGCCATGGTGGTA] 220

Figure 4 DNA sequence alignment depicting the molecular basis of UGMS fragment length polymorphism among Saccharum
complex, varieties and five cereals. Multiple sequence alignment of 10 size variant alleles showing both stepwise and mixed distributions
amplified from sugarcane species, genera, varieties and five cereals for the two UGMS marker loci namely, UGSuM2 (A) and UGSuM27 (B).
Variation in the number of repeats of (AT), and (GGC), microsatellite motifs at UGSuM2 and UGSuM27 loci, respectively and additional
nucleotide insertions/deletions in the flanking sequences of the repeats are highlighted.
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Figure 5 Functional annotation of unigenes carrying microsatellites in their functional domains. Functional annotation of 364 unigenes
carrying microsatellites in the functional domains of encoded proteins. These unigenes corresponded maximum (47.7%) to the domains
responsible for photosynthesis (cytochrome b/c and chlorophyll A/B binding domains) and carbohydrate metabolism (sucrose synthase and
alpha amylase domains) followed by transcription factor associated basic leucine zipper, zinc finger, TATA box, Myb and WRKY DNA binding

domains (22%), and minimum to the abiotic and biotic stress related leucine rich repeat, protein kinase and chitinase domains (5%).

occurrences) was observed even though they had one
common distant progenitor parent Black Cheribon. The
grouping of sub-tropical varieties namely, Co 1148, CoS
8436 and CoPant 84212 in cluster IId with an average
similarity of 0.70 (88% occurrences in bootstrap) was
clearly influenced by a common ancestry involving Co
1148. The sub-tropical varieties, CoJ 64, Co 1158 and
CoS 88230 included in the cluster Ile had common pro-
genitor parent Po] 2878 that could have influenced their
clustering with a high bootstrap value (94.3%).

Discussion

Unigene resources representing the transcriptome of an
organism provide opportunities to understand the
sequence organization in the genic regions of complex
polylploids and allow design of sequence based robust
markers for various genotyping applications. Consider-
ing the availability of a large unigene database of sugar-
cane in public domain, this resource was studied for the
presence and functional relevance of different microsa-
tellite repeats. The frequency of microsatellites in sugar-
cane unigenes (1/10.9 kb) was lower than that obtained
in rice, Sorghum, barley and maize (1/3.6 kb, 1/5.9 kb,

1/8.9 kb and 1/9 kb, respectively) but similar to wheat
(1/10.6 kb). In polyploids, extensive loss of duplicated
genes and chromosomal rearrangement after polyploidi-
zation possibly have resulted in shortening and loss of
microsatellite repeat-motifs from the genic coding
sequences leading to dosage compensation, developmen-
tal stability and functional plasticity [16,17]. It would be
of interest to explore the mechanism that restricts
repeat expansion in genic regions of wheat and sugar-
cane leading to lower microsatellite frequency in these
species.

The observed frequency of the mononucleotides (12%)
in sugarcane was much less than that reported earlier
[18] in the unigenes of maize (75.8%), wheat (71%), bar-
ley (42.4%) and rice (41.6%), but similar to Sorghum
(13%). This suggested a lack of correspondence with
genome size and ploidy. The presence of longer (69
bases or more) A/T mononucleotide repeat-motifs in
sugarcane is comparable to earlier observations on the
nature and the frequency of such repeats in the genomic
and EST sequences of cereals [19]. The abundance of
trinucleotide microsatellite motifs in the sugarcane uni-
genes is consistent with the earlier observations based
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on EST sequences of sugarcane [3,5] and unigene
sequences of cereals [18]. The limited expansion of non-
triplet microsatellites in the unigenes of sugarcane could
be due to selection against frameshift mutations in the
coding regions resulting from length changes in non-tri-
plet repeats. We observed that more than 50% of the
identified trinucleotide repeat motifs in sugarcane were
GC-rich, possibly due to their high GC content [3,5]
and consequent usage bias in the coding sequences [20].
The abundance of GC-rich trinucleotide repeat motifs
coding for small and hydrophilic aminoacid alanine and
GA-rich dinucleotide motifs in sugarcane coding
sequences parallels their abundance in cereal exons [18].
The GA-rich dinucleotide UGMS motifs were observed
particularly in the 5 and 3’ (32%) UTRs with balanced
(46 to 52%) GC content and therefore would support
better amplification as polymorphic markers [21].

The unigenes being longer in higher quality sequences
offer advantages over the EST sequence resources for
the development of microsatellite markers. In the pre-
sent study, 961 (810 perfect and 151 compound) primer-
pairs were designed from the 767 different unigene
sequences carrying microsatellite repeats in the expressed
component of the sugarcane genome. The primers
designed from the unigene sequences flanking the

microsatellite motifs were highly efficient with amplifica-
tion success rate of 94.9% that suggested the utility of the
unigene database in designing sequence based robust
genic markers. The paucity of usable and robust sequence
based markers in sugarcane has been a major limitation in
genetic analysis in this important sugar crop. The UGMS
markers developed by us have been placed in the public
domain and thus would be immediately useful in various
genotyping applications in sugarcane.

For most (87.6%) of the unigene sequences from which
the primers were designed, putative functions have been
predicted. For instance, about 39% and 4% of the primers
were from sequences related to sugar metabolic enzymes
and disease resistance, respectively. Interestingly, 54% of
the microsatellite repeats were present in various func-
tional domains of proteins encoded by the unigenes. Cor-
relation between fragment length polymorphism due to
variable number of UGMS repeat-units in the functional
domains and alteration of the predicted protein structure
and active ligand binding sites suggested functional rele-
vance of the genic microsatellites. The evolutionary and
adaptive advantages of such variable microsatellite repeats
affecting the structure and function of the encoded pro-
teins to generate favorable alleles for relaxation of environ-
mental stress impact under the action of high natural
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selection pressure through modulation of mutation/
recombination in these loci have been reported in many
eukaryotes [22]. For instance, in Saccharomyces cerevisiae,
the expansion and contraction of microsatellite repeats in
the coding regions of protein kinase genes have provided
greater adaptability to various abiotic and biotic stresses
[22]. Sugarcane is a tropical crop. However, varieties
adapted to subtropical condition have been developed in
India. Variation in microsatellites in the coding regions of
these two groups was evident. For example, the tropical
sugarcane varieties Co7219 and Co740 contained (AG);g
microsatellite repeats whereas varieties Co89003 and
Co7717 adapted to sub-tropical condition showed

contraction of AG repeats to (AG),, leading to alteration
of protein structure and possibly function. Understanding
the adaptive significance of such variation is of relevance
that needs further experimentation. Designing of genic
microsatellite markers targeting functional domains in
solanaceous crops like tomato and pepper [23] was
reported. Association of such markers with many traits
including diseases like neuronal disorders [22] and cancers
[24] in humans based on expansion/contraction of
repeated tracts of microsatellites encoding aminoacid resi-
dues in the functional domains of proteins that changes
their secondary structure and function has been demon-
strated. The information generated in this study thus
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Table 3 List of genotypes belonging to five cereal species and Saccharum complex used in the study

Sl. No. Genus and species Clones/varieties Parentage/origin Region of adaptation
1 Hordeum vulgare AK559 Unknown -

2 Triticum aestivum Kalyansona PJ'S" x GB 55 -

3 Oryza sativa IR64 IR5857-33-2-1 X IR-2061-465-1-5-5 -

4 Zea mays KA509 India -

5 Sorghum bicolor Pusa chari6 India -

6 Saccharum officinarum 1J-76-3-1-9 Indonesia -

7 S. barberi Mamjasahe India -

8 S. sinense Malari Unknown -

9 S. robustum IM-76-256 Indonesia -

10 S. spontaneum 1151 India -

11 Narenga NarengaER Unknown -

12 Sclerostachya S1135 Unknown -

13 Erianthus IK76-81 Indonesia -

14 Saccharum spp. Co 1158 Co 421 x Co 419 Sub-tropical
15 Saccharum spp. CoJ 64 Co 976 x Co 617 Sub-tropical
16 Saccharum spp. CoS 88230 Co 1148 x Co 775 Sub-tropical
17 Saccharum spp. Bo 91 Bo 55 X Bo 43 Sub-tropical
18 Saccharum spp. CoS 8436 MS 68/47 x Co 1148 Sub-tropical
19 Saccharum spp. Co 1148 P 4383 x Co 301 Sub-tropical
20 Saccharum spp. CoPant 84212 Co 1148 x Co 775 Sub-tropical
21 Saccharum spp. Co 87268 Bo 91 x Co 62399 Sub-tropical
22 Saccharum spp. Colk 8102 Co 1158 GC Sub-tropical
23 Saccharum spp. Co 7717 Co 419 x Co 775 Sub-tropical
24 Saccharum spp. Co 87263 Co 312 x Co 6806 Sub-tropical
25 Saccharum spp. Co 89003 Co 7314 x Co 775 Sub-tropical
26 Saccharum spp. CoPant 84211 Co 6806 x Co 6912 Sub-tropical
27 Saccharum spp. Co 8347 Co 419 x CoC 671 Sub-tropical
28 Saccharum spp. Co 7219 Co 449 x Co 658 Tropical

29 Saccharum spp. Co 740 P 3247 x P 4775 Tropical

30 Saccharum spp. Co 86010 Co 740 x Co 7409 Tropical

31 Saccharum spp. Co 86032 Co 62198 x CoC 671 Tropical

32 Saccharum spp. Co 85002 Co 62198 X (-) Tropical

33 Saccharum spp. Co 8021 Co 740 x Co 6806 Tropical

34 Saccharum spp. Co 8371 Co 740 x Co 6806 Tropical

35 Saccharum spp. Co 6304 Co 419 x Co 453 Tropical

36 Saccharum spp. Co 419 PoJ 2878 x Co 290 Tropical

37 Saccharum spp. Co 62175 Co 951 x Co 419 Tropical

38 Saccharum spp. Co 7704 Co 740 x Co 6806 Tropical

39 Saccharum spp. Co 86249 CoJ 64 x CoA 7601 Tropical

40 Saccharum spp. CoC 671 Q63 x Co 775 Tropical

41 Saccharum spp. Co 87025 Co 7704 x Co 62198 Tropical

would allow selection of candidate gene-based markers for
rapidly establishing marker-trait linkages in sugarcane.
The efficiency of sugarcane UGMS markers to detect
polymorphism within Saccharum complex and among
five cereals was evaluated in silico that was further

validated experimentally. In silico polymorphism based
on variation in length of the UGMS repeat among S. offi-
cinarum and each of five cereal species could be due to
divergent microsatellite evolution in these lineages [25].
The actual level of polymorphism detected by automated
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fragment analysis using fluorescent dye labeled primers
was much higher than that based on in silico analysis.
The expected relationship in evolution was reflected by
actual polymorphism observed between sugarcane and
cereals. With the use of automated fragment analysis sys-
tem, all the allelic variants could be captured efficiently
in a set of 36 sugarcane genotypes and five cereal species,
thereby providing a platform for rapid, automated and
large-scale genotyping of sugarcane. Further, the allele
size information generated would enable multiplexing of
the UGMS markers, thus making them useful in various
high-throughput genotyping applications. The observed
polymorphism (97.7%) among the members of the Sac-
charum species and related genera is higher than that
estimated earlier using the fluorescent dye labeled sugar-
cane genomic (90%, [2]) and EST derived microsatellite
markers (81%, [3]). The higher potential of UGMS mar-
kers particularly the longer class I di- and tetra-nucleo-
tide repeat-motifs to detect polymorphism as compared
to the class I trinucleotide and class II motifs reflected
correspondence between the type and length of repeats,
and the level of polymorphism as observed earlier in
sugarcane [4] and rice [21,26]. Higher polymorphic
potential of UGMS markers derived from the UTRs than
that from the conserved coding sequences, which are
constrained by purifying selection [25,27] suggested the
utility of unigenes having such repeat-motifs as a source
of polymorphic microsatellite markers.

The level of inter-varietal polymorphism (86%, mean
PIC of 0.74) detected by the fluorescent dye labeled pri-
mers was higher than the level reported previously with
the labeled sugarcane EST derived (38%, PIC of 0.23,
[3]) microsatellite markers. The discrepancies could be
due to use of different sets of markers and genotypes.
However, genotyping using the automated fragment
analysis system in this study revealed comparable level
of polymorphism with the genic and genomic microsa-
tellite markers in sugarcane. It suggested that the genic
microsatellite markers developed in this study would be
highly informative and useful in sugarcane genetics,
genomics and breeding.

Unigene sequences usually have advantages of unique
identity and position in the transcribed regions of the
genome. If this is the case then primers designed from
the unigene sequences flanking the microsatellite repeats
should amplify unique single locus. In contrast, in the
present study, multiple loci and thus amplification of
multiple sequences of the same gene was observed for
28 (65.1%) of the 43 primers designed from different
microsatellite carrying unigenes. This is possibly due to
poor representation of unigene sequences in the data-
base that was scanned for microsatellite repeats. Alter-
natively, all the copies of a microsatellite carrying gene
that are PCR amplified might not be transcribed due to
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dosage compensation leading to silencing of all but one
copy in the large polyploid sugarcane genome [16,28].
In spite of high polyploidy and heterozygosity of the
sugarcane genome, 15 (34.9%) of the 43 polymorphic
UGMS primers amplified a single discrete locus with
step-wise allele distribution and showed fragment length
polymorphism across the members of Saccharum com-
plex and varieties in an automated fragment analysis
system. This could be due to polyploidization followed
by selective gene loss [29,16,28] resulting in retention of
a single copy during evolution of Saccharum. Gene
ontology analysis of these 14 unigenes showed corre-
spondence with the genes coding for basic metabolic
process of energy generation, degradation of cellular
building blocks, DNA recombination and repair proteins
which played a vital role in plant biology and thus
remained as single copy without alteration.

Distribution pattern of size variant alleles amplified at
UGMS loci showed higher proportionate (68%) distribu-
tion of alleles showing step-wise mutation than that of
mixed allele distribution (32%). High-quality sequence
alignment of the size variant alleles showing both step-
wise and mixed distributions confirmed the presence of
variable number of repeat-units in different amplified
alleles and additional insertions/deletions in the flanking
regions of microsatellite repeat-motifs, which contribu-
ted to the UGMS fragment length polymorphism
observed in the Saccharum complex, varieties and cereal
species. Such complex pattern of allele distribution and
fragment length polymorphism at microsatellite loci due
to variation in the copy number of microsatellite repeats
and insertions/deletions in the flanking sequences of
microsatellite motifs have been observed earlier in spe-
cies like maize with a large genome size [30].

It is important to evaluate molecular diversity existing
among the members of the Saccharum species and
related genera, since major varietal improvement in
sugarcane was through inter-specific hybridization. Use
of S. spontaneum and Erianthus is vital since they carry
many traits of agricultural importance including toler-
ance to biotic and abiotic stresses [14]. Identification of
true inter-specific and inter-generic hybrids is crucial for
successful transfer of the target traits. Besides, monitor-
ing of introgression is required to verify the transfer of
the target genomic regions from the wild relatives to the
cultivated genetic backgrounds. 97.7% of markers
revealed inter-specific and inter-generic polymorphism
and thus would enable precise identification of inter-
specific and inter-generic hybrids, and also provide
opportunities to assess transfer of genic regions to desir-
able genetic backgrounds, thereby offering advantages
over the random markers such as RAPD and AFLP.

Evaluation of molecular diversity in a set of 28 commer-
cial Indian tropical and sub-tropical sugarcane varieties
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using unigene based genic microsatellite markers revealed
a wider range (0.33 to 0.84 with an average of 0.40) of
genetic similarity than the level detected previously with
RAPD (0.59 to 0.81 with average of 0.71, [12]), maize
microsatellite (0.40 to 0.73 with average of 0.64, [13]),
sugarcane genomic microsatellite (0.39 to 0.82 with aver-
age of 0.53, [4]) and AFLP (0.52 to 0.83 with average of
0.62, [14]) markers. Hence, high efficiency of UGMS mar-
kers in assaying functional diversity in the transcribed
component of the sugarcane genome makes them valuable
for understanding diversity pattern, and variety identifica-
tion. The commercial Indian sugarcane varieties used in
this study were bred for either tropical or subtropical
agro-climatic conditions with differential contribution of
S. spontaneum, the most variable Saccharum species [14].
The random markers assaying genetic variation largely in
different non-genic genomic regions that contribute to
large genome size [31] would be of little relevance to phe-
notypic selection exercised during variety development. In
contrast, the genic microsatellite markers assaying varia-
tion in the transcribed non-repetitive regions of the gen-
ome might be directly related to the phenotypic variation
[25]. Our results thus suggested that the genetic base of
the Indian sugarcane varieties is not very narrow particu-
larly in the genic regions of the genome, which is most
likely due to selection for wider adaptability of these vari-
eties. The adaptive environment as well as parentage of
these varieties corresponded well with the clustering pat-
tern obtained using a small set of these markers, that
further suggested the usefulness of the designed markers
in realistic assessment of genetic diversity.

Conclusion

The present study identified microsatellites in sugarcane
unigenes and assessed their functional relevance. A total
of 961 primer-pairs were designed targeting 767 different
unigenes carrying microsatellite repeats in the expressed
component of the sugarcane genome, which would
extend the accessibility of such microsatellite markers to
researchers for many genetic studies in sugarcane. Precise
allele sizing in automated fragment analysis system has
encouraging implications to various high-throughput
genotyping applications in sugarcane. Assessment of
functional genetic diversity revealed that the genetic base
of the Indian sugarcane varieties is not narrow.

Methods

Mining of microsatellites in the unigenes of sugarcane
and assessment of their functional relevance

Fifteen thousand five hundred ninty-four sugarcane
(Saccharum sp.) unigenes (Build 13.0, 19" Feb’ 2008)
comprising of 9.17 million base sequences were acquired
in FASTA format from the recent NCBI FTP UniGene
repository database of S. officinarum [32] in batches and
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searched for microsatellites using a perl scripting lan-
guage based program MISA (MlcroSAtellite) [33] con-
sidering complementary sequence of repeat-motifs (like
AG, GA, TC and CT) in the same class [18]. The identi-
fied microsatellites were characterized as perfect (mono-
mers to hexamers repeated up to 100 times without any
interruption), compound (non-interrupting) with at least
two different repeat-motifs without any interruption,
compound (interrupting) with a maximum of 100
nucleotides interposing two microsatellite repeat-motifs,
class I (=20 nucleotides) and class II (12 to 20 nucleo-
tides) types. The microsatellite (excluding monomers)
containing unigenes were used in a batch module for
designing forward and reverse primers employing the
microsatellite primer discovery tool of BatchPrimer3
[34]. All default options except for the optimum and
maximum primer sizes of 22 and 24 nucleotides, respec-
tively, were used. The putative functions for these uni-
genes were determined using NCBI BLASTX search tool
[35] as against the nr-protein database. The BLASTX
output was annotated into four functional categories viz,
exact, putative, unknown and hypothetical, and then
extracted to Excel sheets. Different structural compo-
nents namely, coding and untranslated regions (5"UTRs
and 3'UTRs) in the unigene sequences was determined
using the software tools FGENESH [36] and UTRScan
[37], respectively. The aminoacid sequences encoded by
the predicted coding nucleotide regions of the microsa-
tellite carrying unigenes were analyzed using the soft-
ware Pfam [38] to determine the presence of functional
domain/protein family within the UGMS. The aminoa-
cid sequences of the functional domain carrying micro-
satellites was analyzed further using the I-TASSER
automated web server [39,40] for prediction of three
dimensional protein structure and active binding sites
with ligands. Five different protein models and active
binding sites were predicted at significant cut-off confi-
dence (C = -1.5) and binding site (BS = 0.5) scores. The
high quality protein model of correct topology and
protein-ligand complex active binding sites was identi-
fied based on high C- and BS- scores.

Evaluation of polymorphic potential

To assess the amplification success rate of microsatellite
markers designed from sugarcane unigenes, 176 primers
were used to amplify one genotype of S. officinarum.
Forty-seven, including thirty-eight class I and nine class
II markers of these, labeled with 6-carboxyflourescein
(6-FAM) dye phosphoramidites, were used to genotype
one accession each belonging to five Saccharum species
and three related genera, and twenty-eight commercial
Indian tropical and sub-tropical sugarcane varieties
(Table 3) for evaluating their polymorphic potential and
assessment of genetic diversity. Five cereal species
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namely, rice, wheat, maize, Sorghum and barley were
included in the experiment for comparison. Standard
PCR constituents and cycling conditions except for
annealing temperature, which varied from 55°C to 64°C
depending on the primers, were used for PCR amplifica-
tion. The amplified products were purified, mixed with
3.75 pl of MegaBACE formamide loading buffer and
0.25 pl of internal-lane MegaBACE™ET 550-R ROX size
standard, denatured, cooled and resolved in automated
MegaBACE 1000 DNA sequencer (Amersham Bios-
ciences, Piscataway NJ, USA). The electropherogram
containing trace files were analyzed and automated
allele calling was carried out using the Binning Peak
Post Processor tool of MegaBACE™Fragment Profiler
Software Version 1.2 (Amersham Biosciences, Piscat-
away NJ, USA). The actual allele size (bp) was deter-
mined and fragment length polymorphism among the
sugarcane genotypes and cereal species was identified.
The average peak height and peak quality of alleles gen-
erated for all the UGMS loci were graphed and alleles
exhibiting average peak height and quality of > 1500
and > 6.0 fluorescence units [41,42] respectively were
considered for sizing and base-pair estimation. Allele
binning was performed for individual UGMS loci for
precise and accurate allele size determination and discri-
mination of homozygous and heterozygous allele types
[42,43] for each genotype.

Variation in the fragment size (bp) of amplified alleles
at each polymorphic UGMS marker locus was compared
with changes in the number of microsatellite repeat-
units at that target locus, and the occurrence of “step-
wise” and “mixed” type of allele size distribution was
inferred. When the allele size differences strictly corre-
sponded to the variation in the number of repeat-units,
it was considered as stepwise distribution. A mixed
allele distribution was assumed when the allele size dif-
ferences could partly be explained by the stepwise
model. Multiple amplicons obtained by a primer-pair
with peaks > 1500 fluorescence units showing > 100 bp
allele size differences were binned into different loci. To
confirm that the primers amplified the target microsatel-
lite repeat motifs in different species and genera, the
amplified products were purified using Micropon PCR
purification kits (Millipore, Bedford, MA, USA) and
sequenced two times in both forward and reverse direc-
tions using a capillary-based Automated DNA Sequen-
cer (MegaBACE 1000, Amersham Biosciences,
Piscataway NJ, USA). The trace files were base called,
checked for quality and assembled into contigs [44].
The high quality sequences thus obtained were used for
interspecies comparison using CLUSTALW multiple
sequence alignment tool employing BIOEDIT software
[45]. Ten size variant amplicons each of three microsa-
tellite markers (UGSuM2, UGSuM26 and UGSuM27)
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showing both step-wise and mixed type of allele size dis-
tribution in sugarcane species, genera, varieties and cer-
eals were eluted, purified, cloned in pGEM-T Easy
Vector (Promega, USA) and sequenced as described
above.

Assessment of functional genetic diversity

The polymorphic information content (PIC) was calcu-
lated using the formula, PIC = 1- ZPijz [46], where Py is
the frequency of the j*" allele for i™™ locus summed
across all alleles for the locus. Cluster analysis among
the 36 genotypes of Saccharum species, varieties and
related genera was based on Nei and Li similarity coeffi-
cient [47] using the un-weighted pair group method
(UPGMA) in PowerMarker Version 3.0 [48,49] software.
The confidence limits of UPGMA based dendrogram
was determined by 1000 bootstrap replicates and boot-
strap of 50% majority rule consensus unrooted phyloge-
netic tree was constructed.
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