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Abstract

root samples obtained from 24 plants.

Background: Dryas octopetala is a widespread dwarf shrub in alpine and arctic regions that forms ectomycorrhizal
(ECM) symbiotic relationships with fungi. In this study we investigated the fungal communities associated with
roots of D. octopetala in alpine sites in Norway and in the High Arctic on Svalbard, where we aimed to reveal
whether the fungal diversity and species composition varied across the Alpine and Arctic regions. The internal
transcribed spacer (ITS) region of nuclear ribosomal DNA was used to identify the fungal communities from bulk

Results: A total of 137 operational taxonomic units (OTUs) were detected (using 97% similarity cut off during
sequence clustering) and well-known ECM genera such as Cenococcum, Cortinarius, Hebeloma, Inocybe and
Tomentella occurred frequently. There was no decrease in fungal diversity with increasing latitude. The overall
spatial heterogeneity was high, but a weak geographical structuring of the composition of OTUs in the root
systems was observed. Calculated species accumulation curves did not level off.

Conclusions: This study indicates that the diversity of fungi associated with D. octopetala does not decrease in
high latitude arctic regions, which contrasts observations made in a wide spectrum of other organism groups.

A high degree of patchiness was observed across root systems, but the fungal communities were nevertheless
weakly spatially structured. Non-asymptotical species accumulation curves and the occurrence of a high number of
singletons indicated that only a small fraction of the fungal diversity was detected.

Background

The land area covered by arctic and alpine vegetation
makes up roughly 11 million km? an area comparable
to that of boreal forests on the Northern and Southern
Hemisphere. In most areas of the arctic and alpine zone,
less than ten species constitute more than 90% of the
vascular plant biomass [1]. The vast majority of plants
form mycorrhizal relationships, a symbiosis considered
favourable, especially for plants in nutrient-stressed
situations [2]. Mycorrhiza may therefore be particularly
beneficial in arctic ecosystems where low soil moisture
and nutrient availability, low soil and air temperatures,
and a short growing season limit plant growth and
reproduction. It has been estimated that mycorrhizal
fungi supply arctic plants with as much as 61-86% of
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the host plants nitrogen [3]. This implies that mycorrhi-
zal fungi are the main nitrogen providers under the
nitrogen-limited conditions in arctic tundra. Compared
to the low plant diversity in arctic and alpine commu-
nities, the richness and heterogeneity of root-associated
fungal communities is high [4].

Many factors and complex interactions influence the
structure and composition of mycorrhizal communities
[5]. For example, several studies have shown that
mycorrhizal communities may change during ecosys-
tem succession [6-10]. However, few studies have ana-
lysed how root associated fungal communities change
along broader regional gradients, for example along
latitudinal and longitudinal gradients. A widely recog-
nised pattern in plant and animal ecology is the
decrease in biological diversity with increasing altitude
and latitude, but the underlying causes for this gradi-
ent are still poorly understood [e.g., [11-14]]. As
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pinpointed by Allen et al. [15], such patterns are
almost unexplored in mycorrhizal fungi (but see [16]).

Ectomycorrhiza (ECM) is most common on woody
perennial plants. In heath and tundra areas of arctic and
alpine environments the long-lived dwarf shrub Dryas
octopetala (Rosaceae) is of particular ecological signifi-
cance [2,17]. Dryas octopetala have been found to be
associated with many different ECM fruiting bodies
[4,18,19]. Vire et al. [20] revealed by light microscopy
that D. octopetala in western Spitsbergen (Svalbard) was
symbiotic with 15 ECM fungal species. In a recent study
by Ryberg et al. [21], the ECM diversity of D. octopetala
and Salix reticulata in an alpine cliff ecosystem in
northern Sweden was investigated using molecular
methods. This survey documented a species rich fungal
community dominated by Cenococcum geophilum, The-
lephoraceae spp., Cortinarius spp., and Sebacinales spp.
However, despite the ecological significance of fungi in
arctic and alpine habitats, and that the documentation
of fungal diversity in these climatic regions is of great
importance due to global climatic changes, this is a
sparsely investigated field.

The main aims of this study were to characterise the
diversity of the fungal communities associated with roots
of D. octopetala and to analyse the variation and change
in the fungal communities, from alpine areas in the Cen-
tral and Northern parts of Norway to the High Arctic in
Svalbard. The following questions were asked: 1) Does
the diversity of root associated fungi decrease towards
arctic regions, as is the case for many other organism
groups? 2) Is the fungal species composition different in
arctic regions compared to more southern areas?

The fungal diversity was analysed by cloning and
sequencing of ITS fragments from pooled root samples,
and DNA similarity searches against UNITE [22] and
GenBank [23]. In addition, a collection of ITS reference
sequences were obtained from basidiocarps collected
in arctic regions in order to improve the reference
sequence library.

Methods

Material

Twenty-four Dryas octopetala plants from four main
localities situated on mainland Norway and Svalbard
were sampled during the summers of 2006 and 2007
(Figure 1, Table 1). At each main locality, plants were
sampled from three sub-localities (6 m x 6 m), each
separated by approximately one kilometre. From each
sub-locality, two plants with a well-defined and compar-
able spatial distribution of the root systems were exca-
vated and stored in a cooling bag. Within 24 hours, the
root systems were carefully rinsed under tap water,
followed by distilled water (dsH,O). Approximately
40-50 mg of root fragments with living ECM root tips
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were detached from the cleaned root systems under a
dissection microscope, and pooled in a 2 mL Eppendorf
tube containing 1000 ul 2mM cetyltrimethylammonium
bromide (CTAB) buffer. The samples were stored at
-20°C until DNA extraction. Basidiocarps found within
and in close proximity to the sub-localities were col-
lected and determined to species. The 32 basidiocarps
were dried at approximately 40°C and stored at room
temperature until DNA-extraction. Supplementary sam-
ples from 157 specimens of arctic fungi deposited at the
Natural History Museum, University of Oslo (O) were
also included in the study. The list of basidiocarps is
presented in Additional file 1.

Molecular methods

Prior to DNA extraction, the pooled root samples were
crushed with tungsten carbide beads for 2 min at 20Hz
on a mixer mill (MM301, Retsch GmbH & Co, Haan,
Germany). After two freeze-thaw steps (-80°C for 10
min) each sample was split into three Eppendorf tubes,
of which one was used for further DNA extraction.
DNA from the roots was first extracted with a 2mM
CTAB miniprep method [24] using the modified proto-
col published by Gardes and Bruns [25]. The DNA was
subsequently purified with the commercially available
kit E.Z.N.A. Blood Kit (E.Z.N.A.° Blood DNA Kit;
Omega Bio-Tek, Doraville, GA) according to the manu-
facturer’s protocol. DNA from the basidiocarps was
extracted using the method above with minor modifica-
tions: DNA was resuspended in 60 pl dsH,O at the final
step of extraction, and DNA templates were diluted
20 x before PCR amplification.

PCR amplification was performed using the fungal
specific primers ITS1F and ITS4 [25,26]. The fidelity
enzyme DyNAzyme EXT (Finnzymes Oy, Espoo,
Finland) was employed according to the manufacturer’s
protocol. PCR was run in 25 pl reactions containing
16.5 pl of 10 x diluted template DNA and 8.5 pl reac-
tion mix (2.5 pl EXT buffer, 2.5 ul ANTPs (2mM), 1.5 pl
ITSIF primer (5 pM), 1.5 pl ITS4 primer (5 pM), and
0.5 pl DyNAzyme EXT). The PCR amplification condi-
tions were as follows: 4 min at 94°C, followed by 35
cycles of 25 s at 94°C, 30 s at 52°C and 2 min at 72°C,
followed by the final extension step for 10 min at 72°C
before storage at 4°C. An elongated (i.e., 2 min) exten-
sion step was used to further minimise recombinant
sequences (i.e. lower the frequency of incomplete ITS
fragments present after each temperature cycle). PCR
products (5 ul of each) were separated on agarose gels
and stained with EtBr or SYBR_SAFE nucleic acid stain
(Invitrogen Corporation, Carlsbad, CA) to visualise the
PCR products prior to cloning. ITS fragments were
amplified from the basidiocarps using the same PCR
parameters.
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Figure 1 Main localities. Map indicating the main localities in Norway and Svalbard where Dryas octopetala root systems were sampled. Each
main locality comprised three sub-localities separated by at least 1 km. The dotted line outlines the distribution area of Dryas in the North
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The ITS fragments from the root samples were cloned
with the TOPO TA Cloning kit (Invitrogen Corporation,
Carlsbad, CA) using blue-white screening according to
the manufacturer’s manual. The clones were grown
overnight in Luria-Bertani (LB) media amended with 50
pug/mL of ampicillin. From each plant root system, 32
bacterial colonies, representing cloned fragments, were
subjected to PCR reactions with the vector primers T7

Table 1 Localities

and M13R and using c. 0.5 pl of the bacterial suspension
as template. The PCR amplification program was as fol-
lows: 5 min at 94°C followed by 30 cycles of 30 s at
94°C, 45 s at 52°C and 1.5 min at 72°C, followed by
7 min at 72°C before storage at 4°C. The PCR products
were visualised on EtBr or SYBR_SAFE-stained gels and
24 randomly chosen cloned ITS fragments from each
root system were sequenced, and visualised on an ABI

Main locality Sub-localities Lat. Long. Elev.! MJuly? MJan®
Finse (Alpine) F1: Kvannjolsnuten 60.608 7.549 1440 7.0°C -10.1°C
F2: Sandalsnuten 60.615 7520 1480
F3: Jomfrunuten 60.604 7519 1394
Ny-Alesund (Arctic) N1: By Zeppelinfiellet 78913 11.924 91 4.9°C -13.9°C
N2: West of Bayelva 78934 11.835 20
N3: Sw of Knutsengheia 78939 11.802 36
Longyearbyen (Arctic) S1: Endalen 78.189 15.781 34 59°C -15.3°C
S2: Longyeardalen 78.201 15.586 124
S3: Bjgrndalen 78.231 15.333 30
Tromse (Alpine) T1: Floyfiellet 69.622 19.004 421 12.0°C -4.5°C
T2: Lyngen 69.694 20.778 180
T3: Lyngen, Steinfjellet 69.752 20.739 140

Information about the localities where Dryas octopetala root systems were sampled.
'Elevation in metres above sea level. 2Mean July temperature at main localities. 3Mean January temperatures at main localities (temperature information from

Norwegian Meteorological Institute).
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3730 DNA analyser (Applied Biosystems, Foster City).
ITS amplicons from all reference basidiocarps were
sequenced directly in both directions using primers
ITS1F and ITS4, and visualised on an ABI 3730 DNA
analyser.

All unique sequences as well as reference sequences
have been accessioned in GenBank (see Additional files
1 and 2 for details).

Sequence analyses

All sequence chromatograms were inspected manually
and assembled in the program BioEdit Sequence Align-
ment Editor v.7.0.5 [27]. To control for potential chi-
maerical sequences, the alignment of 576 sequences was
first inspected visually in order to detect sequences with
recombination breakpoints, including non-coherent
ITS1 and ITS2 types where ITS1 was identical to ITS1
of one genotype while ITS2, of the same sequence, was
identical to ITS2 of another genotype. Identical ITS
sequences detected in multiple root samples were con-
sidered authentic sequences while sequences detected
only once (singletons) were controlled further by per-
forming separate BLASTn searches [23] of the ITS1 and
ITS2 regions. If there was consistency between the
search results of ITS1 and ITS2 (i.e. ITS1 and ITS2
matched to the same species or genera), the ITS
sequence was considered non-chimaerical. When discov-
ered, chimaerical sequences were substituted with new
(and controlled) sequences in order to obtain 24 non-
chimaerical sequences from each root system.

Identical sequences were identified using ClustalW in
BioEdit and a reduced dataset was constructed, includ-
ing only sequences considered as unique. Artificial
mutations introduced during the PCR process may
occur using the cloning approach, which may lead to an
overestimation of the molecular variation [28]. There-
fore, single sequences with unique mutations but other-
wise identical to other sequences amplified from the
same root system, were not accepted as authentic unless
more than two such mutations occurred in the same
sequence [see [29] for a more thorough rationale for
this approach]. In those cases where only two sequences
amplified from the same root system were identical,
except for one or two mutations, a consensus sequence
was generated (using e.g. Y’ when a ‘C’ occurred in one
sequence and a ‘T’ in the other). Unique sequences were
grouped into operational taxonomic units (OTUs) by
performing a contig assembly in Sequencher v.4.1.4
(GeneCodes, Ann Arber, Michigan, USA) based on a
97% similarity criterion. All unique sequences in the
reduced dataset were examined by BLASTn searches. In
addition, local searches against the UNITE database [22]
and against the 189 ITS basidiocarp sequences obtained
in this study were performed.
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ITS sequences with taxonomic affinity to the same
genera were grouped into separate sub-alignments that
also included the most similar accessions from GenBank
or UNITE. Such alignments were established for the 11
most frequent and widespread taxonomic groups, mainly
at the genus level, using ClustalW and manual adjust-
ments. In addition, sequences from the reference basi-
diocarps were included in the sub-alignments.

OTUs were named based on the most similar acces-
sions from GenBank, UNITE or basidiocarp sequences
generated in this study. In cases with >97% similarity,
the OTU was given a species name; in cases with <97%
similarity, the OTU was given a genus name (e.g.,
Tomentella sp.1); in cases with <90% similarity, the
OTU was given family or ordinal names (e.g., Cantharel-
lales 1).

Statistical analyses

Analysis of variance (ANOVA) was performed to reveal
whether the average number of OTUs per rot systems
differed between the main localities.

Phylogenetic analyses were conducted on the 11 sub-
alignments using the maximum parsimony criterion in
PAUP* (Phylogenetic Analysis Using Parsimony *and
other methods) v.4.0 310 [30]. A heuristic search with
random stepwise addition of sequences, 10 replicates,
and TBR (Tree Bisection and Reconnection) branch
swapping was performed in order to improve the
chances of finding the globally optimal solution (finding
the most parsimonious trees). Gaps were treated as
missing values. Trees were unrooted. All other settings
were default. Strict consensus trees were created using
TNT v.1.1 [31] for sub-alignments which resulted in
more than one equally parsimonious tree. Collapsing
rule was set to minimum length = 0. Jackknife branch
support values were produced in TNT using random
addition of sequences, 1000 search replicates, and cut-
off value of 50%.

Detrended correspondence analysis (DCA) [32,33] and
global non-metric multidimentional scaling (GNMDS)
[34,35] ordinations were applied in parallel according to
the procedure used by @kland et al. [36] to extract the
main gradients in fungal OTU composition based on
the presence/absence dataset of fungal OTUs in the 12
sub-localities, and in the 24 plant root systems. Congru-
ent ordinations by the two methods were considered an
indication that the main compositional gradients had
been successfully recovered. The DCA calculations were
performed in the vegan package v.1.9-13 [37] in R soft-
ware, v.2.4.1 [38]. Detrending by segments and non-lin-
ear rescaling options were used to avoid arch and edge
effects of correspondence analysis (CA) ordination [39].
The DCA ordination axes were scaled in standard devia-
tion (S.D.) units. GNMDS were run using R software
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v.2.4.1, including packages vegan v.1.9-13 and MASS,
using functions vegdist, initMDS, isoMDS, and postMDS,
with options: dimensionality = 2; dissimilarity measure =
percentage dissimilarity (Bray-Curtis) which with quali-
tative data reduces to Serensen’s index of dissimilarity
[40], standardised by division with species maxima;
minimum number of starting configurations = 100, of
which one was the DCA; maximum number of itera-
tions = 1000; stress reductions ratio for stopping itera-
tion procedure = 0.99999. Solutions were not accepted
unless reached from at least two different starting con-
figurations. The degree of correspondence between axes
obtained by DCA and GNMDS was tested by Kendall’s
rank correlation coefficients between scores along the
first two DCA axes and the two GNMDS axes. All ordi-
nation diagrams were made by ArcView [41].

Species-accumulation curves and estimates of total
OTU richness (OTU richness is hereafter referred to as
species richness) of fungi associated with D. octopetala
within the main localities, as well as in the entire study
area, were calculated as proposed by Ugland et al. [42].
Traditional methods [e.g., [43-45]] for calculations of
total species richness based on extrapolations from
species-accumulation curves tend to underestimate spe-
cies richness, because the addition of new samples nor-
mally leads to a vertical displacement of the species-
accumulation curve [42]. Unlike the traditional methods,
the method developed by Ugland et al. [42] and Ugland
and Gray [46] recognises that heterogeneity in species
richness can occur within sub-areas sampled and that
this may have important consequences for the estima-
tion of species richness. To estimate species richness in
larger areas (i.e., more root systems in this case) than
what has been sampled, this method [42] takes account
of the spatial relationship between samples by dividing
the sampled area into sub-areas (i.e., root systems). First
a species-accumulation curve is obtained for randomised
samples of all the single sub-areas, where the root sys-
tems were defined as sub-areas for estimating species
richness within localities. Then the species-accumulation
curve for all combinations of two sub-areas is calculated
and the procedure is repeated for all sub-areas. It is the
rate of increase of these new (and subsequent) species-
accumulation curves as more sub-areas are combined
that leads to the best estimate of total species (T-S).
Thus, from the terminal points of the sub-area plots in
the species-accumulation curves, a new T-S curve is
obtained. The T-S curve can then be extrapolated to
yield an estimate of the probable total number of species
(OTUs) in the area. A bootstrapping method, sampling
with replacement and re-sampling 100 times, was
employed to judge the strength of support for the T-S
estimates. Thus, by randomising the T-S estimates, var-
iance measures were achieved.
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Results

Sequence data

A total of 576 non-chimaerical ITS sequences were
obtained, 24 from each of the 24 analysed root systems.
Five additional sequences, 0.8% of all obtained sequences,
were classified as chimaerical and omitted from further
analyses. The 576 sequences represented 264 unique ITS
genotypes of which 17 were detected in two or three
independent root systems. These genotypes were
grouped into 137 OTUs based on a 97% similarity cut-off
level. A high proportion of the OTUs (80.4%) were
detected in a single root system only, while 9.4% and
3.6% were detected in two and three root systems,
respectively. A total of 119 of the 264 unique ITS
sequences had 97% sequence similarity or higher to a
reference sequence with known taxonomic affinity. Most
sequences (81.9%) had best matches against GenBank
accessions, 8.0% against UNITE accessions and 10.1%
against the collection of reference sequences obtained in
this study. The best matches in GenBank/UNITE of all
unique sequences are listed in Additional file 2 and a list
of all detected OTUs is presented in Additional file 3.

Taxonomic distribution

Based on identification by most similar reference
sequences, 68.8% of the 576 sequences belonged to Basi-
diomycota, 30.7% to Ascomycota, 0.35% (two sequences)
to Zygomycota, and 0.17% (one sequence) to Glomero-
mycota (Figure 2a). The corresponding numbers of
OTUs in the four phyla were 75, 59, 2 and 1, respec-
tively (Figure 2b). As shown in Figure 2a, Agaricales was
the most commonly detected order (28.8% of the 576
sequences), followed by Thelephorales (16.0%), Helo-
tiales (14.1%), and Russulales (10.1%). The correspond-
ing distributions of OTUs in the various orders are
presented in Figure 2b. ECM genera such as Hebeloma,
Cortinarius, Tomentella, and Inocybe were frequently
observed in the root systems of D. octopetala. It is note-
worthy that the dominance of basidiomycetes over asco-
mycetes was much greater in terms of sequences
(Figure 2a) than in terms of OTUs (Figure 2b). This is
particularly striking when considering the ‘Unknown
Ascomycota’ group with 19 sequences representing 15
separate OTUs. In contrast, the basidiomycete order
Agaricales included 166 sequences that grouped into 26
different OTUs.

The 20 most frequently detected OTUs and their dis-
tribution across the four main localities are listed in
Table 2. A high number of the sequences (92) had taxo-
nomic affinity to Thelephorales, and this order also
included most OTUs (27). The two most widespread
OTUs had high sequence similarity (>99%) to accessions
of Cenococcum geophilum and Phialocephala fortinii
(Table 2). Two OTUs, both having best matches to
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(a)

(77),13.4% (166), 28.8 %

Helotiales (A)
81) 14.1%

Cantharellales (B)

(58), 10.1 % (92), 16.0 %

(b)

Zygomycota (Z)
Unknown (2),03% ZVQO""VZW‘E' (@) Glomeromycota (G)
Ascomycota (A) Glomeromycota (G) 1
(19), 3.3 % (1),02% Unknown .
. . ) Ascomycota (A) Agaricales (B)
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Helotiales (A)
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Figure 2 Taxonomic coverage. The taxonomic distribution of (a) the 576 analysed environmental ITS sequences, and (b) the taxonomic
distribution of the 137 Operational Taxonomic Units (OTUs), where each OTU includes sequences that group together according to the 97%
similarity criterion. Basidiomycota (B), Ascomycota (A), Zygomycota (Z), and Glomeromycota (G).

Cantharellales (B)
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Thelephorales (B)

4
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Cadophora finlandia (98% similarity), were also wide-
spread (Table 2). The OTU ‘Cadophora finlandia 1’ was
detected in samples from the above-mentioned four
main localities, while the OTU ‘Cadophora finlandia 2’
was represented in samples from one sub-locality in
Tromse and in all three Longyearbyen sub-localities.

Table 2 The most frequent OTUs

Another widespread OTU shared 99% similarity to
reference sequences of both Cortinarius aff. inconspicuus
and C. aff. diasemospermus.

Sub-alignments were constructed for the 11 most fre-
quently detected genera, also including the most similar
reference sequences from GenBank or UNITE, in

oTu’ Taxonomic affinity ss? #C3 #RS (#ML)* Sub-localities®

6 Cenococcum geophilum 100% 34 11 4) F1,F2,F3,N2,S3,T1,T2
4 Phialocephala fortinii 100% 34 10 (4) F1,F3N3,52,53,T1,T2,T3
28 Cadophora finlandial 98% 13 7 (4) F3,N1,N3,52,53,T2,T3
8 Cortinarius aff. inconspicuus/diasemospermus 99% 20 6 (3) F1,F2,F3,N1,N2,S3
22 Tomentella sp.1 92% 8 4 (3) F2,F3,N1,S1

67 Caloplaca sp. 91% 4 3(3) N3,53,T1

80 Cadophora finlandia 2 98% 12 52 S1,52,53,13

83 Mycenaceae 1 82% 36 52 S2,T1,12,13

33 Inocybaceae 1 82% 12 3(2) F3,N2

2 Hebeloma aff. alpinum 99% 11 3(2) F1,N1,N2

39 Tomentella sp.2 94% 9 32 N1,N3,51

43 Tomentella sp.3 95% 13 22 N1,51

61 Cortinarius aff. polaris 100% 13 22 N3,53

30 Tomentella sp.7 95% 3 22 F3,51

63 Hymenoscyphus sp. 91% 3 2(2) N3,51

57 Leohumicola sp. 94% 2 22 N2,T1

76 Russula delica 100% 31 4 (1) S1,52,53

48 Cadophora sp. 96% 5 4 (1) NT,N2,N3

47 Cortinarius aff. tenebricus 100% 11 2 NT1,N3

40 Tomentella sp4 93% 4 2(1) N1,N2

The 20 most frequently detected OTUs and their distribution across the five main localities.

'OTU number (see Additional files 2 and 3). Sequence similarity (SS) to best Blast match (GenBank/UNITE or own reference sequence). *The number of clones (C)
observed for the respective OTU. “Number of root systems (RS), and number of main localities (ML) in brackets. >Main localities; Finse (F), Longyearbyen (S), Ny-
Alesund (N), and Tromsg (T). Sub-localities indicated by numbers 1-3.
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addition to congeneric basidiocarp reference sequences.
The resulting phylogenetic trees are presented in Addi-
tional file 4, and show that many OTUs had a distinct
geographic distribution.

Diversity and composition of OTUs
The species-accumulation curves for the four main local-
ities showed no sign of reaching an asymptote, nor did
they show any latitudinal trend in richness of OTUs
(Figure 3). Most OTUs were observed in Tromse (49
OTUs), followed by Ny-Alesund (45), Longyearbyen (37),
and Finse (34). The average number of OTUs per root
system was 8.2 in Tromsg followed by 7.5 in Ny-Alesund,
6.2 in Longyearbyen, and 5.6 at Finse, which is a non-sig-
nificant difference (ANOVA, p > 0.05). The extrapolated
total species (T-S) curves further demonstrated a high
degree of heterogeneity in the fungal communities, as
none of them reached a plateau (Additional files 5 and
6). The estimated total richness of fungal OTUs, with
‘sampling area’ extrapolated to 10° root systems (24
clones from each) and randomisation by bootstrapping,
resulted in estimation of 226 (+ 32) OTUs to occur in
the Tromsg main locality, 229 (+ 28) in Ny-Alesund, 177
(% 28) in Longyearbyen, and 169 (+ 22) in Finse.

Overall, the GNMDS ordination axes were strongly
correlated with the corresponding DCA axes and the
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GNMDS ordination diagrams (data not shown) were
visually similar to the DCA diagrams. Thus, only the
DCA ordination results are presented (Figure 4), which
have the advantage over GNMDS that the axes are scaled
in standard deviation (S.D) units [e.g. [39]]. In the DCA
analysis based on similarity in composition of OTUs of
the various plant root systems (Figure 4a), only a weak
geographical structuring can be observed along the two
first DCA axes. The DCA analysis based on sub-localities
(i.e. where incidence data from two plant root systems
were pooled) displayed more distinct geographical struc-
turing, which can be observed along the first two DCA
axes (Figure 4b). It is noteworthy that the sub-localities
did not cluster according to a latitudinal gradient neither
along DCA axis 1 nor along DCA axis 2.

The average number of shared OTUs between root
systems was 1.17 within sub-localities, 1.06 between
sub-localities, and 0.65 between main localities. The
Venn diagrams in Figure 5 displays the low number of
overlapping OTUs between the three sub-localities from
each main locality.

Discussion

Observed diversity

Using a 97% cut-off during sequence clustering, a total
of 137 OTUs were detected in the 24 root systems,
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defined as sub-areas). The various curves in the each diagram represent independent accumulation curves calculated with different number of
root systems (24 clones from each). The end points of each curve can be used for extrapolation about total species richness (see Additional

file 6), producing more realistic estimates than obtained by other non-parametrical methods.
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which is significantly higher than what have been
observed in earlier diversity surveys of root associated
fungi in arctic-alpine plants and environments
[20,47-52]. Harrington and Mitchell [53-55] conducted
several studies of ECM fungi associated with D. octope-
tala populations in western Ireland by morphotyping
root tips and subsequent ITS sequencing. They detected
34 ECM morphotypes, of which 11 were identified to
species or genus. Using ITS2 and similar sequence clus-
tering conditions as in our study, Ryberg et al [21]
observed 74 OTUs in 48 root systems of D. octoptala
from Northern Sweden. The higher diversity detected in
our study may be ascribed to the different sampling and
molecular methodologies applied. For example, the
applied clone based approach probably is more efficient
in detecting the diverse array of fungi associated with
the root systems compared to root tip morphotyping
with subsequent sequencing. The latter approach often
fails to identify many of the fungal symbionts [56,57].
The observed non-asymptotical accumulation curves
and the long tail of rare genotypes observed in our
study demonstrate that the 24 sequences generated
from each root system did not cover the entire diversity
of root associated fungi of D. octopetala.

Taxonomic coverage

Members of Basidiomycota were more frequent than
those of Ascomycota in the root systems of D. octope-
tala, in particular in terms of the number of sequences.
This difference was not as pronounced when counting
the involved OTUs (Figure 2a,b). This corroborates ear-
lier observations that a small number of ECM species,
in most cases basidiomycetes, are highly abundant and
dominant [58]. Basidiomycetes are often represented by
extensive fungal biomass in the form of thick ECM
mantles and extraradical mycelium, while many ascomy-
cetes may have thin mantles and a sparse amount of
external mycelium [e.g., ECM of Cadophora finlandia;
[59]], or they may be present as endophytes. This is in
accordance with the most commonly detected taxo-
nomic groups in this study being ECM genera of Basi-
diomycota that produce an extensive amount of external
hyphae, such as Hebeloma [60], Inocybe [61], Tomentella
[62], and Cortinarius [63].

A high number of ITS sequences and OTUs had taxo-
nomical affinities to order Thelephorales. This fungal
group was also one of the most frequently detected in a
survey of ECM fungi associated with D. octopetala and
Salix reticulata in Northern Sweden [21]. This suggests
that these fungi are of special importance in the fungal
communities associated with D. octopetala in arctic and
alpine environments. The hyphal cell walls of the Thele-
phorales are generally melanised, which has been
hypothesised to be an adaptation to resist attack from
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antagonistic fungi and fungivorous soil fauna, and to
protect hyphae from extreme temperatures and drought.
Melanised hyphae may also play a significant role in the
fungus’ persistence from year to year [64,65]. Interest-
ingly, a high number of sequences with affinity to
Thelephorales were observed in samples from the north-
ernmost localities (Longyearbyen and Ny-Alesund on
Svalbard). It is noteworthy that most of the matches
against reference sequences were quite low (typically 91-
95% identity, with query coverage 99-100%), indicating
that the arctic-alpine Thelephorales represent an unex-
plored group of fungi.

A striking feature emerging from studies of a wide array
of plants that are growing in arctic and alpine environ-
ments is the extensive occurrence of dark septate endo-
phytic (DSE) fungi in their roots [e.g., [2,20,52,66-68]],
which are also characterized by melanised cell walls. DSE
fungi were among the most frequently detected ascomy-
cetes in our study. These included Phialocephala fortinii,
Cadophora finlandia, and Leptodontidium orchidicola,
fungi that might have a mycorrhizal and beneficial func-
tion in these habitats [67,69]. Phialocephala fortinii was
detected in all main localities (10 of the 24 root systems)
and has been recognized as one of the most abundant
DSE in roots of conifers and ericaceous plants in heath-
lands, forests, and alpine ecosystems [e.g., [52,70-74]].
Two different OTUs with close affinity to Cadophora fin-
landia were observed. Cadophora finlandia forms charac-
teristic melanised ECM morphotypes [59], and has
frequently been observed in harsh habitats [e.g., on metal
polluted or burnt sites; [74]].

Our study also corroborates the view that the Ceno-
coccum geophilum complex, another melanised ECM
fungus, is widespread and frequent in arctic and alpine
environments [4,6,47-50]. This species was the most fre-
quently encountered OTU, and was observed in about
half of the root systems from all main localities.

The high occurrence and diversity of melanised fungi
found in the present study indicate that they hold an
important ecological function as associated with D. octo-
petala in arctic-alpine environments.

Composition and distribution of OTUs

Even at a local scale (within sub-localities) there was lit-
tle overlap in fungal OTUs across root systems, indicat-
ing high spatial heterogeneity. This finding is in
agreement with earlier studies where community com-
position has been shown to be highly variable and
patchily distributed at fine scales [75-77]. The ordination
analysis of the 24 plant root systems (Figure 4a) further
underlines the high degree of spatial heterogeneity, as
little grouping of root systems according to locality was
observed. Neither the species-accumulation curves, nor
the extrapolated total species richness curves, showed
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any sign of reaching an asymptote, which also suggests a
high spatial heterogeneity. A possible explanation for the
high spatial heterogeneity is that plant root systems, as
well as the fungal mycelium, are three dimensional, dis-
playing a fractal-like geometric structure, and that the
associated biotic factors such as soil microbes, and abio-
tic factors such as minerals, nutrient, and water supply,
also usually vary at microscales in the soil, both spatially
and temporally [2,5,58,78]. Due to the high complexity
of the root system and the associated environmental fac-
tors, there are potentially a high number of micro-
niches. This could explain the high fungal diversity and
the high degree of spatial turnover in fungal commu-
nities observed at the different geographic levels. How-
ever, it must be emphasised that a higher sampling
intensity is necessary to finally conclude on this matter.
There was no decrease in number of OTUs with
increasing latitude, which contrasts the general pattern
observed in other organisms groups [79] such as benthic
marine invertebrates [80], birds [81,82], mammals
[83,84], plants [85,86], and foliar fungal endophytes [87].
Arctic-alpine soils seem unexpectedly rich in diversity of
microorganisms compared to their depauperate plant
communities [4,15]. There are even some indications
that microbial diversity in some cases is higher in the
arctic than in boreal soils [88,89]. Hence, the below-
ground diversity of root-associated fungi may not follow
the same latitudinal trend as the aboveground diversity.
In spite of the high heterogeneity and species turnover
even at small scales, there seems to be a slight geogra-
phical structuring of the composition of fungal OTUs in
the D. octopetala root systems at a larger geographical
scale, as demonstrated by the ordination analysis of sub-
localities (each including two analysed root systems; Fig-
ure 4b). In line with this, root systems within the same
main localities and sub-localities had more OTUs in
common compared to root systems compared across
the main localities. The underlying cause for the geo-
graphic structuring at larger spatial scales is likely that
some OTUs have a distinct biogeographical structure, as
can be seen in some of the phylogenetic trees of selected
taxonomic groups (Additional file 4). Some OTUs were
only recorded from Svalbard (in multiple root systems),
including several OTUs with affinity to Thelephorales.
These OTUs (and many more, see Additional file 4)
could be examples of fungi with a distinct arctic affilia-
tion. There was no latitudinal trend in the ordination
plot among the main localities, indicating that other fac-
tors than those associated with latitude structure the
root associated fungal community of D. octopetala at a
larger geographic scale. As highlighted by Bruns [5],
almost 15 years ago, the factors which control and
structure fungal diversity at a global, regional, and even
single-root level, still remain a subject of debate. While
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overall diversity is thought to be important to ecosystem
functioning, the functional significance of individual
taxa is very poorly understood [77], but the high species
richness of mycorrhiza in many ecosystems suggests a
high level of functional heterogeneity may occur, even at
the local scale [90].

Conclusions

This study demonstrates that a phylogenetically diverse
array of fungi is associated with roots of the arctic-alpine
plant Dryas octopetala. Both the non-asymptotic species-
accumulation curves, the disparity between observed and
estimated species richness, and the fact that most OTUs
were detected only once, suggest that the species richness
is even higher than recorded here, and that many fungal
species remain undetected. Noteworthy, we observed no
decrease in fungal species richness in the Arctic. A weak
spatial structuring of the composition of OTUs was
observed, which would probably have been more pro-
nounced with a higher sampling intensity.
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