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Abstract

Background: Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration,
increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa
is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about
the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa.
Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli
in root tip cells and selected physiological and biochemical characters.

Results: The results showed that the root growth exposed to 50 uM Al was inhibited significantly. 50 uM Al could
induce some particles of argyrophilic proteins scattered in the nuclei and extruded from the nucleoli into the
cytoplasm. The nucleolus did not disaggregate normally and still remained its characteristic structure during
metaphase. Nucleolar reconstruction was inhibited. 50 uM Al induced high activities of SOD and POD in leaves and
roots significantly (P < 0.05) when compared with control, whereas the level of CAT was low significantly (P <
0.05). At 50 uM Al the content of MDA in leaves was high significantly (P < 0.05) at 9™ day and in roots increased
(P < 0.05) with prolonging the treatment time during 6-12 days. The soluble protein content in leaves treated with
50 pM Al was high significantly (P < 0.05) at 6™ day and increased with prolonging the treatment time.

Conclusions: We suggest that variations in nucleoli and the alterations of antioxidant enzyme activities, MDA and
soluble protein contents in Allium cepa can serve as useful biomarkers, which can provide valuable information for
monitoring and forecasting effects of exposure to Al in real scenarios conditions. Among the antioxidant enzymes
SOD and POD appear to play a key role in the antioxidant defense mechanism under Al toxicity condition. Data

peroxidative products and oxidative stress.

from MDA concentration show that Al indirectly produces superoxide radicals, resulting in increased lipid

Background

Aluminum (Al) is the third most abundant element
making up more than 8% of the earth’s crust [1]. It is
well known that Al is one of the most important factors
limiting normal plant growth in acid soils. Al toxicity is
manifested primarily by inhibition of root growth [2].
The root meristem is considered as one of the main
sites of Al toxicity [3]. It is well demonstrated that Al is
toxic to many plants at micromolar concentrations,
affecting primarily the normal functioning of roots
within minutes or hours of exposure of roots to Al [4].
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Generation of reactive oxygen species (ROS) has been
identified as an inevitable process of normal aerobic
metabolism in plants and the four major types of ROS
are singlet oxygen (*O,), superoxide (O5’), hydrogen
peroxide (H,O,) and hydroxyl radical (OH") [5]. ROS
can damage biological molecules including DNA, RNA,
protein and lipid by inducing peroxidation [6]. The
results from some investigations have shown that Al
stress can increase the production of ROS, and activate
several antioxidant enzymes in plant cells [7], suggesting
that Al stress might induce cell death in plants through
ROS-activated programmed cell death [8]. There are
protective enzymatic and non-enzymatic mechanisms to
scavenge ROS and alleviate their deleterious effects in
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plants [9]. To resist oxidative stress, plants can induce a
series of detoxification reactions catalyzed by antioxi-
dant enzymes, including low-molecular mass antioxi-
dants (ascorbic acid, glutathione and carotenoids) as
well as CAT(EC 1.11.1.6), SOD (EC 1.15.1.1) and POD
(EC 1.11.1.7) [10]. Lipid peroxidation occurs in plants as
a consequence of high ROS level when excessive ROS
can not be scavenged immediately and effectively, and
finally resulting in the disruption of plant growth and
development [11]. Malondialdehyde (MDA) is one of
the ultimate products as a result of lipid peroxidation
damage and its concentration is related to the degree of
membrane lipid peroxidation [12]. Therefore antioxidant
enzyme activities and MDA content often serve as
important physiological indicators to research the resis-
tant abilities of plants under stress conditions. Proteins
play an important role in metabolism. There are several
reports related to the change of soluble protein content
under treatment with Al [13].

Allium cepa is well known and commonly used in
many laboratories because A. cepa is an excellent plant
and a useful biomarker for environmental monitoring,
with many advantages such as low cost, a large number
of roots, short test time, ease of storage and handling,
large cells with excellent chromosome conditions, and
ease of observing abnormal phenomena of chromosomes,
nuclei, and nucleoli affected during mitosis [14]. Limited
information is available about the effects of Al on nucleo-
lus and antioxidant enzyme system and contents of MDA
and soluble protein in A. cepa. For the present investiga-
tion, the effects of Al on root growth, nucleoli, activities
of antioxidant enzymes, MDA and soluble protein con-
tents in A. cepa were investigated to provide valuable
information for monitoring and forecasting effects of
exposure to Al in real scenarios conditions.

Results

Macroscopic effects of Al on root growth

The effects of Al on root growth of Allium cepa var.
agrogarum L. varied with the concentration and treat-
ment time (Figures 1,2). At 5 uM Al there was no toxic
effect on root growth during the whole course treat-
ment. Versus control there was stimulative effect on
root growth (P < 0.05) at 0.5 uM Al after 48 h treat-
ment. In concentration 50 uM Al, obvious toxic effect
appeared after 24 h treatment and Al inhibited root
growth significantly (P < 0.05).

The effects of Al on the morphology of the roots also
varied with the different concentrations of aluminum
chloride in solution. At 0.5 pM to 5 uM Al, the mor-
phology of the roots was more or less normal during
the whole treatment (3 d). At 50 uM Al, the root tips
were stunted and bent in various directions after 24 h
treatment (Figure 1).
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Figure 1 Effects of different concentrations of Al on root
growth of Allium cepa var. agrogarum L. (72 h).

Microscopic effects of Al on root tip cells

Normally, the nucleus of Allium cepa var. agrogarum
contains one nucleolus (Figure 3a-b). The toxic effects
of Al on nucleoli varied depending on the different con-
centrations and the treatment time. Some tiny particu-
lates containing the argyrophilic proteins were observed
in the nucleus of the root tips exposed to 0.5 uM Al for
24 h (Figure 3c). More particulates were accumulated in
it with increasing Al concentration and prolonging
treatment time, for example, at 5 pM Al, 48 h (Figure
3d). At high concentration of Al (50 pM), the effects
were mainly on the nucleoli. The phenomenon was
noted that some particulates containing the argyrophilic
proteins were extruded from the nucleus into the cyto-
plasm in the group treated with 50 uM Al for 24 h (Fig-
ure 3e-f). The nucleolar materials accumulated in the
cytoplasm gradually increased with prolonging the
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5uM
51 &X3 50 uM

Root length [cm]

Time [h]

Figure 2 Effects of different concentrations of Al on root
length of Allium cepa var. agrogarum L. Values with different
letters differ significantly from each other (n = 25, P < 0.05).
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Figure 3 Effects of different concentrations of Al on nucleoli in root tip cells of Allium cepa var. agrogarum L. (Arrowhead shows
silver-stained materials). a-b. Control cells. c. Small amounts of silver-stained materials in nucleus (0.5 uM Al, 24 h). d. Large amounts of silver-
stained materials in nucleus with increasing Al concentration and prolonging treatment time (5 uM Al, 48 h). e-f. Silver-stained materials
extruded from the nucleus into the cytoplasm (50 uM Al, 24 h). g-k. Showing the leaching materials located near the nucleus and more and
more materials accumulated in the cytoplasm with prolonging the duration of treatment (50 uM Al, 48 h). I-n. Showing the materials enclosed
the nucleus, and accumulated in the cytoplasm and occupied nearly the whole cytoplasm (50 uM Al, 72 h). o-p. In long cells, the silver-stained
materials gathered at the cell ends (50 uM Al, 72 h) and large rod-like structures formed (50 uM Al, 72 h). Scale bar = 10 um.

duration of treatment (Figure 3g-k). Figure 3g-k showed
that the leaching materials were located near the
nucleus. Finally, the material enclosed the nucleus and
even occupied the whole cytoplasm (Figure 3l-n). In
long cells, the nucleolar materials were extruded from
the nucleus into the cytoplasm, gathered at the cell ends
(Figure 30) and large rod-like structures were formed
(Figure 3p).

The nucleolar cycle of silver-impregnated Allium cepa
var. agrogarum cells was investigated by means of light
microscopy. Normally, nucleoli in interphase nuclei
impregnated with silver show strong staining. With pro-
gressing prophase decondensed chromatin fibers were

around the nucleoli (Figure 4a-d). During prometa-
phase-metaphase, the nucleoli appeared small in size
(Figure 4e), disappeared in their characteristic structures
and Nucleolar Organizing Regions (NORs) were loca-
lized on chromosomes (Figure 4f). At anaphase, NORs
migrated with the chromosomes to the poles (Figure
4g). In early telophase the size of the newly forming
nucleoli around the NORs increased (Figure 4h). Finally,
mitosis was completed. After the treatment with Al, the
abnormal phenomena of the nucleolar cycle during
mitosis were examined in some cells. Firstly, the nucleoli
did not disaggregate normally and still remained their
characteristic structures during metaphase, which was
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Figure 4 Effects of Al on Nucleolar Organizing Regions (NORs) in root tip cells of Allium cepa var. agrogarum L. during mitosis
(Arrowhead shows NORs). a-d. Showing decondensed chromatin fibers around the nucleoli. e. Showing decreased nucleoli in size. f. Showing
NORs on chromosomes. g. Showing NORs migration with the chromosomes to the poles at anaphase. h. Showing nucleoli rebuilt at early
telophase. i. Nucleoli still existed after the treatment with Al during metaphase (50 uM Al, 24 h). j. Showing some particles of the similar silver-
stained materials localized in the nuclei (50 pM Al, 48 h). k. Showing nucleoli on chromosomes (50 uM Al, 48 h). I. Showing more similar silver-

stained materials located on sticky chromosomes (50 uM Al, 72 h). Scale bar = 10 um.

referred to as persistent nucleoli (Figure 4i). Secondly,
nucleolar reconstruction was inhibited, and there were
still much small silver-stained particulates in the nuclei
(Figure 4j). Thirdly, some particles of the silver-stained
materials were still localized on chromosomes (Figure
4k). Fourthly, there were not NORs but lots of silver-
stained particulates were localized on the sticky chromo-
somes (Figure 41).

Effects of Al on activities of antioxidant enzymes

Effects of Al on SOD activities of Allium cepa var. agro-
garum leaves and roots varied with the different concen-
trations of Al and the duration of treatment. The SOD
activities in leaves exposed to 0.5 pM - 50 pM Al during
the whole treatment were high significantly (P < 0.05)
when compared with control (Figure 5a). And the levels
of SOD in leaves treated with 5 uM - 50 uM Al were
high significantly (P < 0.05) in comparison with the
group exposed to 0.5 puM Al. The trend was observed
that during 3 to 9 days, the SOD activities increased
with prolonging treatment time, and then decreased.
The level of SOD in the leaves exposed to 50 uM Al

was 2 times that of control on the 12" day. The activ-
ities in roots were lower than the ones in leaves (Figure
5a, b). Figure 5d showed the effects of different concen-
trations of Al on the SOD activities of A. cepa var. agro-
garum roots. The levels of SOD in roots exposed to 0.5
UM - 50 uM Al were high significantly (P < 0.05) in
comparison with control. The activity of SOD in roots
treated with 5 uM Al was the highest and increased
with prolonging the treatment time, whereas the activity
at 50 uM Al decreased progressively.

Data from Figure 5c also showed the same trend
observed in SOD that the levels of POD in leaves
exposed to 0.5 uM - 50 uM Al were high significantly
(P < 0.05) during the whole treatment when compared
with control, except for the group exposed to 0.5 pM Al
at 3™ day. The activity of POD in leaves treated with 50
pM Al was the highest. The activities of POD in leaves
exposed to all concentrations of Al increased with
prolonging duration of treatment. The POD activity in
roots treated with 50 uM Al was noted to be high sig-
nificantly (P < 0.05) in comparison with control and the
other treatment groups (Figure 5d). 0.5 uM Al had no



Qin et al. BMC Plant Biology 2010, 10:225 Page 5 of 11
http://www.biomedcentral.com/1471-2229/10/225
a
—e— Control Leaf b —e— Control Root
7007 —O— 0.5uM 500 7 —O— 0.5uM
—v— 5uM v SuM
—— 50 uM —— 50 uM a
600 450 -
z z
a
f‘ & 400 4 a
éﬂ 500 - . i
= a 2
z 2z 350
= £
- >
S 400 A £
« b ®
a c ] b
8 . 8 300
2 @
300 4
250 p . c
c
200 - - - - 200 - - : .
3 6 12 3 6 9 12
Time [d] Time [d]
C
Leaf
—e— Control d —e— Control Root
754 —O— 05uM 104 —O0— 0.5uM
—¥— 5uM —¥— 5uM
. 7.0 50 M — —— 50uM a
E Z
j?" 6.5 ;N)
= R
E ool £
Q’ Q’ 7 4
S 55 =)
z 2z
z z 6
g 504 2
a a
2 ° 2 s
45 - ~
4.0 . . . : 4 - - - :
3 6 12 3 6 9 12
Time [d] Time [d]
e Leaf f Root
—e— Control —e— Control
40+ —°— 05uM 14 4 —O— 05uM
—v¥— 5uM —v— 5uM
—v— 50uM —v— 50puM
= 1 = 12
_E 35 5
i . o
s i 104
;E: 3.0 +<E
g a 08 1
3 g
2z 251 >
£ £
= Z 06
3 E
=
< 20 :
o U 04
15 - - . - 02 : . : : :
3 6 9 12 3 6 9 12
Time [d] Time [d]

Figure 5 Effects of different concentrations of Al on the activities of three antioxidant enzymes in Allium cepa var. agrogarum L.
exposed to Al stress over 12 days. a SOD in leaves, b SOD in roots, ¢ POD in leaves, d POD in roots, e CAT in leaves, f CAT in roots. Vertical
bars denote SE. Values with different letters differ significantly from each other (P < 0.05, t-test).
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obvious effect on the POD activity in roots during 3 - 6
days when compared with control (Figure 5d). The
results indicated that the activity of POD in roots
increased significantly with increasing Al concentration
and prolonging treatment time, except the group
exposed to 0.5 uM Al during 3 to 6 days.

Information on CAT activity was given in Figure 5e
and f. The CAT activity was found to be inhibited sig-
nificantly (P < 0.05) and to be the lowest in leaves at 50
uM Al during the whole treatment when compared with
control and the group exposed to 0.5 pM Al (Figure 5e).
There was no obvious difference in the CAT activities
in leaves exposed to 0.5 pM Al and control during the
whole treatment. The activity of CAT in leaves exposed
to 5 uM Al was only inhibited significantly (P < 0.05) at
6 day. There was an inhibitory effect (P < 0.05) on the
CAT activity in roots treated with 50 pM Al in compari-
son with control and other treated groups during the
whole treatment (Figure 5f). And the other groups had
no obvious effects when compared with control.

Effects of Al on MDA and soluble protein contents

The effects of Al on MDA concentration were presented
in Figure 6. The MDA contents in leaves exposed to 0.5
puM - 5 uM Al had no obvious difference when com-
pared with control (Figure 6a). The content in leaves
treated with 50 uM Al was high significantly (P < 0.05)
at 9" day. The MDA contents in roots exposed to 50
puM Al increased (P < 0.05) with prolonging the treat-
ment time during 6-12 days when compared with con-
trol (Figure 6b). However, the MDA contents in roots
treated with 0.5 uM - 5 uM Al were more or less the
same as control (Figure 6b). As could be seen from
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Figure 7a, the soluble protein contents in leaves exposed
to 0.5 uM -5 uM Al were more or less the same as con-
trol during the whole treatment time. The content in
leaves treated with 50 uM Al was high significantly (P <
0.05) at 6™ day and increased with prolonging the treat-
ment time. Data from Figure 7b showed that the con-
tent in roots exposed to 0.5 uM Al had no obvious
difference when compared with control. The contents at
5 uM Al were high significantly (P < 0.05) at 3" day
and 6™ day in comparison with control. The trend
above was also observed at 50 uM Al. However, the
content was low significantly (P < 0.05) from 9" day
and below control.

Discussion

Root is the most sensitive and accessible part to Al
toxicity, and root growth inhibition upon exposure to
Al has been used extensively as one of the most dis-
tinct and earliest symptoms of Al toxicity [15]. Data
from the present investigation demonstrated signifi-
cant root growth inhibition in Allium cepa var. agro-
garum L. seedlings exposed to 50 puM Al. This
investigation showed that 0.5 uM Al had a stimulative
effect on root growth which was in agreement with
the early findings [16].

Nucleolus is well known as the site of transcription of
ribosomal genes and further transcript process [17],
which contains a set of acidic, nonhistone proteins that
bind silver ions and are selectively visualized by silver
method. NORs are defined as nucleolar components
containing a set of argyrophilic proteins, which are
selectively stained by the silver method [18]. Proteinic
carboxyls firstly combine and deoxidize certain silver
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Figure 6 Effects of different concentrations of Al on MDA content in Allium cepa var. agrogarum L. exposed to Al stress over 12 days.
a Leaves, b Roots. Vertical bars denote SE. Values with different letters differ significantly from each other (P< 0.05, t-test).
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Figure 7 Effects of different concentrations of Al on soluble protein content in Allium cepa var. agrogarum L. exposed to Al stress
over 12 days. a Leaves, b Roots. Vertical bars denote SE. Values with different letters differ significantly from each other (P < 0.05, t-test).
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cations (Ag"), and then more silver cations continue to
deposit at the focalization. So after silver-staining, the
nucleoli can be selectively stained and the NORs can be
easily identified as black dots [18].

Nucleolin is one of the main proteins in nucleolus and
oxidative stress could induce the cleavage of it [19]. van
der Aa et al. [20] indicated that the nuclear pore com-
plex (NPC) was the most important channel for nuclear
material. The phenomenon that the nucleolar material
was extruded from the nucleus into the cytoplasm could
be explained by the fact that the proteins were affected
after Al treatment, causing the NPC to lose selectivity.
Recent study indicated that Al was localized inside the
nucleoli of root tip cells of Al sensitive maize [21].

Active NORs are associated with a subset of specific
proteins and play an important role in forming nucleoli
[22]. Normally, persistent nucleoli do not occur during
normal mitosis. An increased number of persistent
nucleoli cells increased nucleolar activity [23]. Sheldon
et al. [24] found that embryonal carcinoma lines exhib-
ited nucleolar persistence during mitotic metaphase and
anaphase, indicating that rRNA synthesis continued in
persistent nucleoli, which means increased biosynthetic
activity and more protein production. We supposed that
the phenomenon persistent nucleoli occurred in the pre-
sent investigation might be an adaptive response to
stress induced by Al

Although Al itself is not a transition metal and cannot
catalyze redox reactions, the Al-induced oxidative stress
has been observed in many plant species [25]. It has
even been suggested that Al-enhanced oxidative stress is
a decisive event for inhibition of cell growth [26]. Al-
induced oxidative stress and changes in cell wall

properties have been suggested as the two major factors
leading to Al toxicity [27]. The presence of oxygen in
the cell environment can cause continuous oxidative
damage to cell structure and function [28]. It is widely
accepted that Al toxicity represents an oxidative stress
in plants by inducing formation of ROS [8].

Superoxide dismutase is called the cell’s first line of
defense against ROS because superoxide radical is a pre-
cursor to several other highly reactive species so that
control over the steady state of superoxide concentration
by SOD constitutes an important protective mechanism
[29]. SOD activity was affected by O, concentration and
increased with the increasing of O, concentration [30].
Our results may be attributed to the increased produc-
tion of superoxide, especially at concentrations at which
root growth is strongly inhibited. The results here are
consistent with the early findings [16,25]. The activity of
SOD in roots treated with 50 uM Al decreased progres-
sively with prolonging duration of treatment, which was
similar to the early findings of Wang et al. [31]. This may
be attributed to an inactivation of the enzyme by H,O,
produced in different compartments, where SOD cata-
lyzes the disproportionation of superoxide radicals. Ara-
vind and Prasad [32] indicated that excessive ROS could
also attack SOD and decreased its activity.

Peroxidase activity increases with the increasing of
H,O, concentration [33] and protects cells against the
destructive influence of H,O, by catalysing its decompo-
sition through oxidation of phenolic and endiolic co-
substrates [8]. The enhanced activity of anionic POD
could act to confer Al resistance by detoxifying ROS
and restricting lipid peroxidation in membrane regions
[34]. In the present investigation enhancement in POD



Qin et al. BMC Plant Biology 2010, 10:225
http://www.biomedcentral.com/1471-2229/10/225

activity was observed, which was in agreement with the
observations by Hossain et al. [35] and Wang et al. [36].
Increase in POD activity was supposed that on the one
hand Al directly caused excessive production of H,O, in
seedlings and on the other hand increased H,O, was
due to the result that SOD dismutated more O5, subse-
quently excessive H,O, induced the over-expression of
POD gene. So increased POD activity, in turn, sca-
venged excessive H,O, and the damage was not serious.

Catalase is the most universal oxidoreductase, which
scavenges H,O, to O, and H,0. The major function of
CAT is to metabolize the peroxide liberated in the per-
oxisome following the conversion of glycolate during
photorespiration [37]. The CAT activities in leaves and
roots treated with 50 pM Al in the present work
declined whereas POD activities increased. It may be
that POD plays a main role in clearing H,O,. Decline in
CAT activity was supposed that it was due to inhibition
of enzyme synthesis or a change in assembly of enzyme
submits. Possibly CAT is a less efficient H,O, scavenger
than POD because of its low substrate affinity, and is
more sensitive to high Al level than SOD and POD.
Boscolo et al. [38] reported no change in CAT activity
under Al toxicity in maize, while in some other plants a
decline (soybean, rice) or enhancement (tobacco, wheat)
of CAT activity has been found [39-41]. These results
regarding CAT activity might be due to differences in
the plant organs studied, the durations and concentra-
tions of metals utilized, and the plant species.

In contrast, effects of Al on antioxidant enzymes are
more serious in roots than in leaves, which can be
explained by the fact that Al is taken up mostly through
the root system, and accumulated high concentration in
roots, only small amounts penetrate the leaves [42].

MDA formation is used as the general indicator of the
extent of lipid peroxidation resulting from oxidative
stress. Our results indicated that the extent of lipid per-
oxidation was not serious in leaves under 0.5 uM - 50
UM Al stress, suggesting that ROS was eliminated effec-
tively as to the increase of antioxidant enzymes (SOD
and POD) activities in leaves. MDA concentrations in
roots exposed to 50 uM Al during 6-12 days increased
versus control, indicating that Al indirectly produced
ROS and there was a serious imbalance between the
production of ROS and antioxidative defense, resulting
in increased lipid peroxidative products and oxidative
stress in roots.

In the present study, it was found that under 50 uM
Al stress, soluble protein contents in leaves increased
significantly (P < 0.05) during 6 to 12 day treatment.
The result supports the findings by Ozdemir et al. [43]
and Zhou et al. [44]. The high soluble protein content
induced by Al can be explained by the following two
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aspects. On the one hand Al induces the expression of
several genes and increases the synthesis of several ori-
ginal proteins [45]. On the other hand Al-resistance
proteins are inducible by high concentration of Al expo-
sure [46]. In roots exposed to 50 uM Al at 3" day and
6™ day, the soluble protein contents were high signifi-
cantly (P < 0.05). Then it showed a decreased. We con-
sidered that during earlier period of treatment, Al did
not injure the roots heavily and induced protein synth-
esis and accumulation in cells. Al, with the stress
strengthening, caused the original protein degeneration
and decomposition [47] and restrained the new protein
synthesis [48], which made soluble protein content
decrease significantly.

Conclusion

In view of the present findings, we suggest that (1) var-
iations in nucleoli and alterations of antioxidant
enzymes and MDA and soluble protein contents in
Allium cepa can serve as useful biomarkers in ecotoxi-
cological tests with Al; (2) These biomarkers can pro-
vide valuable information for monitoring and forecasting
early effects of exposure to Al in real scenarios condi-
tions; (3) Al toxicity is associated with induction of oxi-
dative stress in leaves and roots of A. cepa. Among the
antioxidant enzymes SOD and POD appear to play a
key role in the antioxidant defense mechanism and (4)
MDA concentration shows that Al indirectly produces
superoxide radicals, resulting in increased lipid peroxi-
dative products and oxidative stress in roots.

Methods

Culture condition and aluminum treatment

Healthy and equal-sized onion cloves were chosen from
Allium cepa var. agrogarum L. The bulbs had started
neither shooting of green leaves nor any growth of
roots. Before starting the experiment, the dry scales of
the bulbs were removed. The bulbs were germinated
and grown in plastic containers at 27°C for 3 days by
dipping the base in water. Then the seedlings were
grown in containers with 2 L Hoagland’s nutrient solu-
tion (pH 4.5) adding 0.5 pM, 5 pM and 50 uM Al for
12 days respectively in a greenhouse where relative
humidity (60%) and supplementary lighting (14 h photo-
period) were controlled. The Hoagland’s solution con-
sisted of 5 mM Ca (NO3),;, 5 mM KNOj;, 1 mM
KH,POy,4, 50 pM H3BO3, 1 mM MgSOy,, 4.5 pM MnCl,,
3.8 uM ZnSOy, 0.3 pM CuSOy4, 0.1 pM (NHy)sMo,0,4
and 10 uM FeEDTA [49]. Hoagland’s nutrient solution
was used for control. The solutions were aerated by
pumps, which connected the containers with pump
lines. In each treatment group, twenty-four treated seed-
lings were examined and recorded every 24 h for the
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morphological observation (72 h) and for examination of
antioxidant enzyme activities and MDA and soluble pro-
tein contents at the end of each time interval (3 d). All
treatments were done in six replicates. The Al was pro-
vided as aluminum chloride.

Cytological study

The bulbs were germinated in distilled water at 25°C,
producing roots reaching about 0.6 cm length. After
that, they were treated in Patri dishes with different con-
centrations of Al solutions (0.5 pM, 5 uM and 50 puM)
for 24 h, 48 h and 72 h. Distilled water was used for
control experiment. The test liquids were changed regu-
larly every 24 h. Ten root tips in each treatment group
were cut and fixed in 3 parts 95% ethanol:2 parts acetic
acid for 2 h and hydrolyzed in 5 parts 1 M hydrochloric
acid:3 parts 95% ethanol:2 parts 99.8% acetic acid for 4-
5 min at 60°C. For the observation of changes in nucleo-
lus, ten root tips were cut and squashed in 45% acetic
acid, dried, and after 2 days stained with silver nitrate
[50].

Examination of antioxidant enzyme activities

The fresh roots or leaves from each treatment were
homogenized in a pestle and mortar with 0.05 M
sodium phosphate buffer (pH 7.8) at the end of each
time interval (3 d) of the Al treatment. The homogenate
was centrifuged at 10,000 x g for 20 min and the super-
natant was used for analyzing SOD, POD and CAT. The
above steps were carried out at 4°C [51].

SOD assay

The SOD activity was estimated according to the modi-
fied method of Zhang et al. [52]. The reaction mixture
was made of 54 mL methionine, 2 mL nitroblue tetrazo-
lium chloride (NBT), 2 mL EDTA-Na,, 2 mL riboflavin.
Appropriate quantity of enzyme extract was added to
the reaction mixture. The reaction started by placing
tubes below two 15 W fluorescent lamps for 15 min.
Reaction stopped by keeping the tubes in dark for 10
min. Absorbance was recorded at 560 nm. One unit of
SOD enzyme activity was defined as the quantity
of SOD enzyme required to produce a 50% inhibition of
reduction of NBT under the experimental conditions
and the specific enzyme activity was expressed as units
per g fresh weight.

POD assay

The activity of POD was determined as described by
Zhang et al. [52]. The reaction mixture in a total volume
of 50 mL 0.1 M sodium phosphate buffer (pH 6.0) con-
taining 19 pL H,O, (30%), 28 uL guaiacol was prepared
immediately before use. Then 1 mL enzyme extract was
added to 3 mL reaction mixture. Increase in absorbance
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was measured at 470 nm at 0.5 min intervals up to 2
min using a UV-Vis spectrophotometer (UV-2550, Shi-
madzu, Kyoto, Japan). Enzyme specific activity is defined
as units (one peroxidase activity unit defined as absor-
bance at 470 nm changes per minute) per g of fresh
weight.

CAT assay

CAT activity was assayed according to the method of
Zhang et al. [52]. CAT activity was determined by a
UV-Vis spectrophotometer (UV-2550, Shimadzu, Kyoto,
Japan) in 2.8 mL reaction mixture containing 1.5 mL
0.05 M sodium phosphate buffer (pH 7.8), 1 mL deio-
nized water and 0.3 mL 0.1 M H,0O, prepared immedi-
ately before use, then 0.2 mL enzyme extract was added.
The CAT activity was measured by monitoring the
decrease in absorbance at 240 nm at 0.5 min intervals
up to 2 min as a consequence of H,O, consumption.
Activity was expressed as units (one catalase activity
unit defined as absorbance at 240 nm changes per min-
ute) per g of fresh weight.

Examination of MDA content

Level of lipid peroxidation was expressed as the content
of malondialdehyde (MDA) according to Zhang et al.
[52]. The fresh samples from each treatment were
homogenized in 5 mL of 10% trichloroacetic acid (TCA)
with a pestle and mortar at the end of each time interval
(3 d). Homogenates were centrifuged at 4000 x g for 20
min. To each 2 mL aliquot of the supernatant, 2 mL of
0.6% 2-thiobarbituric acid (TBA) in 10% TCA was
added. The mixtures were heated in boiled water for 15
min and then quickly cooled in an ice bath. After centri-
fugation at 4000 x g for 10 min, the absorbance of the
supernatant was recorded at 532 nm and 450 nm. Lipid
peroxidation was expressed as the MDA content in
nmol per g of fresh weight.

Measurement of soluble protein content

Measuring soluble protein content in this investigation
was carried out according to Bradford’s method [53]
using BSA as a standard. The fresh roots and leaves
from each treatment (6 seedlings) were washed in dis-
tilled water, dried and put in a mortar with 5 mL 0.05
M PBS (pH 7.8) at the end of each time interval (3 d) of
the Al treatment. The homogenate was centrifuged at
10,000 x g for 20 min and the supernatant was used for
analyzing soluble protein content. The soluble protein
content was expressed as mg per g fresh weight.

Statistical analysis

Each treatment was replicated 6 times for statistical
validity. Analysis of variance of the data was done with
SigmaPlot 8.0 software. For statistical analysis, one-way
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analysis of variance (ANOVA) and ¢-test were used to
determine the significance at P < 0.05.
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