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Abstract

Background: Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons
(PAHSs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore
PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in
roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However,
information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a
mechanism-based phytoremediation strategy to improve treatment efficiency.

Results: Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was
phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were
first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular
organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular
partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the
plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid
contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and
organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the
dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in
subcellular walls and organelle fractions than did phenanthrene.

Conclusions: Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular
partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular
fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic
compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell
organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in

root cells.

Background

Polycyclic aromatic hydrocarbons (PAHs) are a group of
persistent organic contaminants (POPs) that are ubiqui-
tous in the environment [1-3]. Their toxicity (e.g., muta-
genic, carcinogenic) and potential of accumulation in
biota have led to concern about their fate and transport
in the environment [4-6]. The major sources of PAHs in
the environment include incomplete combustion of
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organic residues (polymerization of benzene rings at
high temperature), petroleum production, volcanic erup-
tions, and enzymatic polymerization of the benzene ring
from plant exudates to the soil [7,8]. Although these
contaminants are mainly metabolized and decomposed
via environmental biotic and abiotic processes [9,10],
PAHs in the environment have gradually increased over
the past several decades. For example, in Daya Bay,
South China, before 1955, the temporal distribution of
PAH concentrations in sediments was below 150 pg-kg™
(dry weight), but by 1995, concentrations had risen to
300 pg-kg' [11]. This increased PAH accumulation in
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the environment is because the rate of PAH release
from anthropogenic activities is greater than the rate of
natural attenuation.

Several remediation technologies and protocols have
been developed to restore PAH-contaminated sites [7].
Phytoremediation is a potent and efficient approach that
removes PAHs from contaminated sites into plants and
decomposes them to less hazardous or non-hazardous
forms with minimum input of chemicals and energy
[7,12-15]. Previous studies have shown the efficacy of
plant uptake and metabolism of PAHs in removing
PAHs from the environment [16-18]. In general, two
primary processes are responsible for PAH transfer and
distribution in plant tissues: (1) transfer between plant
tissues and cells driven by transpiration and the PAH
concentration gradient across plant-cell components
and (2) accumulation of PAHs in plant tissues, with the
extent related to plant lipid contents [18-21]. However,
the factors that influence PAH transfer and distribution
in plants as well as their metabolism in cells are not
clear. Plant uptake of PAHs from contaminated media is
primarily through the roots and secondarily through
leaves [16-18]. PAHs and their degradation products
have frequently been detected within plant tissues [13].
A recent study has shown that in Zea mays phenan-
threne can be metabolized into more polar products
[22]. In another study, anthracene and formed metabo-
lites were bound to several cell-wall components, such
as pectin, lignin, hemicellulose, and cellulose [23]. Simi-
larly, Wild et al. (2005) investigated the distributions of
anthracene and its metabolites in Zea mays and sug-
gested that the metabolism of anthracene occurs predo-
minantly in the cell wall [24].

Uptake from water and soil via plant roots is a major
pathway of PAH entry into plants. Wild et al. (2005)
reported that PAHs first adsorbed to root surfaces and
then passed through the membranes of adjoining cells
before accumulating in cell walls and vacuoles [24]. The
amount of uptake depended primarily on the lipid con-
tent of plant roots, in which protein, fats, nucleic acids,
cellulose tissues, and other components all contain lipo-
philic components, which appear to be the primary
domains where PAHs accumulate once they penetrate
plant root cells [18]. Unfortunately, despite extensive
studies on the transport of organic contaminants (espe-
cially PAHs) in plants, information about PAH distribu-
tions in intracellular tissues of plant roots, stalks, and
leaves is lacking. This limits the development of
mechanism-based phytoremediation strategies to better
improve treatment efficiency.

In this study, we investigated the uptake and subcellu-
lar distributions of PAHs in root cells of ryegrass
(Lolium multiflorum Lam.), which is widely used in the
phytoremediation of PAH-contaminated sites owing to
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its fibrous root system and large specific root surface
area. Our results will enhance the understanding of
PAH transfer mechanisms in plants and their effects on
the distribution of PAHs in plants.

Results and Discussion

Uptake of phenanthrene and pyrene by roots

In Figure 1, the uptake of phenanthrene and pyrene
from Hoagland medium by ryegrass roots is shown as a
function of exposure time. The uptake rate and magni-
tude of uptake of phenanthrene and pyrene by ryegrass
roots differed. Concentrations of phenanthrene and pyr-
ene in roots increased with exposure time, reaching a
maximum at ~100 h. Although phenanthrene concen-
trations in roots were higher within this timeframe, they
were less than two times the concentration of pyrene,
most likely because of a higher initial concentration in
the medium of phenanthrene (2.5 mg-L™") than of pyr-
ene (0.5 mg-L™"). From 100 to 240 h, the phenanthrene
concentration in roots decreased sharply from 90 to 18
mgkg™, whereas that of pyrene declined gradually from
60 to 48 mgkg'. These differing uptake patterns could
result from a difference in the migration of phenan-
threne and pyrene to ryegrass shoots, their degradation
in roots, or both. The slower rate of pyrene reduction
after 100 h indicates that pyrene is recalcitrant to meta-
bolism in roots and that, as the more lipophilic com-
pound, it exhibits a strong affinity for plant tissues,
slowing its transport from roots to shoots.

Although spontaneous volatilization could be a cause
of PAH dissipation from water, it is thought to be pri-
marily related to plant accumulation and metabolism
[2]. Figure 2 shows the dissipation efficiency of PAHs
from Hoagland solution by ryegrass, which we defined
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Figure 1 Concentrations of phenanthrene and pyrene in

ryegrass roots as a function of uptake time. .. means

concentrations of phenanthrene and pyrene in ryegrass root.
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Figure 2 Dissipation efficiency (%) of phenanthrene and
pyrene by ryegrass from aqueous solution as a function of
exposure time. The values were defined as ratio of PAH removal to
the initial concentration from the aqueous solution. It explained in
principle the plant-affected dissipation of phenanthrene and pyrene
from solution, and such dissipation was primarily related to plant
accumulation and metabolism.

as the ratio of PAH removal to the initial concentration
of PAH in aqueous solution. Dissipation efficiency
increased gradually with exposure time, reaching 92%
for phenanthrene and 62% for pyrene at 250 hours. This
result is consistent with the relatively rapid reduction of
phenanthrene in ryegrass roots, which could be due to
its high metabolism rate in ryegrass, relatively quick
migration from roots to shoots, or both.

The root concentration factor (RCF) describes the
capability of roots to accumulate contaminants from
direct contact with an aqueous environment, which is
here defined as the ratio of PAH concentration in roots
(Croot) to that in the culture medium (Cyopytion): RCF =
Croot! Csolution [25-27]. RCF values increased with
increasing root/solution contact time before approach-
ing a nearly constant value after 150 h (Figure 3). The
RCF values of pyrene were about two times greater than
those of phenanthrene. Our previous study indicated
that the lipophilicity (e.g., log K,) of a compound is a
determinant of the magnitude of plant uptake [18]. The
higher pyrene RCF is due to its greater lipophilicity (log
K, = 5.32) compared with that of phenanthrene (log
Kow = 4.46). Gao et al. (2004) reported that pyrene
uptake by plants from soil was 4-7 times greater than
uptake of phenanthrene [18]. Together, these results
suggest that more lipophilic organic contaminants have
a higher propensity for uptake in plants via roots.

Subcellular movement and distribution of phenanthrene
and pyrene in root cells

Figure 4 shows phenanthrene and pyrene concentrations
in root subcellular fractions. Phenanthrene concentrations
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Figure 3 Root concentration factor (RCF) of phenanthrene and
pyrene for ryegrass uptake from aqueous solution. Root
concentration factor (RCF) describes the capability of roots to
accumulate contaminants from the direct contact with the aqueous
environment, which is here defined as the ratio of PAH
concentration in root (Ceep) to that in culture medium (Cyoiution), i-€.

RCF = CGoot’Csolution:

in cell walls and organelles increased gradually to 79
and 95 mgkg, respectively, and then decreased to 16.5
and 17 mgkg™ as exposure time lengthened (Figure 4a).
Pyrene underwent a similar uptake pattern: pyrene con-
centrations in cell walls and organelles rose to 58 and
71 mgkg™, respectively, and then decreased to 38 and
56 mgkg ' (Figure 4b). Before 70 h of uptake, concen-
trations of both PAHs in cell walls were greater than
those in organelles. Moreover, the uptake by organelle
components was slower in reaching a maximum relative
to cell walls. The two PAHs first adsorbed onto cell
walls from the culture medium, and they then diffused
into cell organelle components. After 70 h, a relatively
higher concentration of both PAHs was found in the
organelle fraction than in cell walls due to the greater
accumulation of lipophilic compounds in the fraction
containing a higher lipid content, i.e., organelle compo-
nents. After 96 h of exposure, phenanthrene uptake
rapidly decreased in root cell walls and organelles,
whereas the decrease in pyrene was much slower in
these two subcellular fractions. This trend is consistent
with the uptake patterns of the two contaminants by
ryegrass roots shown in Figure 1.

PAHs in roots were distributed into three subcellular
fractions: water-soluble, cell wall, and organelle. The
proportions of phenanthrene and pyrene in the water-
soluble, wall, and organelle fractions are plotted against
exposure time in Figure 5. From 12 h to 240 h of expo-
sure, the percentage of phenanthrene in cell walls nota-
bly descended from 84% to 42% and pyrene decreased
from 60% to 41%. Within the same period,
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Figure 4 Concentrations of phenanthrene (a) and pyrene (b) in
concentrations of phenanthrene and pyrene in root subcellular fractions.

root cell walls and organelles as a function of time. C; means

phenanthrene and pyrene distributions in organelles
increased from 8.5% to 41% and from 21% to 33%,
respectively. Both PAHs showed a relatively small varia-
tion in the proportion in the aqueous soluble fraction,
~10-15% for phenanthrene and ~10-20% for pyrene.
Thus, at the beginning of uptake (i.e., < 96 h), the
decrease of PAH in cell walls largely corresponded to
the increase in cell organelles, suggesting that PAHs
first accumulated in cell walls via direct contact with
Hoagland solution and then gradually transferred to
fractions inside cells, such as organelles. After 96 h of
exposure, the distributions of both PAHs in cell compo-
nents approached a relatively stable state in cell walls
and organelles (Figure 5). In ryegrass root cells, content
in cell walls was 8.9%, and that in organelles was 6.0%.

similar amount of each PAH compared with that in cell
walls, likely owing to the higher lipid content of orga-
nelles. Generally, the uptake capability of root tissues
for organic lipophilic compounds increases with K,,,
value (i.e., Ko, > ~10%), with more lipophilic compounds
showing a higher accumulation in plants, particularly in
plant tissues containing a high lipid content
[20,21,28,29]. Lipids in plant cell walls are composed
mostly of polysaccharides (90%), with a few structural
proteins, lignin, lectin, and mineral elements as well as a
very small lipid component. In contrast, the lipid con-
tent of plant organelles is 15-30% [30], enabling them to
draw PAHs from the cell wall. Thus, the relatively
higher lipid content of the organelle fraction is believed
to be responsible for the greater accumulation of PAHs,
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Figure 5 Proportions of phenanthrene (a) and pyrene (b) distributed in cell water soluble fraction, wall and organelle as a function of
uptake time. The proportion of PAHs was calculated from the measurement of PAH in each fraction to the total amount in ryegrass root cells.
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established between organelles and cell walls in the
beginning stage of uptake (< 96 h) is the driving force
for the diffusion of PAHs to interior cell components.

As shown in Figure 5, PAH concentrations in soluble
components stayed nearly constant. The separated
soluble cellular components, mainly consisting of cell
solution and largely concentrated in the cell matrix
between cells or organelles, can be regarded as an
intracellular buffering distribution phase. Due to the
hydrophobicity of PAHs, these aqueous substances
were not easily enriched. Thus, the non-affinity
between PAHs and soluble cellular components may
result in distributive constant and low partitioning
proportions.

Subcellular fraction-concentration factor (SFCF)
values, defined as the ratio of PAH concentration in
subcellular fractions to that in water-soluble cellular
components, are shown in Figure 6. The SFCF of phe-
nanthrene in cell walls decreased from 101 to 20 L-kg™
over 240 h of exposure. For pyrene, the SFCF in cell
walls first increased from 16 to 48 L-kg™' and then
decreased rapidly to < 25 L-kg'. The difference in cell-
wall SFCFs of phenanthrene and pyrene likely resulted
from the different properties of the two PAHs, as in the
beginning stage, pyrene tended to accumulate more in
cell walls than in water-soluble components owing to its
higher logK,,,.

In the initial 48 h, the SFCFs of the two PAHs were
greater in cell walls than in cell organelles. After that
period, organelle fraction SFCFs slightly exceeded those
of cell walls. These results suggest that within the first
48 h of exposure, subcellular transport of PAHs
occurred from cell walls to intracellular organelles as a
result of the concentration gradient.
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Conclusions

Transpiration is generally considered to be the main
transfer mechanism of PAHs in plants, such as from
roots to stalks and leaves [9]. PAHs initially adsorb to
plant cell walls and then gradually diffuse into subcellular
tissues. The lipid contents of intracellular components
determine the extent of lipophilic compound accumula-
tion, and the diffusion rate is related to the concentration
gradient established between cell walls and organelles
inside cells. In addition, although both phenanthrene and
pyrene are grouped among organic compounds that
share similar properties, pyrene displays greater accumu-
lation factors in subcellular walls and organelle fractions
due to a higher logK,,,. Our results will be useful in eval-
uating human exposure risks of PAH-contaminated
crops and in developing appropriate strategies for the
phytoremediation of PAH-contaminated sites.

Remaining question

To our best knowledge, this is the first paper reporting
the distribution of persistent organic pollutants (POPs),
with PAHs as representatives, in plant subcellular tissues.
It is noteworthy that in this study, although the negligible
amounts of pure cell membrane could not be separated
from other cell fractions by the centrifugal method and it
was merged into the soluble components in the investiga-
tion, results of this work open new insights into POP
subcellular transport and distribution in plants.

Methods
Chemicals
Phenanthrene and pyrene (> 98% purity) were pur-
chased from Sigma-Aldrich GmbH (Munich, Germany).
Table 1 lists some physicochemical properties of the

100 ] phenanthrene
—e— cell wall
—o-- organelles
80
""O\
w60+
o
Z
40 - . s,
20 ,/"’ °
0.0
0 T T T T T T T T T T T
0 50 100 150 200 250
Time (h)
water-soluble components.

Figure 6 Subcellular fraction concentration factors (SFCF) of phenanthrene (a) and pyrene (b) for ryegrass root uptake as a function
of time 0~240 h. SFCF was defined as the ratio of PAH concentration in subcellular fractions including cell wall and organelle to that in cell
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Table 1 Some physicochemical properties of
phenanthrene and pyrene

PAHs Molar weight Water solubility (mg-L"  logKo.,
(g-mol™) at 25°C)

Phenanthrene 17823 1.18 446

Pyrene 202.26 0.12 532

two PAHs. Milli-Q grade water (Millipore, Billerica, MA,
USA; 18.2 MQ-cm™ resitivity) was used to prepare solu-
tions. Hoagland solution was prepared in 1.0 L water as
follows: KNO3; (607 mg), Ca(NO3), (945 mg), (NHy)
3PO3 (115 mg), MgSO, (493 mg), FeSO,-7H,O (13.9
mg), EDTA-2Na (18.65 mg), KI (0.00415 mg), H;BO;
(0.031 mg), MnSO, (0.1115 mg), ZnSO4 (0.043 mg),
Na;MoOQO, (0.00125 mg), CuSO,4 (0.000125 mg), and
CoCl, (0.000125 mg).

Plant uptake experiment

Ryegrass root uptake of phenanthrene and pyrene from
aqueous Hoagland solution was investigated using batch
settings. A stock methanol solution of phenanthrene
and pyrene was added to aqueous Hoagland solution
according to the method described by Chapin et al. [31].
The methanol concentration in the Hoagland solution
was less than 0.1% (vol/vol). Following germination in
vermiculite, seedlings were transferred to a tray contain-
ing Hoagland solution and grown in a greenhouse at
25-30°C in daytime and 20-25°C at night. After about 2
weeks of growth, the plants were approximately 10 cm
tall with relatively mature roots, and they were used for
uptake experiments.

The seedlings were then transplanted to Hoagland
culture solutions containing phenanthrene and pyrene.
Twelve seedlings were cultured in each glass beaker,
with roots submerged in the culture medium. Four
replicates of each treatment were conducted. During the
experimental period, the seedlings were incubated at 25-
30°C during daytime and 20-25°C at night. The culture
beakers were wrapped with black cloth to reduce the
impact of potential photolysis. Each day, PAH-free con-
trol Hoagland solution was added to both the experi-
mental and PAH-free control beakers to maintain the
same initial volume of each treatment. At 12-, 24-, 48-,
96-, 168-, and 240-h exposure, the Hoagland solution
and corresponding seedlings were sampled and prepared
for PAH analysis. Seedling roots were washed several
times using Milli-Q water and then separated into cell-
wall and organelle fractions to measure PAH distribu-
tions at the subcellular level (see below).

Subcellular fraction
A modification of the methods of Lai et al. (2006), Li
et al. (2006), and Wei et al. (2005) was used to obtain
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subcellular fractions of root cells [32-34]. Briefly, fresh
roots were mixed with extraction buffer containing 50
mM HEPES, 500 mM sucrose, 1.0 mM DTT, 5.0 mM
ascorbic acid, and 1.0% (w/v) polyclar AT PVPP. The
buffer solution pH was adjusted to 7.5 using 1.0 M
NaOH. The root tissue extract was ground, passed
through a 60-um sieve, and subsequently centrifuged at
500 g for 5 min to obtain a pellet of cell debris. This
pellet was referred to as the wall fraction of the root
cells. The supernatant was then centrifuged at 10,000 g
for 30 min to obtain the cell organelle fraction. All
extraction steps were performed at 4°C. The dried cell-
wall and organelle powders were placed in a vacuum
freeze drier (Labconco, Kansas City, MO, USA) at -65°
C. Fraction contents, determined gravimetrically, were
6.0% organelles and 8.9% cell walls, with the remainder
being water and water-soluble fractions.

Analysis of PAHs

PAHs were extracted from cell fractions using ultrasoni-
cation [18]. In brief, the cell fractions (cell walls and
organelles) were freeze-dried and then extracted for 1 h,
using an acetone and hexane mixture (vol/vol = 1:1),
followed by 1 h of ultrasonic extraction. This acetone/
hexane extraction step was repeated three times, and
the collected extracts were combined. The solvents were
then evaporated using a rotary evaporator and
exchanged to 2 mL hexane, followed by a clean-up pro-
cedure through a 2-g silica gel column using an 11-mL
1:1 (v/v) elution of hexane and dichloromethane. The
samples were then evaporated and exchanged to metha-
nol, with a final volume of 2 mL. Phenanthrene and pyr-
ene were analyzed using high-performance liquid
chromatograph (LC-20AT; Shimadzu, Kyoto, Japan)
equipped with a UV detector and a ®4.6 x 150-mm
reverse phase Cig column. The UV-detector wavelength
was set at 254 nm. The mobile phase was spectrum-
pure methanol with a flow rate at 1.0 mL-min™, and the
column temperature was 30°C.

Statistical Analysis

All data were calculated using Origin version 7.0. Every
data point in the Figures is an average value. The stan-
dard deviation (SD), obtained from four parallel samples
using the Origin software, is shown in the Figures as an
error bar. Data were analyzed using analysis of variance
(ANOVA). The statistical package used was SPSS (Ver-
sion 11.0), and the confidence limit was 95%.
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