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Abstract

Background: Phosphoenolpyruvate carboxylase (PEPC) is a critical enzyme catalyzing the B-carboxylation of
phosphoenolpyruvate (PEP) to oxaloacetate, a tricarboxylic acid (TCA) cycle intermediate. PEPC typically exists as a
Class-1 PEPC homotetramer composed of plant-type PEPC (PTPC) polypeptides, and two of the subunits were
reported to be monoubiquitinated in germinating castor oil seeds. By the large-scale purification of ubiquitin (Ub)-
related proteins from lily anther, two types of PEPCs, bacterial-type PEPC (BTPC) and plant-type PEPC (PTPC), were
identified in our study as candidate Ub-related proteins. Until now, there has been no information about the
properties of the PEPCs expressed in male reproductive tissues of higher plants.

Results: Expression analyses showed that lily BTPC (LIBTPC) and Arabidopsis BTPC (AtBTPC) were significantly
expressed in pollen. The fusion protein AtBTPC-Venus localized in the cytoplasm of the vegetative cell (VC). Both
LIBTPC and AtBTPC expression initiated after the last mitosis before pollen germination. Lily PTPC (LIPTPC) and
monoubiquitinated LIPTPC (Ub-LIPTPC) remained at constant levels during pollen development. In late bicellular
pollen of lily, LIBTPC forms a hetero-octameric Class-2 PEPC complex with LIPTPC to express PEPC activity.

Conclusion: Our results suggest that an LIBTPC:Ub-LIPTPC.LIPTPC complex is formed in the VC cytoplasm during
late pollen development. Both LIBTPC and AtBTPC expression patterns are similar to the patterns of the
appearance of storage organelles during pollen development in lily and Arabidopsis, respectively. Therefore, BTPC is
thought to accelerate the metabolic flow for the synthesis of storage substances during pollen maturation. Our
study provides the first characterization of BTPC in pollen, the male gametophyte of higher plants.

Background

Phosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31)
catalyzes the irreversible B-carboxylation of phospho-
enolpyruvate (PEP) to yield oxaloacetate and inorganic
phosphate (Additional file 1). PEPC exists widely in
plants, algae, and bacteria, but not in animals or fungi
[1]. In plants, PEPC acts as an allosteric enzyme and is
phosphorylated by PEPC protein kinase [1-3]. Active
PEPC commonly consists of a plant-type PEPC (PTPC)
homotetramer, and is typically inhibited by L-malate
and aspartic acid and activated by glucose-6-phosphate
(Glc-6-P). PEPC has been extensively studied in C4 and
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CAM photosynthesis, because it is a critical enzyme
catalyzing the initial reaction of atmospheric CO, fixa-
tion [1]. It also plays pivotal metabolic roles in nonpho-
tosynthetic and C3 photosynthetic cells, particularly in
the anaplerotic replenishment of the TCA cycle inter-
mediates consumed during lipid synthesis [4], biosynth-
esis, and nitrogen assimilation [5]. The genomic analysis
of the PEPC of Arabidopsis and rice first revealed that
higher plants contain a small PEPC family containing
two types of PEPC, PTPC and bacterial-type PEPC
(BTPC) [6]. BTPC resembles the bacterial PEPC rather
than the common plant PEPC in terms of its gene struc-
ture and the absence of an N-terminal seryl-phosphory-
lation domain, a hallmark of PTPC (Additional file 2).
Recent studies have indicated that BTPC in developing
castor oil seeds (COS) interacts with PTPC to form a
heterooctameric complex with PEPC activity [7,8].
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Recently, PTPC was reported to be a ubiquitinated
protein in Arabidopsis [9,10] and a monoubiquitinated
protein in germinated COS [11]. Ubiquitination is one
of the major protein modifications that occur in all
eukaryotic cells, and is critical for the regulation of var-
ious cellular functions, such as DNA damage repair,
endocytosis, endosomal sorting, and signal transduction,
in addition to proteolysis by the 26 S proteasome [12].
We previously established a method for the purification
and identification of Ub-related proteins (ubiquitinated
proteins and their associated proteins) in Arabidopsis
seedlings [13]. Applying this method, we purified and
identified PTPC and BTPC from the lily anther as can-
didate Ub-related proteins (Additional files 3 and 4).

As far as we know, no previous study has focused on
the PEPC expressed in plant reproductive tissues.
Because AtBTPC showed significant expression in
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stamen (Figure 1) and COS BTPC is reported to interact
with PTPC [7,8], we focused here on BTPC and PTPC
in male reproductive tissues. In this study, we analyzed
the expression, localization, and interaction of BTPC
and PTPC in lily and Arabidopsis. Our results suggest
that BTPC forms a complex with PTPC and monoubi-
quitinated PTPC (Ub-PTPC) to accelerate the accumula-
tion of storage substances during pollen maturation.

Results

BTPC and PTPC are identified as Ub-related proteins in
lily anther, and AtBTPC shows stamen-specific expression
With the large-scale purification of Ub-related proteins
from the lily anther, 13 proteins were identified as can-
didate Ub-related proteins by liquid chromatography-
tandem mass spectrometry (LC-MS/MS). The limited
number of proteins identified is probably attributable to
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Figure 1 Expression pattern of the putative orthologous genes in various Arabidopsis organs determined by RT-PCR analysis. AGl code,
gene name, and gene ID for each Arabidopsis orthologue are represented by bold letters, shown in parentheses, and found on the 2nd line,
respectively. Ubiquitin 11 (UBQ11, At4g05050) was used as the standard. 1, seedlings; 2, roots; 3, rosette leaves; 4, lateral leaves; 5, stems; 6,
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the small available database of lily proteins. Nineteen
distinct orthologous Arabidopsis genes were determined
based on the database (Additional file 4). Five candidate
proteins (vacuolar H"-ATPase subunit, F1 ATPase, fruc-
tose-bisphosphate aldolase-like protein, pyridoxine bio-
synthesis protein-like, and metalloendopeptidase) have
been reported in the Arabidopsis pollen proteomes
[14,15]. Moreover, two orthologous Arabidopsis genes
(TAIR: At1g78900 and At3g02230) have been reported
to be essential for pollen development [16,17].

To determine the expression patterns of the identified
candidate Ub-related proteins, the mRNA expression of
putative Arabidopsis orthologues were examined
because of the limited genomic information available for
the lily. Fourteen orthologous genes were selected for
RT-PCR analysis in various vegetative tissues, and all of
the genes investigated were expressed in flowers. The
expression of each gene was examined in the flower
organs. All the genes were expressed in the stamen
(Figure 1). Among them, the transcripts of a-tubulin 1
(TUA1; TAIR Atl1g64740) and AtBTPC (Atppc4; TAIR
At1g68750) showed almost stamen-specific expression.
TUA1 is already known to be expressed specifically in
pollen [18,19]. Therefore, we focused our attention on
BTPC. We found that one of the PTPC orthologous
genes, Atppcl (TAIR: Atlg53310), is also expressed in
stamens (Figure 1). PTPC has also been identified as a
Ub-related protein and they are reported to interact in
COS [7,8], so both types of PEPC were investigated in
the following analysis.

To verify that BTPC and PTPC are Ub-related pro-
teins, lily anther proteins were immunoprecipitated with
anti-Ub antibody (FK2; Nippon Bio-Test Laboratories,
Tokyo, Japan), which selectively recognizes the Ub moi-
ety but not free Ub [20]. As expected, both bands repre-
senting LIBTPC and LIPTPC, of the expected sizes (see
Figure 2A and 2B for the specificities of the antibodies),
were co-immunoprecipitated with FK2, indicating that
they are the Ub-related proteins in the lily anther (Fig-
ure 2C). Another band, larger than the expected size of
LIPTPC, was also detected with the anti-AtPTPC anti-
body (asterisks in Figure 2B and 2C). The ‘larger’ anti-
AtPTPC antibody immunoreactive band was approxi-
mately 8 kDa larger than the ‘smaller’ immunoreactive
band and showed similar mobility to the monoubiquiti-
nated PTPC (Ub-PTPC) band in germinated COS [11].
The larger bands were also co-immunoprecipitated with
FK2, but not with mouse serum (Figure 2C), indicating
that the larger bands were probably Ub-LIPTPCs.

Large-scale purification enabled the identification of
truncated sizes of BTPC and PTPC (Additional files 3
and 4), indicating that the in vitro proteolytic cleavage
of the two proteins occurred during protein extraction
and purification (these procedures require approximately
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Figure 2 Specificities of the antibodies produced and
immunoprecipitation. (A) An anti-AtBTPC antibody recognized an
AtBTPC band of the expected size (ca. 116 kDa) in flower bud
proteins from wild-type Arabidopsis (AF™) and an LIBTPC band of
equivalent size in the lily anther (LA) proteins. No AtBTPC band was
detected in the flower bud proteins from the atppc4 mutant plants
(AFPPE/PPE) (B) The anti-AtPTPC antibody recognized an AtPTPC
band of the expected size (ca. 110 kDa) in the flower bud proteins
from wild-type Arabidopsis (AF*") and an LIBTPC band of equivalent
size in the lily anther (LA) proteins. Note that the anti-AtPTPC
antibody recognized AtPPC1, AtPPC2, and AtPPC3 because of the
high homology of their amino acid sequences (see Additional file
2). (Q) Immunoprecipitation with FK2 of LIBTPC (upper) and LIPTPC
(middle) from lily anthers containing late bicellular pollen. Mouse
serum was used as the control. Note that FK2 immunoprecipitated
greater amounts of LIPTPC (lower band) than did mouse serum. The
upper bands detected with anti-AtPTPC antibody (asterisks) likely
represent monoubiquitinated LIPTPC (Ub-LIPTPC). The proteins
precipitated with FK2 were immunoblotted with a polyclonal
antibody directed against Ub (apoly-Ub), which detects both
ubiquitinated protein and free Ub (bottom), confirming that FK2
precipitates Ub-related proteins.
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10 hours). In contrast, immunoprecipitated Ub-related
proteins contained the expected sizes of BTPC and
PTPC (Figure 2C). The size discrepancies of purified
BTPC and PTPC between these two immuno-purifica-
tion experiments may be due to the different purifica-
tion periods because in vitro COS BTPC proteolysis
in an inappropriate buffer was also observed when the
incubation period was extended [7]. It seemed like
that the anti-AtBTPC antibody detected two bands
(Figure 2C), implying the truncation of BTPC by proteo-
lysis or post-translational modification (e.g., monoubi-
quitination or phosphorylation), although these
possibilities need to be confirmed in future studies.

LIBTPC is specifically expressed in pollen after pollen
mitosis | (PMI) and forms a complex with LIPTPC

To clarify the tissue specificity of LIBTPC and LIPTPC
within the lily anther, the anthers of 14 cm flower buds
were dissected into the anther wall and pollen, and an
immunoblot analysis was performed with anti-AtBTPC
and anti-AtPTPC antibodies. As shown in Figure 3A,
LIBTPC specifically existed in the pollen, whereas
LIPTPC was detected in both pollen and the anther wall.

The expression of both PEPCs was examined in pollen
at various developmental stages. During pollen develop-
ment, an asymmetric division of the haploid micro-
spores, called PMI, produces two differently fated cells,
a larger VC and a smaller generative cell (GC). The GC,
which is enclosed within the VC, undergoes a second
mitotic division called “pollen mitosis II” (PMII), giving
rise to two sperm cells (SCs) before fertilization [21,22].
PMII in the lily pollen occurs after pollen germination,
so the mature pollen is bicellular at anthesis. The lily
pollen developmental stages are distinguishable based
on the flower bud length [23] (Figure 3B, top diagram).
Flower buds of 3-5 cm contain microspores, and PMI is
completed by the 7 cm flower bud stage [24]. The GC
morphology changes from round to spindle-like shape
in the 12-14 cm stages [25], and the pollen reaches
maturity at anthesis. Immunoblot analysis of LIBTPC
during pollen development demonstrated that LIBTPC
accumulation starts after PMI, and the amount increases
to the 12 cm flower bud stage, and is sustained at this
level until after anthesis (Figure 3B). LIPTPC and Ub-
LIPTPC remained at constant levels during pollen
development.

To investigate the interaction between the LIBTPC
and LIPTPC proteins and their PEPC activity in pollen,
the lily pollen proteins were separated by nondenaturing
polyacrylamide gel electrophoresis (PAGE), followed by
in-gel staining for PEPC activity and immunoblot analy-
sis (Figure 3C). In the microspores at the 3 cm flower
bud stage, the band showing PEPC activity only reacted
with the anti-AtPTPC antibody. In pollen from the
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14 c¢cm flower buds, two PEPC active bands were
detected and the smaller band only reacted with the
anti-AtPTPC antibody, whereas the larger band reacted
with both the anti-AtPTPC and anti-AtBTPC antibodies.
The molecular masses of the smaller and larger bands
were approximately 450 and 900 kDa, respectively. This
indicates that LIBTPC interacts with LIPTPC, forming
an active PEPC complex in late bicellular pollen.

AtBTPC promoter is preferentially active in pollen
Because the lily is refractory to molecular analysis, the
expression patterns of Arabidopsis PEPC orthologues
were analyzed of detail in plant tissues. The Arabidopsis
PEPC gene family contains three PTPC genes (Atppcl
[TAIR: At1g53310], Atppc2 [TAIR: At2g42600], and
Atppc3 [TAIR: At3g14940]) and one BTPC gene
(Atppc4 [TAIR: At1g68750]; Additional file 2). Trans-
genic plants were produced in which the -glucuroni-
dase (GUS) reporter gene was placed under the control
of the promoter of each Atppc gene. To roughly com-
pare the expression levels of these genes, all the trans-
genic lines were incubated with the substrate for the
same time. As expected, the AtBTPC gene promoter
ProAtppc4 showed significant activity in mature pollen
(Figure 4P). Strong GUS staining was detected in the
stamens in the late flower bud stage, whereas it was
never observed in the younger flower buds (Figure 40).
Faint activity was observed in the root cortices of the
same transgenic lines (Figure 4N), but no signal was
observed in the leaves (Figure 4M), even with longer
incubation. Transgenic plants expressing green fluores-
cent protein (GFP) under the control of ProAtppc4
showed specific GFP signal in the pollen within the sta-
mens (data not shown), indicating that AtBTPC is
expressed specifically in pollen. Conversely, weaker GUS
staining was observed in the mature pollen in all trans-
genic lines when the GUS reporter gene was driven by
the AtPTPC gene promoters (ProAtppcl-3). Among the
AtPTPCs, ProAtppc3 activity seemed to be strongest in
the stamen and pollen in the late flower bud stage
(Figure 4C-D, G-H, and 4K-L). ProAtppcl activity was
negligible in mature pollen (Figure 4D), whereas GUS
staining was observed in the stamens of the younger
flower buds (Figure 4C). All the AtPTPC gene promo-
ters were active in all the somatic tissues investigated
here, but with different expression patterns (Figure 4A-
C, E-G, and 4I-K).

AtBTPC localizes in vegetative cell cytoplasm and shows
limited expression during pollen development

To analyze the localization and the expression pattern of
AtBTPC in the pollen during pollen development,
“fluorescent tagging of full-length proteins technology”
was applied, because this strategy was available to
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Figure 3 Expression analysis of lily PEPCs in male tissues and developing pollen. (A) Expression of LIBTPC and LIPTPC in anther tissues.
Proteins (10 pg) from the pollen and anther wall of 14 cm flower buds were treated with anti-AtBTPC (upper) or anti-AtPTPC (middle) antibody.
Non-specific reactive bands were used as loading control (bottom). The upper bands detected with anti-AtPTPC antibody (asterisk) represent Ub-
LIPTPC. (B) Expression patterns of LIBTPC and LIPTPC in developing microspores and pollen. Top diagram illustrates lily pollen development, each
stage of which corresponds to the length of the flower bud (cm). Protein extracts from lily pollen (10 ug) were subjected to immunoblot
analysis with anti-AtBTPC (upper) or anti-AtPTPC (middle) antibody. The upper bands detected with anti-AtPTPC antibody (asterisk) represent Ub-
LIPTPC. Non-specific reactive bands were used as loading control (bottom). PMI, pollen mitosis I; MS, microspore; EB, early bicellular pollen; MB,
mid bicellular pollen; LB, late bicellular pollen; GC, generative cell; VC, vegetative cell; PA, post anthesis. (C) Nondenaturing PAGE analysis of
microspore and late bicellular pollen proteins (7 pg). The numbers in each panel represent the length of the flower bud (cm) containing the
microspores (3) or late bicellular pollen (14). In-gel staining for PEPC activity (left), and immunoblot analysis with anti-AtPTPC (middle) or anti-
AtBTPC (right) antibody were performed.

monitor the expression patterns and subcellular localiza-
tion of Arabidopsis gene products in planta [26]. The
transgenic plants were produced by introducing the
native genomic Atppc4 gene, including the 5’ and 3’
untranslated regions (UTRs), coupled to Venus [27],
which encodes a variant of yellow fluorescent protein,

with low sensitivity to pH (Figure 5A). Unlike lily pollen,
Arabidopsis pollen undergoes PMII before pollen germi-
nation, so the mature pollen is tricellular at anthesis.
The stages of pollen development were distinguishable
based on the flower bud length (Figure 5B). A notable
fluorescent signal was observed in pollen at the 1.5 mm



Igawa et al. BMC Plant Biology 2010, 10:200
http://www.biomedcentral.com/1471-2229/10/200

Page 6 of 12

Figure 4 Activities of Atppc1-4 promoters in different organs. Histochemical localization of GUS reporter gene expression in rosette leaf (A,
E, I, M), root (B, F, J, N), flower buds (C, G, K, O), and mature pollen (D, H, L, P) driven by the Atppc! (A-D), Atppc2 (E-H), Atppc3 (I-L), or Atppc4
(M-P) promoter. Bars = 0.5 mm in A, G E G, |, K M, and O; 50 um in B .and N; 100 um in F and J; and 10 um in D, H, L, and P.

flower bud stage (1.5FB; Figure 5B, E, and 5QG). 4/,
6-Diamidino-2-phenylindole (DAPI) staining indicated
that pollen at 1.5FB was tricellular (Figure 5D), whereas
pollen preceding the 1.2 mm flower bud stage (1.2FB;
Figure 5B) was bicellular (Figure 5C). Confocal laser
scanning microscopic (CLSM) analysis of the pollen at
1.5FB showed that AtBTPC-Venus localized in the VC

cytoplasm, whereas there was no signal in the VC nuclei
or SCs (Figure 5E).

The levels of AtBTPC-Venus expression during pollen
development were estimated by analyzing the fluorescent
signal intensities (Figure 5F-I). Whereas no fluorescent
signal was observed in the pollen at 1.2FB (Figure 5F),
the signal with the most intense fluorescence appeared in
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Figure 5 Protein and gene expression of AtBTPC. (A) Schematic view of the gene structure of genomic Atppc4 (At1g68750) used for
expression analysis. Black boxes represent exons. The Venus gene was inserted at the Bst1
0.5 mm. (C, D) DAPI staining of pollen in 1.2 mm flower bud (1.2FB; C) and in 1.5
mm flower bud (1.5FB; D). VN, vegetative cell nucleus; GCN, generative cell nucleus; SCN, sperm cell nucleus. Scale bar =
of Venus fluorescence in pollen at stage 1.5FB. The blank regions correspond to VN and SC. Scale bar =
fluorescence in pollen within an anther at stages 1.2FB-2.2FB. Hemizygous T3 plants were used for the analysis. Each number in the bottom right
corner represents the relative fluorescence intensity. Note that the relative fluorescence intensity of the pollen at 1.2FB is given as
there was no fluorescent signal in the transgenic pollen at this stage. (J) Immunoblot analysis with anti-GFP antibody of flower buds from
homozygous T3 plants. Flower buds were analyzed at stages before 12FB (< 1.2FB) at
indicates a band of AtPPC4-Venus protein. The lower bands with star marks in all lanes are nonspecific bands. (K) RT-PCR of Atppc4 in flower
buds at different stages from wild-type plants. The stages of the flower buds are the same as in (J). Arabidopsis elongation factor
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the pollen at 1.5FB (Figure 5G). The intensity then
decreased sharply in the later developmental stages
(Figure 5H and 5I).

Immunoblot analysis of AtBTPC-Venus using anti-
GFP antibody showed that the AtBTPC-Venus protein
accumulated in the pollen at 1.5-1.8FB, supporting the
results of the CLSM analysis (Figure 5]). To confirm the
mRNA expression of endogenous AtBTPC in pollen,
RT-PCR of full-length Atppc4 was performed. As

expected, the Atppc4 transcripts accumulated strongly
in the pollen at 1.5-1.8FB, similar to the AtBTPC-Venus
protein (Figure 5K).

Discussion

RT-PCR and promoter-GUS analyses of Arabidopsis
PEPC genes revealed that AtBTPC was also preferen-
tially expressed in stamen (Figure 1), particularly in pol-
len (Figure 4P), similar to lily, whereas AtPTPCs
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(AtPPC1-3) were expressed more strongly in somatic
tissues. Unlike a previous study [6], however, the Atppcl
expression shown by our RT-PCR analysis was negligible
in somatic tissues (Figure 1). This may be due to the
reaction conditions or the developmental stages of the
investigated tissues, because transgenic plants with
ProAtppcl-GUS showed GUS staining in confined
regions of leaf, root, and flower (Figure 4A-C). The
difference in the ProAtppc3-GUS expression pattern
from the RT-PCR result reported by Sanchez et al. [6]
may be due to the same reason as that stated above
and/or differences in mRNA and protein stability. Ana-
lysis with a reporter protein fused to each Arabidopsis
PEPC would provide detailed information of AtPEPC
expression.

BTPC is significantly expressed in the pollen of both
Arabidopsis and lily (Figures 3A and 4), but the initia-
tion of the expression of each BTPC differs during pol-
len development (Figures 3B and 5). LIBTPC starts to
accumulate after GC formation, after PMI, whereas
AtBTPC expression starts immediately after SC forma-
tion, after PMII. Based on these findings, it seems that
the initiation of BTPC expression in pollen does not
depend on the mitosis type, but is triggered after the
‘last mitosis’ during pollen development, before germi-
nation. In both bicellular and tricellular pollen, the
expansion of the pollen grain, organelle differentiation,
and dehydration occur after the last mitosis for pollen
maturation [28]. However, pollen dehydration does not
seem to affect Atppc4 expression, because Atppc4d
expression started after PMII, but was not sustained
until anthesis (Figure 5), although it has been reported
that Atppc4 expression is inducible by drought stress in
root tissues [29].

We examined the AtBTPC-null mutant line, atppc4
(Figure 2A), but no abnormal characteristics were
observed in the mutant pollen when analyzed by DAPI
staining and ultrastructural observation, or in plant
growth or fertility (data not shown). Therefore, plant
BTPC may not be an essential factor for pollen develop-
ment or plant survival, at least under our experimental
growth conditions. Nevertheless, the expression of
BTPC is significant in the pollen, suggesting that BTPC
plays an important role in pollen development.

It is well known that PEPC is a PTPC homotetramer.
In a previous study with COS, the presence of low- and
high-molecular-mass PEPC isoforms was reported,
which were designated Class-1 (PTPC homotetramer,
410 kDa) and Class-2 PEPCs (PTPC:BTPC heteroocta-
mer, 910 kDa), respectively [7,30]. After nondenaturing
PAGE in our study, the small active PEPC band only
reacted with anti-AtPTPC antibody, whereas the large
active PEPC band reacted with both anti-AtPTPC and
anti-AtBTPC antibodies (Figure 3C), showing the same
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immunoreactivities as COS Class-1 and Class-2 PEPCs,
respectively [7]. The small and large active PEPC bands
in lily showed similar sizes to those of the COS Class-1
and Class-2 PEPCs, respectively. Therefore, the lily
PEPCs in the microspores and the late bicellular pollen
exist as complexes, and the small and large PEPC com-
plexes probably corresponded to the COS Class-1 and
Class-2 PEPCs, respectively. It has also been reported
that PTPC is monoubiquitinated in COS, resulting in a
Class-1 PEPC heterotetramer comprised of Ub-PTPC:
PTPC [11]. In this work, FK2 immunoprecipitated Ub-
LIPTPC from the lily anther containing late bicellular
pollen in addition to the native forms of LIBTPC and
LIPTPC (Figure 2C), suggesting that the native forms of
LIBTPC and LIPTPC are the associated proteins of ubi-
quitinated-LIPTPC resulting in the identification by
large-scale purification of Ub-related proteins from lily
anther (Additional file 3). In addition, Ub-LIPTPC was
present together with LIPTPC in the pollen throughout
its development from microspore to mature pollen
(Figure 3B). From these results, we infer that the Class-
1 PEPC complex in the microspore comprises Ub-
LIPTPC:LIPTPC and the Class-2 PEPC complex in the
late bicellular pollen comprises LIBTPC:Ub-LIPTPC:
LIPTPC.

PEPC is allosterically activated by Glc-6-P and inhibited
by L-malate and aspartic acid metabolized from oxaloace-
tate (Additional file 1). Recently, it was reported that
Class-2 PEPCs show much lower sensitivity to allosteric
activators and inhibitors than do Class-1 PEPC homote-
tramers, suggesting that the interaction of PTPC and
BTPC stabilize the metabolic flow under physiological
conditions that would otherwise inhibit Class-1 PEPC
[30-32]. It has also been reported that Class-1 PEPC het-
erotetramers of Ub-PTPC:PTPC are more sensitive to
both activators and inhibitors than are Class-1 PEPC
homotetramer of PTPC in COS [11]. These reported fea-
tures and our results together suggest that expressed
BTPC binds to the Ub-PTPC:PTPC complex, and that
the resulting BTPC:Ub-PTPC:PTPC complex is even less
sensitive to inhibitors, but maintains its higher sensitivity
to activators relative to the sensitivity of Class-1 PEPC
homotetramers. Consequently, it is speculated that the
BTPC:Ub-PTPC:PTPC complex may stabilize and accel-
erate the metabolic flow required for lipid and protein
synthesis in pollen (Figure 6). The increase in PEPC
activity in developing COS endosperm was coincident
with the onset of the most active phase of storage oil
accumulation [33]. It has also been reported that the pro-
tein content of transgenic bean plants expressing a Cory-
nebacterium glutamicum PEPC was elevated in their
seeds by up to 50% [34]. In lily pollen, there is a marked
increase in lipid bodies in the VC cytoplasm of the
mature pollen compared with those in the pollen before
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PMI [35]. In Arabidopsis tricellular pollen, storage
vacuoles accumulate after PMII and disappear from the
mature pollen just before anthesis and at anthesis [36].
The patterns of the appearance of storage organelles in
lily and Arabidopsis pollen almost coincide with the pat-
terns of LIBTPC and AtBTPC expression, respectively,
supporting our hypothesis that BTPC plays a role in the
acceleration of metabolic flow to facilitate the synthesis
of storage substances during late pollen development.
Previous studies of Class-2 PEPCs have suggested that
green alga and vascular plants have divergent PEPCs that
serve to function in adaptation for survival in different
environments [30-32,37]. It will be interesting to deter-
mine what triggers and suppresses the expression of
BTPC during pollen development. Further investigation
of Class-1 and Class-2 PEPCs is expected to provide
more information of the metabolic pathway underlying
the synthesis of storage substances in both bicellular and
tricellular pollens during development.

Conclusions

The large-scale purification of Ub-related proteins from
the lily anther should advance research into the repro-
ductive factors related to Ub-mediated protein modifica-
tions. In this study, BTPC was first found as a
Ub-related protein in pollen.

LIBTPC and AtBTPC show significant expression in
pollen and they are first expressed after the last mitosis
before pollen germination. The duration of their expres-
sion almost coincides with the appearance of storage
organelles during the maturation processes of both pol-
lens. The presence of BTPC:Ub-PTPC:PTPC with PEPC
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activity during pollen maturation is also suggested in
this study. It would be necessary to confirm the pre-
sence of the Ub-PTPC:PTPC and BTPC:Ub-PTPC:PTPC
complexes with their kinetic properties in pollen in
future studies. Furthermore, future tasks include clarifi-
cation of the AtPTPC proteins (AtPPC1-3) involved in
Class-1 and Class-2 PEPC formation during pollen
development because AtPTPCs show different expres-
sion patterns (Figure 2), and investigation of their post-
translational modifications, such as ubiquitination and
phosphorylation. The results are expected to shed light
on the role of PEPCs in pollen development.

BTPC is strongly expressed in the late stage of pollen
development, but an AtBTPC-deficient mutant plant,
atppc4, showed no abnormalities in pollen development,
at least under our experimental growth conditions. PEPC
itself is involved in the anaplerotic replenishment of inter-
mediates of the TCA cycle, and for this reason, any
obvious effects of BTPC deficiency may be difficult to
identify. Alternatively, analysis under various physiological
and growth conditions, such as varying temperatures, may
identify the physiological function of BTPC in the repro-
ductive process, because the thermal stability of Class-2
PEPC activity is relatively increased [32]. This is the first
characterization of BTPC in pollen, the male gametophyte
of higher plants. Our work provides new information for
the study of the function of BTPC in plants.

Methods

Primers

Information on all primers used in this study is given in
Additional file 5.

Class-1 PEPC complex
(Ub-PTPC:PTPC)

aspartic acid

|

} PEP

PEP — oxaloacetate oxaloacetate
L-malate L-malate
Lily: microspore —> PM| — bicellular pollen (sustained until anthesis)

Arabidopsis:  bicellular pollen — PMIl — tricellular pollen (not sustained until anthesis)

Figure 6 Schematic model of the hypothetical role of BTPC in lily and Arabidopsis pollen development. Before PMI in the lily microspore
or before PMII in Arabidopsis pollen, PEPC occurs as a Class-1 heterotetrameric PEPC complex comprising PTPC (green circles) and Ub-PTPC
(green circles with a smaller orange circle). Ub-PTPCPTPC is allosterically inhibited by L-malate and aspartic acid metabolized from oxaloacetate.
When BTPC (red circles) is expressed, PEPC becomes the Class-2 heterooctameric PEPC complex comprising BTPC:Ub-PTPC:PTPC and its
sensitivity to inhibitors is reduced, whereas its sensitivity to activators is maintained. Accordingly, the metabolic flow from oxaloacetate to
protein and lipid synthesis is enhanced during the process of pollen maturation.

Class-2 PEPC complex
(BTPC:Ub-PTPC:PTPC)

aspartic acid
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Plant materials

Trumpet lily (Lilium longiflorum cv. Hinomoto) was
grown in a greenhouse for immunoblot analysis and
nondenaturing PAGE.

Arabidopsis thaliana (ecotype Columbia 0) was grown
at 22°C under a 16/8 h light/dark cycle. A Salk line
(SALK_144112; background Columbia) of Atppc4 was
obtained from the Arabidopsis Biological Resource Cen-
ter http://abrc.osu.edu/. The genotype of this line was
confirmed by PCR using the gene-specific primer ‘ppc4-
SALK-For’ and the T-DNA-specific primer ‘LBc’. The
T-DNA insertion site was verified by sequencing.

Large-scale purification and identification of Ub-related
proteins in lily anther

Anthers of 12-14 cm flower buds were collected from
commercially obtained trumpet lily (L. longiflorum).
Approximately 100 mg of total crude protein was
obtained from 150 lily anthers. Protein extraction, puri-
fication with an anti-Ub antibody (FK2), in-gel digestion,
and LC-MS/MS analysis were performed as described by
Igawa et al. [13]. The MS/MS spectra were analyzed
with the MASCOT search engine (MatrixScience, http://
www.matrixscience.com) against an NCBI protein data-
base of all plant species. The peptide sets were then
summarized manually, and proteins encoding ubiquitin
and proteasomal subunits were eliminated from the list.

RT-PCR

Total RNA was prepared from various Arabidopsis
organs using TRIzol® Reagent (Life Technologies Japan,
Ltd., Tokyo, Japan). cDNA was synthesized from 1 pg of
total RNA with oligo(dT),o primer using the Rever-Tra
Ace-a kit (Toyobo Co., Ltd., Osaka, Japan).

Antibodies, immunoblot analysis, and
immunoprecipitation

To produce polyclonal anti-AtPTPC and anti-AtBTPC
antibodies, the open reading frames encoding the 300
N-terminal amino acids of AtPPC1 (At1g53310) and
AtPPC4 (At1g68750; Additional file 2) were amplified
using the cDNA derived from seedlings and stamens,
respectively. Primers ‘PPC1-3AB-F’ and ‘PPC1-3AB-R’
for Atppcl and primers ‘PPC4AB-F and ‘PPC4AB-R’ for
Atppc4 were used to add Ndel sites to the 5' termini
and BamHI sites to the 3' termini. The Ndel-BamHI
fragments of Atppcl and Atppc4 were cloned into the
expression vector pET28c (+) encoding 6xhistidine at
the N terminus. The plasmids generated were trans-
formed into BL21 (DE3) cells. The purified histidine-
tagged AtPPC1 and AtPPC4 were injected into rabbits
as antigens. The purified antisera were designated anti-
AtPTPC and anti-AtBTPC antibodies, respectively. Anti-
GFP antibody (Living Colors® A. v. Monoclonal
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Antibody [JL-8]; Takara Bio Inc., Otsu, Japan) and poly-
clonal anti-Ub antibody (Sigma-Aldrich, Missouri, USA)
were purchased.

For the immunoblot analysis, lily pollen and Arabidop-
sis flower buds were ground in liquid N, and homoge-
nized with the buffer described by Gennidakis et al. [7].
The homogenates were centrifuged at 17,400 x g at 4°C
for 15 min, and the supernatants were centrifuged again
for 5 min to isolate the total protein extract. Immedi-
ately after the extraction, the protein extracts were trea-
ted with SDS sample buffer.

For immunoprecipitation with FK2 [20], the lily anther
proteins were homogenized with the extraction buffer
used for the large-scale purification of Ub-related proteins
[13]. The homogenates were centrifuged at 17,400 x g at
4°C for 15 min. The lipid layer was removed and the
supernatants were centrifuged again for 5 min to isolate
the total protein extracts. The protein extracts were mixed
with Protein A-Sepharose 6MB (Sigma-Aldrich) coupled
to FK2, and then incubated for 3 h at 4°C. Immediately
after the incubation, the immunoprecipitated proteins
were treated with SDS sample buffer.

The molecular masses (kDa) in Figures 2A-B, 3A, B,
5] and Additional file 3 were marked according to the
positions of marker proteins (Protein Marker Broad
Range; New England BioLabs Inc., MA, USA). The
molecular masses in Figure 2C and Additional file 4
were estimated by calculation based on the mobilities of
marker proteins (Prestained Protein Marker Broad
Range; Cell Signaling Technology, Inc., MA, USA).

Nondenaturing PAGE and staining for PEPC activity

The lily pollen extracts were prepared with the buffer
described by Uhrig et al. [8] with modifications: the omis-
sion of 2,2'-dipyridyl disulfide and the addition of 20 uL/
mL Calbiochem’s Plant Protease Inhibitor Cocktail (Merck
KGaA, Darmstadt, Germany). Nondenaturing PAGE and
staining for PEPC activity were as described by Law and
Plaxton [38]. The approximate molecular masses (Figure
3C) were estimated by calculation based on the mobilities
of marker proteins (NativeMark Unstained Protein Stan-
dard; Life Technologies Japan, Ltd.).

Construction of plasmids and generation of Arabidopsis
transgenic plants

ProAtppcl, ProAtppc2, and ProAtppc3 were amplified by
genomic PCR and each PCR product was ligated into the
pENTR™/D-TOPO vector (Life Technologies Japan, Ltd.),
then transferred with the LR reaction (Gateway; Life Tech-
nologies Japan, Ltd.) to the destination vector pGWB203
[39] carrying the GUS reporter gene. ProAtppc4 was
amplified with primers ‘ppc4-promoterF’ and ‘ppc4-pro-
moterR’, which added a Sall site to the 5’ terminus and a
BamHI site to the 3’ terminus. The Sall-BamHI fragment
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was cloned into pENTR™3C (Life Technologies Japan
Ltd.), and then transferred into pGW203 by the LR reac-
tion. The genomic region of Atppc4 from the translation
start site to the 3’ UTR (ca. 1 kb) was amplified with pri-
mers ‘PPC4-1F and ‘PPC4-3UTR-R’, which added a
BamHI site to the 5’ terminus and a No site to the 3’ ter-
minus. The BamHI-Notl fragment was cloned into
pENTR™3C carrying ProAtppc4. Venus, amplified by PCR
with primers ‘VenusF2’ and ‘VenusR2', was inserted at the
unique Bst11071 site in the resulting plasmid. Finally, the
ProAtppc4::genomic-Atppcd+venus fragment was trans-
ferred to pGWBI by the LR reaction. All the plasmids
generated were transformed into Agrobacterium tumefa-
ciens strain GV3101, which was used to infect wild-type
Arabidopsis plants.

GUS assays and DAPI staining

The GUS substrate solution contained 100 mM NaPO,
(pH 7.0), 10 mM EDTA, 2.5 mM K;(Fe[CN]y), 2.5 mM
K4(Fe[CN]g), 0.1% Triton X-100, and 0.5 mg/L X-Gluc.
The samples were incubated in the dark at 37°C for 1 h
(pollen) or 5 h (leaf, root, and inflorescence). The pollen
was stained with DAPI as described by Park et al. [40].

Microscopy and image analysis

Specimens of GUS-assayed Arabidopsis inflorescences
and DAPI-stained pollen were observed under a Stemi
2000-C (Carl Zeiss Co., Ltd., Tokyo, Japan) or Axioplan
2 microscope (Carl Zeiss Co., Ltd.), and photo images
were captured with an AxioCam MRc using AxioVision
software (Carl Zeiss Co., Ltd.).

Anthers at various flower bud stages, taken from hemi-
zygous T3 plants expressing Atppc4-Venus, were observed
with the CLSM FV1000 Inverted Confocal Microscope
(excitation 458 nm and emission band path 530-630 nm;
Olympus Corp., Tokyo, Japan) with FluoroView software
(Olympus Corp.). The fluorescence intensities were quan-
tified with the Image] software http://rsbweb.nih.gov/ij/.
The average values for the wild-type and transgenic pol-
lens were obtained from at least 20 pollen grains per
anther at each developmental stage. The average values for
transgenic pollen were then divided by the average value
for the wild-type pollen to calculate the relative fluores-
cence intensities (pollen at 1.2FB showed no fluorescent
signal, so the value was given as 1.0).

Additional material

Additional file 1: Simplified metabolic pathway diagram. This file
shows a simplified metabolic pathway diagram for COS
germinating seeds [33]. PEPC catalyzes the irreversible reaction that
produces oxaloacetate from PEP. PEPC activation leads to protein and
lipid synthesis. PEPC activity is allosterically activated by Glc-6-P and
inhibited by L-malate and aspartic acid.
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Additional file 2: Amino acid alignment of the AtPEPC family. The
amino acid alignment of the AtPEPC family. Residues conserved among
four or three paralogues are highlighted with black or gray, respectively.
The serine residue marked with the red inverted triangle is a conserved
phosphorylation site in PTPC. The red bars above and the blue bars
below the alignment indicate the corresponding peptide sequences of
AtPTPC and AtBTPC, respectively, which were detected in the lily anther
with LC-MS/MS analysis. The amino acid sequences overlain with pale
red and pale blue were used to produce the anti-AtPTPC and anti-
AtBTPC antibodies, respectively.

Additional file 3: Immunopurified proteins with FK2 from lily
anther. Proteins immunoprecipitated with FK2 from lily anther were
subjected to SDS-PAGE and stained with Flamingo™(Bio-Rad Laboratories,
CA, USA). Clear bands (marked with lowercase letter) were excised and
numbered smearing regions cut into 2-mm-long gel pieces were
digested with trypsin for LC-MS/MS analysis.

Additional file 4: Table of Ub-related proteins identified from lily
anther and the putative Arabidopsis orthologous genes. This
additional file contains a table of the Ub-related proteins identified in the
lily anther and the putative Arabidopsis orthologous proteins. Candidate
proteins with high reliability (MASCOT score > 40; P < 0.05) are listed.
The gel position for each identified polypeptide corresponds to that in
Additional file 3. The approximate size of each identified protein was
estimated by calculation based on the mobilities of marker proteins
(indicated on the left of the panel in Additional file 3). Each Arabidopsis
orthologous protein was determined with a BLASTP search at the TAIR
website http://www.arabidopsis.org/Blast/indexjsp based on the protein
sequence indicated in the corresponding column. The expression of the
genes marked with an asterisk was checked by RT-PCR (see Figure 1).

Additional file 5: Primers used in this study. Primers used in this
study.
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BackgroundPhosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31) catalyzes the irreversible &beta;-carboxylation of phospho�enolpyruvate (PEP) to yield oxaloacetate and inorganic phosphate (Additional file 1). PEPC exists widely in plants, algae, and bacteria, but not in animals or fungi 1. In plants, PEPC acts as an allosteric enzyme and is phosphorylated by PEPC protein kinase 123. Active PEPC commonly consists of a plant-type PEPC (PTPC) homotetramer, and is typically inhibited by L-malate and aspartic acid and activated by glucose-6-phosphate (Glc-6-P). PEPC has been extensively studied in C4 and CAM photosynthesis, because it is a critical enzyme �catalyzing the initial reaction of atmospheric CO2 fixation 1. It also plays pivotal metabolic roles in nonphotosynthetic and C3 photosynthetic cells, particularly in the anaplerotic replenishment of the TCA cycle intermediates consumed during lipid synthesis 4, biosynthesis, and nitrogen assimilation 5. The genomic analysis of the PEPC of Arabidopsis and rice first revealed that higher plants contain a small PEPC family containing two types of PEPC, PTPC and bacterial-type PEPC (BTPC) 6. BTPC resembles the bacterial PEPC rather than the common plant PEPC in terms of its gene structure and the absence of an N-terminal seryl-phosphorylation domain, a hallmark of PTPC (Additional file 2). Recent studies have indicated that BTPC in developing castor oil seeds (COS) interacts with PTPC to form a heterooctameric complex with PEPC activity 78.Recently, PTPC was reported to be a ubiquitinated protein in Arabidopsis 910 and a monoubiquitinated protein in germinated COS 11. Ubiquitination is one of the major protein modifications that occur in all eukaryotic cells, and is critical for the regulation of various cellular functions, such as DNA damage repair, endocytosis, endosomal sorting, and signal transduction, in addition to proteolysis by the 26 S proteasome 12. We previously established a method for the purification and identification of Ub-related proteins (ubiquitinated proteins and their associated proteins) in Arabidopsis seedlings 13. Applying this method, we purified and identified PTPC and BTPC from the lily anther as candidate Ub-related proteins (Additional files 3 and 4).As far as we know, no previous study has focused on the PEPC expressed in plant reproductive tissues. Because AtBTPC showed significant expression in stamen (Figure 1) and COS BTPC is reported to interact with PTPC 78, we focused here on BTPC and PTPC in male reproductive tissues. In this study, we analyzed the expression, localization, and interaction of BTPC and PTPC in lily and Arabidopsis. Our results suggest that BTPC forms a complex with PTPC and monoubiquitinated PTPC (Ub-PTPC) to accelerate the accumulation of storage substances during pollen maturation.ResultsBTPC and PTPC are identified as Ub-related proteins in lily anther, and AtBTPC shows stamen-specific expressionWith the large-scale purification of Ub-related proteins from the lily anther, 13 proteins were identified as candidate Ub-related proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limited number of proteins identified is probably attributable to the small available database of lily proteins. Nineteen distinct orthologous Arabidopsis genes were determined based on the database (Additional file 4). Five candidate proteins (vacuolar H+-ATPase subunit, F1 ATPase, fructose-bisphosphate aldolase-like protein, pyridoxine biosynthesis protein-like, and metalloendopeptidase) have been reported in the Arabidopsis pollen proteomes 1415. Moreover, two orthologous Arabidopsis genes (TAIR: At1g78900 and At3g02230) have been reported to be essential for pollen development 1617.To determine the expression patterns of the identified candidate Ub-related proteins, the mRNA expression of putative Arabidopsis orthologues were examined because of the limited genomic information available for the lily. Fourteen orthologous genes were selected for RT-PCR analysis in various vegetative tissues, and all of the genes investigated were expressed in flowers. The expression of each gene was examined in the flower organs. All the genes were expressed in the stamen �(Figure 1). Among them, the transcripts of &alpha;-tubulin 1 (TUA1; TAIR At1g64740) and AtBTPC (Atppc4; TAIR At1g68750) showed almost stamen-specific expression. TUA1 is already known to be expressed specifically in pollen 1819. Therefore, we focused our attention on BTPC. We found that one of the PTPC orthologous genes, Atppc1 (TAIR: At1g53310), is also expressed in stamens (Figure 1). PTPC has also been identified as a Ub-related protein and they are reported to interact in COS 78, so both types of PEPC were investigated in the following analysis.To verify that BTPC and PTPC are Ub-related proteins, lily anther proteins were immunoprecipitated with anti-Ub antibody (FK2; Nippon Bio-Test Laboratories, Tokyo, Japan), which selectively recognizes the Ub moiety but not free Ub 20. As expected, both bands representing LlBTPC and LlPTPC, of the expected sizes (see Figure 2A and 2B for the specificities of the antibodies), were co-immunoprecipitated with FK2, indicating that they are the Ub-related proteins in the lily anther (Figure 2C). Another band, larger than the expected size of LlPTPC, was also detected with the anti-AtPTPC antibody (asterisks in Figure 2B and 2C). The �larger� anti-AtPTPC antibody immunoreactive band was approximately 8 kDa larger than the �smaller� immunoreactive band and showed similar mobility to the monoubiquitinated PTPC (Ub-PTPC) band in germinated COS 11. The larger bands were also co-immunoprecipitated with FK2, but not with mouse serum (Figure 2C), indicating that the larger bands were probably Ub-LlPTPCs.Large-scale purification enabled the identification of truncated sizes of BTPC and PTPC (Additional files 3 and 4), indicating that the in vitro proteolytic cleavage of the two proteins occurred during protein extraction and purification (these procedures require approximately 10 hours). In contrast, immunoprecipitated Ub-related proteins contained the expected sizes of BTPC and PTPC (Figure 2C). The size discrepancies of purified BTPC and PTPC between these two immuno-purification experiments may be due to the different purification periods because in vitro COS BTPC proteolysis in�an inappropriate buffer was also observed when the incubation period was extended 7. It seemed like that�the anti-AtBTPC antibody detected two bands �(Figure 2C), implying the truncation of BTPC by proteolysis or post-translational modification (e.g., monoubiquitination or phosphorylation), although these possibilities need to be confirmed in future studies.LlBTPC is specifically expressed in pollen after pollen mitosis I (PMI) and forms a complex with LIPTPCTo clarify the tissue specificity of LlBTPC and LlPTPC within the lily anther, the anthers of 14 cm flower buds were dissected into the anther wall and pollen, and an immunoblot analysis was performed with anti-AtBTPC and anti-AtPTPC antibodies. As shown in Figure 3A, LlBTPC specifically existed in the pollen, whereas LlPTPC was detected in both pollen and the anther wall.The expression of both PEPCs was examined in pollen at various developmental stages. During pollen development, an asymmetric division of the haploid microspores, called PMI, produces two differently fated cells, a larger VC and a smaller generative cell (GC). The GC, which is enclosed within the VC, undergoes a second mitotic division called �pollen mitosis II� (PMII), giving rise to two sperm cells (SCs) before fertilization 2122. PMII in the lily pollen occurs after pollen germination, so the mature pollen is bicellular at anthesis. The lily pollen developmental stages are distinguishable based on the flower bud length 23 (Figure 3B, top diagram). Flower buds of 3-5 cm contain microspores, and PMI is completed by the 7 cm flower bud stage 24. The GC morphology changes from round to spindle-like shape in the 12-14 cm stages 25, and the pollen reaches maturity at anthesis. Immunoblot analysis of LlBTPC during pollen development demonstrated that LlBTPC accumulation starts after PMI, and the amount increases to the 12 cm flower bud stage, and is sustained at this level until after anthesis (Figure 3B). LlPTPC and Ub-LlPTPC remained at constant levels during pollen development.To investigate the interaction between the LlBTPC and LlPTPC proteins and their PEPC activity in pollen, the lily pollen proteins were separated by nondenaturing polyacrylamide gel electrophoresis (PAGE), followed by in-gel staining for PEPC activity and immunoblot analysis (Figure 3C). In the microspores at the 3 cm flower bud stage, the band showing PEPC activity only reacted with the anti-AtPTPC antibody. In pollen from the 14�cm flower buds, two PEPC active bands were detected and the smaller band only reacted with the anti-AtPTPC antibody, whereas the larger band reacted with both the anti-AtPTPC and anti-AtBTPC antibodies. The molecular masses of the smaller and larger bands were approximately 450 and 900 kDa, respectively. This indicates that LlBTPC interacts with LlPTPC, forming an active PEPC complex in late bicellular pollen.AtBTPC promoter is preferentially active in pollenBecause the lily is refractory to molecular analysis, the expression patterns of Arabidopsis PEPC orthologues were analyzed of detail in plant tissues. The Arabidopsis PEPC gene family contains three PTPC genes (Atppc1 [TAIR: At1g53310], Atppc2 [TAIR: At2g42600], and Atppc3 [TAIR: At3g14940]) and one BTPC gene (Atppc4 [TAIR: At1g68750]; Additional file 2). Transgenic plants were produced in which the &beta;-glucuronidase (GUS) reporter gene was placed under the control of the promoter of each Atppc gene. To roughly compare the expression levels of these genes, all the transgenic lines were incubated with the substrate for the same time. As expected, the AtBTPC gene promoter ProAtppc4 showed significant activity in mature pollen (Figure 4P). Strong GUS staining was detected in the stamens in the late flower bud stage, whereas it was never observed in the younger flower buds (Figure 4O). Faint activity was observed in the root cortices of the same transgenic lines (Figure 4N), but no signal was observed in the leaves (Figure 4M), even with longer incubation. Transgenic plants expressing green fluorescent protein (GFP) under the control of ProAtppc4 showed specific GFP signal in the pollen within the stamens (data not shown), indicating that AtBTPC is expressed specifically in pollen. Conversely, weaker GUS staining was observed in the mature pollen in all transgenic lines when the GUS reporter gene was driven by the AtPTPC gene promoters (ProAtppc1-3). Among the AtPTPCs, ProAtppc3 activity seemed to be strongest in the stamen and pollen in the late flower bud stage �(Figure 4C-D, G-H, and 4K-L). ProAtppc1 activity was negligible in mature pollen (Figure 4D), whereas GUS staining was observed in the stamens of the younger flower buds (Figure 4C). All the AtPTPC gene promoters were active in all the somatic tissues investigated here, but with different expression patterns (Figure 4A-C, E-G, and 4I-K).AtBTPC localizes in vegetative cell cytoplasm and shows limited expression during pollen developmentTo analyze the localization and the expression pattern of AtBTPC in the pollen during pollen development, �fluorescent tagging of full-length proteins technology� was applied, because this strategy was available to monitor the expression patterns and subcellular localization of Arabidopsis gene products in planta 26. The transgenic plants were produced by introducing the native genomic Atppc4 gene, including the 5&prime; and 3&prime; untranslated regions (UTRs), coupled to Venus 27, which encodes a variant of yellow fluorescent protein, with low sensitivity to pH (Figure 5A). Unlike lily pollen, Arabidopsis pollen undergoes PMII before pollen germination, so the mature pollen is tricellular at anthesis. The stages of pollen development were distinguishable based on the flower bud length (Figure 5B). A notable fluorescent signal was observed in pollen at the 1.5 mm flower bud stage (1.5FB; Figure 5B, E, and 5G). 4&prime;, 6-�Diamidino-2-phenylindole (DAPI) staining indicated that pollen at 1.5FB was tricellular (Figure 5D), whereas pollen preceding the 1.2 mm flower bud stage (1.2FB; Figure 5B) was bicellular (Figure 5C). Confocal laser scanning microscopic (CLSM) analysis of the pollen at 1.5FB showed that AtBTPC-Venus localized in the VC cytoplasm, whereas there was no signal in the VC nuclei or SCs (Figure 5E).The levels of AtBTPC-Venus expression during pollen development were estimated by analyzing the fluorescent signal intensities (Figure 5F-I). Whereas no fluorescent signal was observed in the pollen at 1.2FB (Figure 5F), the signal with the most intense fluorescence appeared in the pollen at 1.5FB (Figure 5G). The intensity then decreased sharply in the later developmental stages �(Figure 5H and 5I).Immunoblot analysis of AtBTPC-Venus using anti-GFP antibody showed that the AtBTPC-Venus protein accumulated in the pollen at 1.5-1.8FB, supporting the results of the CLSM analysis (Figure 5J). To confirm the mRNA expression of endogenous AtBTPC in pollen, RT-PCR of full-length Atppc4 was performed. As expected, the Atppc4 transcripts accumulated strongly in the pollen at 1.5-1.8FB, similar to the AtBTPC-Venus protein (Figure 5K).DiscussionRT-PCR and promoter-GUS analyses of Arabidopsis PEPC genes revealed that AtBTPC was also preferentially expressed in stamen (Figure 1), particularly in pollen (Figure 4P), similar to lily, whereas AtPTPCs (AtPPC1-3) were expressed more strongly in somatic tissues. Unlike a previous study 6, however, the Atppc1 expression shown by our RT-PCR analysis was negligible in somatic tissues (Figure 1). This may be due to the reaction conditions or the developmental stages of the investigated tissues, because transgenic plants with ProAtppc1-GUS showed GUS staining in confined regions of leaf, root, and flower (Figure 4A-C). The �difference in the ProAtppc3-GUS expression pattern from the RT-PCR result reported by S�nchez et al. 6 may be due to the same reason as that stated above and/or differences in mRNA and protein stability. Analysis with a reporter protein fused to each Arabidopsis PEPC would provide detailed information of AtPEPC expression.BTPC is significantly expressed in the pollen of both Arabidopsis and lily (Figures 3A and 4), but the initiation of the expression of each BTPC differs during pollen development (Figures 3B and 5). LIBTPC starts to accumulate after GC formation, after PMI, whereas AtBTPC expression starts immediately after SC formation, after PMII. Based on these findings, it seems that the initiation of BTPC expression in pollen does not depend on the mitosis type, but is triggered after the �last mitosis� during pollen development, before germination. In both bicellular and tricellular pollen, the expansion of the pollen grain, organelle differentiation, and dehydration occur after the last mitosis for pollen maturation 28. However, pollen dehydration does not seem to affect Atppc4 expression, because Atppc4 expression started after PMII, but was not sustained until anthesis (Figure 5), although it has been reported that Atppc4 expression is inducible by drought stress in root tissues 29.We examined the AtBTPC-null mutant line, atppc4 (Figure 2A), but no abnormal characteristics were observed in the mutant pollen when analyzed by DAPI staining and ultrastructural observation, or in plant growth or fertility (data not shown). Therefore, plant BTPC may not be an essential factor for pollen development or plant survival, at least under our experimental growth conditions. Nevertheless, the expression of BTPC is significant in the pollen, suggesting that BTPC plays an important role in pollen development.It is well known that PEPC is a PTPC homotetramer. In a previous study with COS, the presence of low- and high-molecular-mass PEPC isoforms was reported, which were designated Class-1 (PTPC homotetramer, 410 kDa) and Class-2 PEPCs (PTPC:BTPC heterooctamer, 910 kDa), respectively 730. After nondenaturing PAGE in our study, the small active PEPC band only reacted with anti-AtPTPC antibody, whereas the large active PEPC band reacted with both anti-AtPTPC and anti-AtBTPC antibodies (Figure 3C), showing the same immunoreactivities as COS Class-1 and Class-2 PEPCs, respectively 7. The small and large active PEPC bands in lily showed similar sizes to those of the COS Class-1 and Class-2 PEPCs, respectively. Therefore, the lily PEPCs in the microspores and the late bicellular pollen exist as complexes, and the small and large PEPC complexes probably corresponded to the COS Class-1 and Class-2 PEPCs, respectively. It has also been reported that PTPC is monoubiquitinated in COS, resulting in a Class-1 PEPC heterotetramer comprised of Ub-PTPC:PTPC 11. In this work, FK2 immunoprecipitated Ub-LlPTPC from the lily anther containing late bicellular pollen in addition to the native forms of LlBTPC and LlPTPC (Figure 2C), suggesting that the native forms of LIBTPC and LlPTPC are the associated proteins of ubiquitinated-LlPTPC resulting in the identification by large-scale purification of Ub-related proteins from lily anther (Additional file 3). In addition, Ub-LlPTPC was present together with LlPTPC in the pollen throughout its development from microspore to mature pollen �(Figure 3B). From these results, we infer that the Class-1 PEPC complex in the microspore comprises Ub-LlPTPC:LlPTPC and the Class-2 PEPC complex in the late bicellular pollen comprises LlBTPC:Ub-LlPTPC:LlPTPC.PEPC is allosterically activated by Glc-6-P and inhibited by L-malate and aspartic acid metabolized from oxaloacetate (Additional file 1). Recently, it was reported that Class-2 PEPCs show much lower sensitivity to allosteric activators and inhibitors than do Class-1 PEPC homotetramers, suggesting that the interaction of PTPC and BTPC stabilize the metabolic flow under physiological conditions that would otherwise inhibit Class-1 PEPC 303132. It has also been reported that Class-1 PEPC heterotetramers of Ub-PTPC:PTPC are more sensitive to both activators and inhibitors than are Class-1 PEPC homotetramer of PTPC in COS 11. These reported features and our results together suggest that expressed BTPC binds to the Ub-PTPC:PTPC complex, and that the resulting BTPC:Ub-PTPC:PTPC complex is even less sensitive to inhibitors, but maintains its higher sensitivity to activators relative to the sensitivity of Class-1 PEPC homotetramers. Consequently, it is speculated that the BTPC:Ub-PTPC:PTPC complex may stabilize and accelerate the metabolic flow required for lipid and protein synthesis in pollen (Figure 6). The increase in PEPC activity in developing COS endosperm was coincident with the onset of the most active phase of storage oil accumulation 33. It has also been reported that the protein content of transgenic bean plants expressing a Corynebacterium glutamicum PEPC was elevated in their seeds by up to 50% 34. In lily pollen, there is a marked increase in lipid bodies in the VC cytoplasm of the mature pollen compared with those in the pollen before PMI 35. In Arabidopsis tricellular pollen, storage vacuoles accumulate after PMII and disappear from the mature pollen just before anthesis and at anthesis 36. The patterns of the appearance of storage organelles in lily and Arabidopsis pollen almost coincide with the patterns of LlBTPC and AtBTPC expression, respectively, supporting our hypothesis that BTPC plays a role in the acceleration of metabolic flow to facilitate the synthesis of storage substances during late pollen development. Previous studies of Class-2 PEPCs have suggested that green alga and vascular plants have divergent PEPCs that serve to function in adaptation for survival in different environments 30313237. It will be interesting to determine what triggers and suppresses the expression of BTPC during pollen development. Further investigation of Class-1 and Class-2 PEPCs is expected to provide more information of the metabolic pathway underlying the synthesis of storage substances in both bicellular and tricellular pollens during development.ConclusionsThe large-scale purification of Ub-related proteins from the lily anther should advance research into the reproductive factors related to Ub-mediated protein modifications. In this study, BTPC was first found as a Ub-�related protein in pollen.LlBTPC and AtBTPC show significant expression in pollen and they are first expressed after the last mitosis before pollen germination. The duration of their expression almost coincides with the appearance of storage organelles during the maturation processes of both pollens. The presence of BTPC:Ub-PTPC:PTPC with PEPC activity during pollen maturation is also suggested in this study. It would be necessary to confirm the presence of the Ub-PTPC:PTPC and BTPC:Ub-PTPC:PTPC complexes with their kinetic properties in pollen in future studies. Furthermore, future tasks include clarification of the AtPTPC proteins (AtPPC1-3) involved in Class-1 and Class-2 PEPC formation during pollen development because AtPTPCs show different expression patterns (Figure 2), and investigation of their post-translational modifications, such as ubiquitination and phosphorylation. The results are expected to shed light on the role of PEPCs in pollen development.BTPC is strongly expressed in the late stage of pollen development, but an AtBTPC-deficient mutant plant, atppc4, showed no abnormalities in pollen development, at least under our experimental growth conditions. PEPC itself is involved in the anaplerotic replenishment of intermediates of the TCA cycle, and for this reason, any obvious effects of BTPC deficiency may be difficult to identify. Alternatively, analysis under various physiological and growth conditions, such as varying temperatures, may identify the physiological function of BTPC in the reproductive process, because the thermal stability of Class-2 PEPC activity is relatively increased 32. This is the first characterization of BTPC in pollen, the male gametophyte of higher plants. Our work provides new information for the study of the function of BTPC in plants.MethodsPrimersInformation on all primers used in this study is given in Additional file 5.Plant materialsTrumpet lily (Lilium longiflorum cv. Hinomoto) was grown in a greenhouse for immunoblot analysis and nondenaturing PAGE.Arabidopsis thaliana (ecotype Columbia 0) was grown at 22�C under a 16/8 h light/dark cycle. A Salk line (SALK_144112; background Columbia) of Atppc4 was obtained from the Arabidopsis Biological Resource Center http://abrc.osu.edu/. The genotype of this line was confirmed by PCR using the gene-specific primer �ppc4-SALK-For� and the T-DNA-specific primer �LBc�. The T-DNA insertion site was verified by sequencing.Large-scale purification and identification of Ub-related proteins in lily antherAnthers of 12-14 cm flower buds were collected from commercially obtained trumpet lily (L. longiflorum). Approximately 100 mg of total crude protein was obtained from 150 lily anthers. Protein extraction, purification with an anti-Ub antibody (FK2), in-gel digestion, and LC-MS/MS analysis were performed as described by Igawa et al. 13. The MS/MS spectra were analyzed with the MASCOT search engine (MatrixScience, http://www.matrixscience.com) against an NCBI protein database of all plant species. The peptide sets were then summarized manually, and proteins encoding ubiquitin and proteasomal subunits were eliminated from the list.RT-PCRTotal RNA was prepared from various Arabidopsis organs using TRIzol� Reagent (Life Technologies Japan, Ltd., Tokyo, Japan). cDNA was synthesized from l �g of total RNA with oligo(dT)20 primer using the Rever-Tra Ace-&alpha; kit (Toyobo Co., Ltd., Osaka, Japan).Antibodies, immunoblot analysis, and immunoprecipitationTo produce polyclonal anti-AtPTPC and anti-AtBTPC antibodies, the open reading frames encoding the 300 N-terminal amino acids of AtPPC1 (At1g53310) and AtPPC4 (At1g68750; Additional file 2) were amplified using the cDNA derived from seedlings and stamens, respectively. Primers �PPC1-3AB-F� and �PPC1-3AB-R� for Atppc1 and primers �PPC4AB-F� and �PPC4AB-R� for Atppc4 were used to add NdeI sites to the 5&prime; termini and BamHI sites to the 3&prime; termini. The NdeI-BamHI fragments of Atppc1 and Atppc4 were cloned into the expression vector pET28c (+) encoding 6�histidine at the N terminus. The plasmids generated were transformed into BL21 (DE3) cells. The purified histidine-tagged AtPPC1 and AtPPC4 were injected into rabbits as antigens. The purified antisera were designated anti-AtPTPC and anti-AtBTPC antibodies, respectively. Anti-GFP antibody (Living Colors� A. v. Monoclonal Antibody [JL-8]; Takara Bio Inc., Otsu, Japan) and polyclonal anti-Ub antibody (Sigma-Aldrich, Missouri, USA) were purchased.For the immunoblot analysis, lily pollen and Arabidopsis flower buds were ground in liquid N2 and homogenized with the buffer described by Gennidakis et al. 7. The homogenates were centrifuged at 17,400 � g at 4�C for 15 min, and the supernatants were centrifuged again for 5 min to isolate the total protein extract. Immediately after the extraction, the protein extracts were treated with SDS sample buffer.For immunoprecipitation with FK2 20, the lily anther proteins were homogenized with the extraction buffer used for the large-scale purification of Ub-related proteins 13. The homogenates were centrifuged at 17,400 � g at 4�C for 15 min. The lipid layer was removed and the supernatants were centrifuged again for 5 min to isolate the total protein extracts. The protein extracts were mixed with Protein A-Sepharose 6MB (Sigma-Aldrich) coupled to FK2, and then incubated for 3 h at 4�C. Immediately after the incubation, the immunoprecipitated proteins were treated with SDS sample buffer.The molecular masses (kDa) in Figures 2A-B, 3A, B, 5J and Additional file 3 were marked according to the positions of marker proteins (Protein Marker Broad Range; New England BioLabs Inc., MA, USA). The molecular masses in Figure 2C and Additional file 4 were estimated by calculation based on the mobilities of marker proteins (Prestained Protein Marker Broad Range; Cell Signaling Technology, Inc., MA, USA).Nondenaturing PAGE and staining for PEPC activityThe lily pollen extracts were prepared with the buffer described by Uhrig et al. 8 with modifications: the omission of 2,2&prime;-dipyridyl disulfide and the addition of 20 �L/mL Calbiochem�s Plant Protease Inhibitor Cocktail (Merck KGaA, Darmstadt, Germany). Nondenaturing PAGE and staining for PEPC activity were as described by Law and Plaxton 38. The approximate molecular masses (Figure 3C) were estimated by calculation based on the mobilities of marker proteins (NativeMark Unstained Protein Standard; Life Technologies Japan, Ltd.).Construction of plasmids and generation of Arabidopsis transgenic plantsProAtppc1, ProAtppc2, and ProAtppc3 were amplified by genomic PCR and each PCR product was ligated into the pENTR"/D-TOPO vector (Life Technologies Japan, Ltd.), then transferred with the LR reaction (Gateway; Life Technologies Japan, Ltd.) to the destination vector pGWB203 39 carrying the GUS reporter gene. ProAtppc4 was amplified with primers �ppc4-promoterF� and �ppc4-promoterR�, which added a SalI site to the 5&prime; terminus and a BamHI site to the 3&prime; terminus. The SalI-BamHI fragment was cloned into pENTR"3C (Life Technologies Japan Ltd.), and then transferred into pGW203 by the LR reaction. The genomic region of Atppc4 from the translation start site to the 3&prime; UTR (ca. 1 kb) was amplified with primers �PPC4-1F� and �PPC4-3UTR-R�, which added a BamHI site to the 5&prime; terminus and a NotI site to the 3&prime; terminus. The BamHI-NotI fragment was cloned into pENTR"3C carrying ProAtppc4. Venus, amplified by PCR with primers �VenusF2� and �VenusR2&prime;, was inserted at the unique Bst1107I site in the resulting plasmid. Finally, the ProAtppc4::genomic-Atppc4+venus fragment was transferred to pGWB1 by the LR reaction. All the plasmids generated were transformed into Agrobacterium tumefaciens strain GV3101, which was used to infect wild-type Arabidopsis plants.GUS assays and DAPI stainingThe GUS substrate solution contained 100 mM NaPO4 (pH 7.0), 10 mM EDTA, 2.5 mM K3(Fe[CN]6), 2.5 mM K4(Fe[CN]6), 0.1% Triton X-100, and 0.5 mg/L X-Gluc. The samples were incubated in the dark at 37�C for 1 h (pollen) or 5 h (leaf, root, and inflorescence). The pollen was stained with DAPI as described by Park et al. 40.Microscopy and image analysisSpecimens of GUS-assayed Arabidopsis inflorescences and DAPI-stained pollen were observed under a Stemi 2000-C (Carl Zeiss Co., Ltd., Tokyo, Japan) or Axioplan 2 microscope (Carl Zeiss Co., Ltd.), and photo images were captured with an AxioCam MRc using AxioVision software (Carl Zeiss Co., Ltd.).Anthers at various flower bud stages, taken from hemizygous T3 plants expressing Atppc4-Venus, were observed with the CLSM FV1000 Inverted Confocal Microscope (excitation 458 nm and emission band path 530-630 nm; Olympus Corp., Tokyo, Japan) with FluoroView software (Olympus Corp.). The fluorescence intensities were quantified with the ImageJ software http://rsbweb.nih.gov/ij/. The average values for the wild-type and transgenic pollens were obtained from at least 20 pollen grains per anther at each developmental stage. The average values for transgenic pollen were then divided by the average value for the wild-type pollen to calculate the relative fluorescence intensities (pollen at 1.2FB showed no fluorescent signal, so the value was given as 1.0).Authors� contributionsTI and YY conceived the study and designed all the experiments. IT grew and prepared the lily samples. MF and YF performed the LC-MS/MS analysis. TI performed all other analyses and interpreted the experimental data. TI, IT, and YY participated in writing the manuscript. All the authors have read and approved the final manuscript.
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