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Abstract

Background: Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide.
The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient
absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil
conditions, this method does not address all of the components that are necessary for proper root growth and
development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil
containing toxic levels of Al and then compared their transcriptomic responses.

Results: When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed
greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the
tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in
S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of
organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in
both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin
were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root
growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-
tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes
encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional
family and two unknown proteins.

Conclusions: This work provides the first characterization of the physiological and transcriptional responses of
maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several
pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were
not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to
acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that
are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil.

Background
Acid soils are the most important cause of low yield for
many crops [1]. About 30% of the world’s soils are
acidic, and 60% of them are in tropical and subtropical
areas associated with long periods of hot and moist
weather [1]. Soil acidification is an increasing problem
in the United States and Europe because of acid rain,
removal of natural plant coverage from large production

areas and the use of ammonium-based fertilizers [2].
One of the major problems caused by soil acidification
is aluminum (Al) phytotoxicity. Al is the principal com-
ponent of mineral soils and is present in a wide range of
primary and secondary minerals [3]. In soils with pH
above 5, Al is precipitated predominately in gibsit form
(Al(OH)3) and has no phytotoxic effect. At lower pH, Al
(OH)3 is solubilized and Al is released.
The most evident symptom of Al toxicity is the inhibi-

tion of root growth. In maize root tips, Al induces a
rapid change in cell number and positioning [4], and
recent evidence suggests that DNA damage and interfer-
ence with cell-cycle progression and cell differentiation
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are the primary causes of root growth inhibition due to
Al toxicity [5]. Other reported effects of Al exposure are
the disruption of Ca2+ homeostasis [6,7], increased ACC
oxidase activity with a consequent increase in ethylene
production [8], Al binding to cell wall polysaccharides
[9,10] and reduced membrane fluidity [11].
To cope with Al stress, plants activate exclusion and

tolerance mechanisms [1]. Exclusion mechanisms take
place outside the roots and prevent the entry of Al into
the cell. These mechanisms include cell wall Al immobi-
lization, increased selective permeability of the plasma
membrane, rhizosphere pH barrier formation and quel-
ling by exudates such as organic acids and phenolic
compounds [1,12-15]. Tolerance mechanisms are active
after Al enters the cell - Al ions can be quelled in the
cytosol, compartmentalized inside the vacuole or pro-
teins that bind directly to Al may become highly
expressed [12,16,17].
Among all of the proposed mechanisms, organic acid

release is the most well-characterized resistance strategy
used by plants. Since the first report demonstrating Al-
induced malate secretion in wheat [18], several research
groups have observed that organic acid exudation is
higher in tolerant than sensitive genotypes in species
such as snap beans [19], wheat [20] and maize [21-24].
However, in maize and wheat, organic acid release does
not correlate with resistance in all genotypes, indicating
that other mechanisms, such as active Al exclusion, may
also play a relevant role [25-27]. Similarly, Maron et al.
[28] and Kumari et al. [29] recently demonstrated that
tolerance in maize and Arabidopsis is not associated
with increased expression of genes encoding enzymes
responsible for organic acid biosynthesis, but rather with
differential expression of their transporters.
The identification of genes related to Al tolerance has

indicated that a plethora of biological functions are
influenced by this ion. With the advent of cDNA arrays,
the evaluation of global gene expression changes in
response to Al stress allowed the identification of a
broader number of genes that are modulated by this ion
[28-34]. Guo and colleagues [34] used isogenic lines of
wheat with differential tolerance to Al and identified 28
differentially expressed genes, including malate transpor-
ters, a b-glucosidase, lectin and a histidine kinase.
Kumari et al. [29] reported that exposure to Al induces
several ribosomal protein genes, peptidases and phos-
phatases. Maron et al. [28] compared gene expression in
two maize genotypes with contrasting Al tolerance and
found that several genes involved in processes such as
cell wall remodeling, response to oxidative stress and Pi
starvation were differentially regulated.
While the identification of genes related to Al stress

has led to a greater understanding of plant responses to
this ion, these studies have been conducted mostly using

hydroponic culture. This growth condition may not ade-
quately mimic the soil environment with respect to rhi-
zosphere development [35,36], which involves a complex
mixture of microorganisms, border cells and mucilage
[36]. Several other studies have addressed the role of
mucilage in the detection and avoidance of Al toxicity.
Horst et al. [37] demonstrated that 50% of all Al in root
apexes of Vigna unguiculata is sequestered by the muci-
lage layer, and its removal increases root sensitivity to
Al [37]. Similarly, Archambauldt et al. [38] found that
mucilage production by sensitive varieties of wheat was
inhibited more rapidly than that by tolerant varieties
when exposed to phytotoxic levels of Al [38]. Similarly,
Miyasaka and Hawes [36] found evidence that in snap
beans, border cells are involved in detecting and avoid-
ing Al toxicity. By contrast, Li et al. [39] observed that
root growth inhibition in maize was not affected by the
removal of root mucilage. These findings indicate that
different species, or even different varieties of the same
species, can present distinct resistance and/or tolerance
mechanisms. Therefore, evaluating Al tolerance in con-
ditions that are similar to those in the field may provide
a better understanding of the mechanisms required to
avoid Al toxicity.
Here we present an analysis of transcriptome changes

in two maize varieties with contrasting levels of Al toler-
ance, using acid soil as the growth substrate. Our analy-
sis identified genes in several metabolic pathways whose
expression was modified when plants were growth in
acid soil. While we found some Al-responsive genes pre-
viously identified in studies carried out in hydroponic
growth conditions, growth in acid soil clearly also trig-
gered a new suite of physiological and transcriptional
responses not previously reported. Taken together, our
results offer a more complete picture of the transcrip-
tomic changes imposed by acid soils, and they may lead
to the discovery of novel genes involved in Al tolerance.

Results
Physiology of maize seedlings grown in acid soil
Most recent studies aiming to characterize plant tran-
scriptomic or proteomic responses to Al exposure have
used hydroponic culture [28,29,40]. In the present study,
soil was used as the substrate to better mimic field con-
ditions and to allow the maintenance of all root apex
components and root architecture. Plants were grown in
Dark Red Latossol (pH 4.1) with an Al content of 10
mmolc/dm

3. As a control, the same soil was used, but
with pH corrected to 5.5 (see Methods section). Two
lines used in previous studies that evaluated Al tolerance
in hydroponic growth conditions were characterized:
Cat100-6 (Al-tolerant) and S1587-17 (Al-sensitive)
[25,28,33,41-44]. S1587-17 is a somaclonal variant
regenerated from a callus culture of Cat100-6 [42].
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Relative root growth (RRG) was measured after one and
three days of growth in soil. The Al-sensitive plants
were severely affected by acid soil at both time points,
while the Al-tolerant plants were affected only after
three days and to a significantly lower extent (Figure 1;
see also Additional file 1: Figure S1). Both maize geno-
types had higher levels of callose when grown in acid
soil, a response typically correlated with Al stress
[45-47]. However, the increase in callose content was
significantly higher in the Al-sensitive line (Figure 2).
To investigate whether the root inhibition and callose
accumulation were due to Al phytotoxicity associated
with acid soil, the Al absorbed by root tips was quanti-
fied after one and three days of soil exposure. Figure 3

demonstrates that the sensitive line S1587-17 had signif-
icantly higher amounts of Al than the Al-tolerant vari-
ety. These results indicate that these maize varieties
have different physiological responses to acid soil and
that these responses are most likely due to the presence
of Al. Nevertheless, we cannot exclude the possibility
that pH also contributes to plant responses during acid
soil exposure.

Gene Expression Profiling
The Affymetrix GeneChip® Maize Genome Array was used
to evaluate the transcriptional response of the two con-
trasting maize genotypes to growth in acid soil. Analysis of
variance (ANOVA) was used to dissect the transcriptional
responses associated with the individual maize lines (inde-
pendent of soil treatment or time of exposure), time of
collection (1 and 3 days), soil type (control or acid soil
treated) and all possible interactions (see Methods sec-
tion). In the Al-tolerant line (Cat100-6) exposed to acid
soil for one day, only eight genes were differentially
expressed compared to plants grown in control soil (Fig-
ure 4A). The number of differentially regulated genes
increased (59) after three days of treatment (Figure 4B).
However, the Al-sensitive maize line showed a signifi-
cantly higher number of differentially expressed genes. On
the first day, 339 genes were differentially regulated (Fig-
ure 4C), while 776 were affected by the treatment on the
third day (Figure 4D). The genes that were differentially

Figure 1 Effect of acid soil saturated with Al3+ on maize root
growth. Plants were grown in acid (pH 4.2) or control (pH 5.5) soil
for one or three days. The growth is relative to the control soil (pH
5.5). Vertical error bars represent mean ± SE (n = 20). The difference
between the two lines in each treatment was significant at p < 0.05.

Figure 2 Acid soil-induced callose deposition in root tips. Each
bar represents the callose content of root apexes grown on acid
soil or control soil. C: control soil; A: acid soil; one or three days of
treatment. Each quantification refers to the mean ± SD (n = 20).
The experiment was done in duplicate. Means with different letters
are significantly different (p < 0.05) from each other.

Figure 3 Al3+ quantification in soil grown maize seedlings. The
experiment was done using the first 5 mm of 10 root tips. C:
control soil; A: acid soil; one or three days of treatment. Bars refer to
the mean ± SD of the Al content of 10 root tips (n = 2). The means
with different letters are significantly different (p < 0.05) from each
other.
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regulated under all conditions are described in the Addi-
tional file 2 (Tables S1-S4), and the number of genes up-
or down-regulated in each genotype and at each time
point is shown in Figure 5.

Figure 6 depicts the number of genes differentially regu-
lated between acid and control soil conditions that are
unique or shared between S1587-17 and Cat100-6 at each
time point. All of the eight genes differentially regulated

Figure 4 Volcano plots representing interactions of various effects. Estimates were calculated as the difference between the least-square
means for each comparison (x-axis). Estimates equal to zero represent no expression change and estimates different from zero represent gene
expression modifications. A: interaction effect between genotype, treatment and time for Cat100-6 one day; B: interaction effect between
genotype, treatment and time Cat100-6 three days; C: interaction effect between genotype, treatment and time S1587-17 one day; D: interaction
effect between genotype, treatment and time S1587-17 three days. The red line represents an FDR of 10%, and consequently data points above
this line represent significant observations (the y-axis represents Qvalues). Note that the Estimate axis is different for each plot.

Figure 5 Diagram representing the number of genes differentially expressed in each genotype at each time point.
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on day 1 in Cat100-6 were up-regulated, and they were
also detected after three days of acid soil exposure. Only
two genes were exclusively detected in the Al-tolerant line:
Zm.10003.1.A1_at (no hit) and Zm.19066.1.S1_at (gluta-
mate decarboxylase). Five genes were differentially
expressed in both S1587-17 and Cat100-6 at one and
three days: Zm.125.1.S1_at (nitrate reductase),

Zm.17306.1.A1_at (multidrug resistance protein/phos-
phate import ATP-binding protein pstB 1), Zm.11852.1.
A1_a_at (no hit), Zm.13437.2.S1_at (fructose-bisphosphate
1-phosphohydrolase) and Zm1416.1.S1_at (mitochondrial
2-oxoglutarate/malate carrier protein).
To further evaluate the quantitative extent by which

genes were differentially regulated between the two

Figure 6 Multiple comparison Venn diagram. Each quarter represents a list of IDs of genes differentially expressed in the comparison
between acid and control soils for each maize variety. The boxes indicate the Affymetrix ID and the annotation of the genes identified only in
Cat100-6 (both time points - grey box), in all genotypes and time points (purple box) and genes identified only in Cat100-6 after three days
(orange box - the genes identified in red are those that also presented significantly higher expression values in Cat100-6 in the comparison
between genotypes after three days in acid soil).
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maize lines, the difference in the least-square means
estimates (DEs) of gene expression levels between
Cat100-6 and S1587-17 grown in acid soil were calcu-
lated at each time point (e.g., Cat100-6 in acid soil for
three days versus S1587-17 in acid soil for three days),
and the statistical significance was assessed. We aimed
to identify genes induced by acid soil in Cat100-6 that
also had significantly higher absolute levels than in
S1587-17. We observed that none of the genes differen-
tially expressed in Cat100-6 after one day of acid soil
treatment presented significantly higher expression
levels than in S1587-17 under the same conditions.
However, eight genes out of the 59 differentially
expressed in Cat100-6 after three days were also signifi-
cantly more highly expressed relative to S1587-17 grow-
ing in acid soil for three days. Six of these genes are in
the group of 21 exclusively identified as differentially
regulated in Cat100-6 after three days (Figure 6), while
the other two were also differentially expressed in
S1587-17 after three days (Zm.3371.1.A1_at - O-methyl-
transferase and Zm.8742.1.A1_at - unknown protein).
Due to the large number of genes identified in the Al-

sensitive maize, a functional analysis was performed
with Gene Ontologies to help identify the pathways
affected by the toxicity imposed by acid soil. Most of
the genes up-regulated on the first day are involved in
lipid metabolism, oxidative stress responses and cell wall
metabolism (Additional file 1: Figure S2A). Most of the
genes down-regulated on the first day encode proteins
involved in DNA packaging and cell cycle (Additional
file 1: Figure S2B). Most of the genes up-regulated on
the third day are involved in cell wall metabolism, oxi-
dative stress responses and anionic transport (Additional
file 1: Figure S3A). On the other hand, most of the
repressed genes are involved in protein metabolism
(Additional file 1: Figure S3B).

Validation of gene expression profiles using qPCR
To validate the microarray results, eleven differentially
expressed genes were selected and real-time qPCR was
performed (Figure 7). This validation was done with two
independent biological replicates (different from the
replicates used for the microarray experiment). A signifi-
cant correlation between the two data sets was observed
(R2 = 0.8812).

Comparison with gene expression responses to Al
treatment in hydroponic culture
The soil treatment used in this work has two major
variables that must be considered, the presence of phy-
totoxic Al and the pH. However, it is not possible to
separate these properties in the soil or even use a differ-
ent acid soil with no Al because diversity in the physical
and chemical characteristics would affect the results.

Therefore, hydroponic culture has been used to evaluate
the effects of pH and Al levels on the expression of
selected genes. Six out of the eight acid soil-induced
genes from Cat100-6 that also had absolute levels higher
than those of S1587-17 were used in an experiment
consisting of three treatments: pH 5.5; pH 4.2 with no
Al and pH 4.2 with 36 μM Al. The effect on gene
expression in Cat100-6 seedlings is illustrated in Figure
8A (pH-effect, using pH 5.5 as the reference). The rela-
tive expression in seedlings grown in pH 4.2 with Al
relative to pH 4.2 without Al (Al-effect) is shown in Fig-
ure 8B. Genes such as Zm.8215.1.A1_at (GDSL-motif
lipase hydrolase family protein), Zm.17728.1.A1_at (gly-
cine-rich cell wall structural protein precursor) and
Zm.12454.1.A1_at (protein with unknown function)
showed no significant differential regulation under treat-
ment with pH 4.2 in the presence or absence of Al or
between pH 4.2 and pH 5.5 treatments, suggesting sig-
nificant differences between the gene expression profiles
from the hydroponic and soil experiments. However,
Zm.19227.1.S1_at (Pod-specific dehydrogenase SAC25/
retinol dehydrogenase 11), Zm.1871.1.A1_at (protein
with unknown function) and Zm.10017.1.A1_at (WRKY
69 transcription factor) were up-regulated in the pre-
sence of Al, indicating that Al and not pH was the main
factor behind their induction in the soil treatment.
To further highlight the different responses of maize

when grown in hydroponics versus soil, we compared
the target sequences from the Affymetrix platform used
in this work with the target sequences from Maron et
al. [28]. We observed that only a fraction of the genes
modulated by Al in Cat100-6 grown in the hydroponic

Figure 7 Real-time qPCR validation of the microarray results.
The qPCR data were log2 transformed and plotted against the
microarray data (least-square means). The correlation is negative
because in the qPCR data, the more the gene is expressed the
lower is its Ct value.
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experiment were also modulated in acid soil-grown
plants: of the 59 genes differentially expressed in
Cat100-6 grown in soil, only six were also found in the
hydroponic assay. We also compared our data from
S1587-17 with the data from the Al-sensitive line L53
because in the work of Maron et al., [28] S1587-17 was
not used. In this case, the differences were even higher
because only 34 out 952 genes modulated in S1587-17
were common to both gene sets. A complete list of the
genes found in both experiments is shown in Additional
file 2: Table S5.

Discussion
Physiology of maize roots grown in acid soil
Plant tolerance to Al is usually evaluated using hydropo-
nic culture [48-53], but conflicting results may be
obtained when compared to soil conditions [54,55].
Even when Al tolerance is consistent between hydropo-
nic and soil conditions [56-60], plant responses may dif-
fer in the two growth systems. To address this
limitation, we evaluated maize tolerance to acid soil
containing 10 mmolc/dm

3 (equivalent to 90 ppm) of Al
and at pH 4.2. These conditions are within the range of
previous studies and are sufficient to elicit a phytotoxic
response [35,61-63], allowing phenotypic discrimination
between two maize lines with distinct levels of resistance
to Al, Cat100-6 (tolerant) and S1587-17 (sensitive). As
shown in previous studies using these and other maize
lines [25,28,39-42,46], Cat100-6 accumulated less Al in

its root tips when grown in acid soil when compared to
S1587-17. The amount of Al absorbed by root tips is
indicative of the sensitivity of plants to this abiotic stress
[13,64,65], presumably because genotypes that accumu-
late less Al in their root apexes have a more efficient
exclusion mechanism. However, after prolonged expo-
sure (3 - 5 days), the amount of Al in Cat100-6 roots
continued to increase (although at a lower rate than in
S1587-17), in disagreement with previous studies that
reported a reduction in Al accumulation in root tips
after 24 hours in hydroponics [28,41]. Therefore, the
exclusion mechanism of Cat100-6 appears to have less
activity in soil than in hydroponic conditions. Nonethe-
less, Al-induced root growth inhibition and callose for-
mation were markedly more limited in Cat100-6 than in
S1587-17.

Gene expression profiles of an Al-tolerant and an Al-
sensitive maize line
The abiotic stress caused by the toxicity of acid soil was
clearly reflected in the gene expression profiles. The
number of genes differentially regulated between control
and treated (acid soil) plants increased in both Cat100-6
and S1587-17 when they were exposed to the stress for
an extended period. It is worth mentioning that these
changes observed in the transcriptome certainly reflect
both direct and indirect effects of the stress caused by
acid soil. In the field, where roots continuously grow
and explore different soil regions, this is also certainly

Figure 8 Expression of selected genes after hydroponic culture. (A) Data show the relative expression (in fold change) in relation to pH 5.5;
(B) Data show the relative expression (in fold change) of the treatment with pH 4.2 plus Al versus pH 4.2 without Al. The results are from three
independent biological replicates.
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true. Interestingly, a smaller fraction of the transcrip-
tome responded to acid soil stress in the resistant line
Cat100-6 than in S1587-17, similarly to previous reports
using Al and hydroponics [28,33,66]. Therefore, part of
the resistance of Cat100-6 (and Al-tolerant plants gener-
ally) may involve a mechanism that limits major distur-
bances to plant function and thereby avoids a cascade of
detrimental downstream effects.
Genes that are modulated by a stress are natural can-

didates for explaining the defenses activated by plants.
By using contrasting genotypes it is possible to narrow
the scope to genes with a higher probability of playing
major roles in the plant response. Therefore, we selected
eight genes that were more highly expressed in Cat100-6
than in S1587-17 under acid soil conditions. Six of these
genes were also found to be induced by acid soil only in
Cat100-6, while two were also induced in S1587-17,
although to a lesser degree. We further characterized
those six genes that were specific to Cat100-6, which
encoded a GDSL-motif lipase hydrolase family protein, a
pod-specific dehydrogenase/retinol dehydrogenase 11, a
glycine-rich protein (GRP), a member of the WRKY
transcriptional factor family and two unknown proteins.
However, the hydroponic experiment demonstrated that
only three of these genes have interesting expression
patterns (up-regulated during Al treatment - Figure 8).
Although further work will be needed to assess the indi-
vidual contribution of each gene to acid soil tolerance,
these data give insight into the strategies used by plants
in fields where this stress takes place.
Zm.19227.1.S1_at (Pod-specific dehydrogenase/retinol

dehydrogenase 11) was first described as a gene involved
in rape oilseed pod development [67]. Members of this
family may function as a bridging molecule between the
nutritional signaling pathway and the hormone bio-
synthesis pathway in Arabidopsis [68]. This member is
associated with ABA production and is critical for
growth and development, and also for plant responses
to stress via glucose signaling [68].
The WRKY family of transcription factors was first iden-

tified in plants and presents a high number of members
[69]. About 70 members have been indentified in Arabi-
dopsis, and several of them are induced in response to
wounding, pathogen infection and abiotic stresses such as
drought, cold and salinity [31,69-71]. Our microarray
experiment indentified Zm.10017.1.A1_at (WRKY69) as
differentially expressed in Cat100-6 after three days of acid
soil treatment and also as presenting higher expression
than in the Al-sensitive S1587-17 genotype. Hydroponic
gene expression experiments also demonstrated that Al
induces the expression of this gene. Kumari and colleagues
[29] identified two WRKY family members as being down-
regulated after exposure of Arabidopsis to Al. Meanwhile,
Goodwin and Sutter [72], also studying Arabidopsis,

identified WRKY 33 as up-regulated due to Al treatment.
An additional study identified another WRKY member as
up-regulated due to Al and Cd stress. Using the same tol-
erant variety (Cat100-6) Maron et al. [28] identified two
WRKY family members after 6 h of Al treatment. These
results suggest that this transcription factor may be
involved in the regulation of other genes that contribute
to acid soil tolerance in plants.
Zm.1871.1.A1_at is a protein with unknown function

that was up-regulated in acid soil and in hydroponics, indi-
cating that Al rather than low pH is the inducer. Interest-
ingly, this protein has a conserved domain typical of
methyltransferases (MTase), which are responsible for
methylation of several cellular components such as DNA,
RNA, proteins and also small molecules [73]. These
enzymes may also play important roles in disease resis-
tance, growth and development [74]. Studies with rice
[75], Arabidopsis [76] and tomato [40] have also identified
members of this family as up-regulated after Al treatment.
This is the first study to detect a potential role in acid soil
tolerance for this maize protein.
A comparison of the transcriptional profile of roots

grown in soil (this work) with that of roots grown
hydroponically [28] showed only a minor overlap
between these two growth systems. Although such com-
parisons are difficult because of differences in the chip
platforms, conditions in different laboratories and other
aspects, it strongly suggest that root responses in acid
soil differ at least in part from those observed in hydro-
ponic experiments. However, several pathways that are
affected by Al in hydroponics were also observed in acid
soil grown plants, as discussed below.

Organic acid biosynthesis
Of particular interest are genes involved in organic acid
biosynthesis, which can protect the plant from deleterious
effects of Al by binding to it after being secreted by root
apexes [77]. However, only one gene belonging to an
organic acid biosynthesis pathway was identified as down-
regulated in S1587-17 after a three-day treatment (citrate
synthase - Zm.15069.1.A1_at). Previous studies have sug-
gested that Cat100-6 activates pre-existing anionic chan-
nels after exposure to Al but prior to activation of the
organic acid biosynthesis pathways [23,25]. It has also
been observed that the levels of citrate exudation induced
by Al in Cat100-6 roots is higher than in other Al-sensitive
genotypes (such as L53), but it stays constant over time
[28], although no correlation between organic acid exuda-
tion and Al-alteration of genes of the organic acid biosyn-
thetic pathway has been observed in maize [28,33].

Oxidative stress in soil grown plants
Plant cells normally produce reactive oxygen species
(ROS) due to cellular processes that result in reduction
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of oxygen molecules. Plants have several enzymes cap-
able of producing ROS and others that fight ROS to
avoid cellular damage. Al toxicity can lead to an imbal-
ance that results in oxidative stress and increases in the
activity of enzymes and genes that reduce ROS effects,
as previously observed in maize [28,33,41,78,79] and
other plant species [80-84]. Specifically in the case of
the two maize lines used in this work, a previous study
indicates that S1587-17 produces higher levels of ROS
under Al stress, while ROS production remains constant
in Cat100-6 [41]. Expectedly, genes involved in ROS
production such as an oxalate oxidase (Zm.503.1.A1_at)
and four germins (Zm.1315.1.A1_at; Zm.2525.1.A1_at;
Zm.842.1.A1_at and Zm.9049.1.A1_x_at) were up-regu-
lated in S1587-17 after acid soil treatment. In contrast,
the up-regulation of genes implicated in the production
of ROS was not detected in the Al-tolerant genotype
Cat100-6 under stress.
Higher expression of oxalate oxidases in S1587-17 was

also correlated with the up-regulation of peroxidases in
the Al-sensitive genotype. A gene encoding a glu-
tathione peroxidase (Zm.6103.1.A1_a_at) was up-regu-
lated in the Al-sensitive line, confirming the data
obtained by Boscolo et al. [41], who found higher levels
of this enzyme in S1787-17 under Al stress. In fact,
more ROS scavenging genes were differentially
expressed in S1587-17 than in Cat100-6, possibly
reflecting a response to the up-regulation of ROS-pro-
ducing genes. These data are in agreement with those
from Maron et al. [28] suggesting that Cat100-6 has
mechanisms that act before the oxidative stress takes
place. However, none of the genes encoding superoxide
dismutase were identified as up-regulated in S1787-17,
in contrast to the induction of this enzyme [41] and
transcriptional up-regulation detected previously in
hydroponics [28].
The degree of ROS production and the enzymes

involved in their metabolism may partially explain the
differences in root growth detected in S1587-17 and
Cat100-6 in acid soil. Together with oxalate oxidase,
peroxidases act to remodel the cell wall during develop-
ment and stress responses [85,86]. Our results indicate
that the elevated number of peroxidases up-regulated in
S1587-17 may be one of the causes of the root inhibi-
tion in this genotype, either by increasing ROS produc-
tion or by changing the cell wall structure. On the other
hand, Cat100-6 appears to be more effective at prevent-
ing ROS generation. This is supported by the smaller
number of genes contributing to ROS production com-
pared to the number observed in hydroponic culture
[28,33] and also by the constitutive (i.e., independent of
soil type) expression of ROS scavenging genes (such as
GST) in Cat100-6.

The phenylpropanoid pathway is activated in Al-sensitive
maize plants
The higher expression of peroxidases in S171587-17 in
acid soil was also correlated with an increase in the
expression of several genes implicated in the synthesis
of monolignols. Genes related to lignin biosynthesis
have often been identified as responding to Al stress in
monocots [28,33,87,88], and higher lignin deposition has
been associated with root growth inhibition in Al-sensi-
tive wheat genotypes [87]. The phenylpropanoid path-
way is the last biochemical step in the production of
monolignols and the lignin polymer. The up-regulation
of genes in the shikimate pathway, including shikimate
kinases (Zm.3954.1.A1_at and Zm.10310.1.A1_at, are
up-regulated in S1587-17/3 days) and chorismate
mutase (up-regulated in S1587-17, Zm.9783.1.A1_at and
Zm.10652.1.S1_at, and Zm.9867.1.A1_at constitutively
expressed in Cat100-6) might increase the production of
phenylalanine, the precursor for the phenylpropanoid
pathway. Cinnamoyl-reductase (Zm.3297.1.A1_at) and
several O-methyltransferases were up-regulated at days
1 and 3 in the Al-sensitive line, indicating that S1587-17
might accumulate lignin, reducing root growth. Simi-
larly, several genes related to callose biosynthesis were
up-regulated in the Al-sensitive line at both time points
(Zm.16347.1.A1_at - beta-glucan binding protein;
Zm.14573.1.S1_at - glucan endo-beta-glucosidase 7 pre-
cursor; Zm.5768.1.A1_at - beta-glucanase precursor and
Zm.12098.1.A1_at - endo-1,3;1,4-beta-d-glucanase pre-
cursor), corroborating the physiological data that show
higher levels of callose in S1587-17.

Insights into hormonal responses to acid soil
Al has also been shown to impact root growth by modi-
fying the levels of phytohormones such as auxin [89]
and ethylene [8]. Genes encoding enzymes involved in
auxin biosynthesis such as IAA amidohydrolase
(Zm.3056.1.A1_at) and anthranilate phosphoribosyl-
transferase (Zm.1556.1.A1_at) were up-regulated in the
root apex of the sensitive line S1587-17 when under
acid soil stress, while the auxin-degrading enzyme
indole-3-acetate beta-glucosyltransferase (Zm.18805.1.
A1_at) was down-regulated after three days of acid soil
exposure. Although auxin can induce new root forma-
tion, higher concentrations inhibit root elongation and
enhance adventitious root formation. The genotype
S1587-17 grown in acid soil developed significantly
more lateral roots compared to plants grown under con-
trol conditions (data not shown). In coordination with
the up-regulation of auxin-responsive genes
(Zm.16990.1.S1_at, Zm.255.1.A1_at and Zm.5214.1.
S1_at), its F-box receptor [90] was also up-regulated in
S1587-17 (Zm.15393.1.S1_at). This might indicate a
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compensatory mechanism of primary root inhibition and
lateral root stimulation to avoid nutrient and water
deficiencies.
The transcriptome response of the Al-susceptible line

S1587-17 to acid soil treatment also involved the up-
regulation of two ACC oxidases (Zm.18900.1.S1_at and
Zm.7909.1.A1_at), suggesting activation of the ethylene
production pathway. The phytohormone ethylene med-
iates root growth inhibition [91,92], and treatment with
inhibitors of ethylene perception increases root elonga-
tion [93]. Therefore, increased ethylene production is
involved in root growth inhibition in the Al-sensitive
genotype, and this response might be modulated not
only by the germplasm but also by the culture
conditions.

Conclusion
In this study we have characterized the transcriptomic
changes of maize roots growing in acid soil containing
toxic levels of Al. Our data highlighted several metabolic
pathways that are challenged due to the stress caused by
acid soil, including those involved with ROS production
and detoxification, cell wall structure and hormone bio-
synthesis. Several genes previously reported as up-regu-
lated by Al treatment in hydroponic experiments were
also identified in acid soil grown plants. Most interest-
ingly, we found genes that provide interesting clues to
the mechanisms underlying the acid soil tolerance of an
Al-tolerant maize line. These genes encode a GDSL-
motif lipase hydrolase family protein, a pod-specific
dehydrogenase/retinol dehydrogenase 11, GRP, WRKY
and two proteins of unknown function. Taken together,
these data provide a better understanding of the basis of
Al toxicity and tolerance in acid soils.

Methods
Plant material and growth conditions
Seeds from the tropical maize (Zea mays L.) inbred lines
Cat100-6 and S1587-17 were geminated for two days in
moist filter paper. Seedlings with similar initial root
length were transferred to 0.5-liter plastic pots with 1 kg
of soil (with 15% water - mL/Kg). Each bag received 20
seedlings, which were grown in a growth chamber at 26°
C (light: dark, 16:8 h). Bags were weighed twice daily
and the weight was completed with distilled water to
maintain the humidity at 15%.
Plants were grown in a Dark Red Latossol sieved

through a 4-mm mesh. Soil analysis indicted a pH of 4.1
and Al content of 10 mmolc/dm

3 (referred to as the acid
soil treatment). Fertilization was applied to avoid nutri-
tional stress and consisted of the following nutrients
(mg/Kg of soil): 56 of N; 38.75 of P; 78 of K; 32 of S; 60
of Mg; 0.5 of B; 0.5 of Cu; 0.01 of Mo; 1.0 of Zn. The
soil used in the control treatment was incubated with

0.8 g of Ca(OH)2 per Kg for one week prior the fertiliza-
tion and the same amount of nutrient was added to the
acid soil. The incubation with Ca(OH)2 increased the
pH to pH 5.5 and the presence of free Al was no longer
detected. The acid soil also received a correction for Ca
through the addition of a CaCl2 solution to compensate
for the Ca(OH)2 added to the control soil. The soil was
thoroughly mixed to reduce natural variability of the
physical and chemical properties and to ensure homoge-
neous fertilization.

Relative root growth (RRG)
Before transferring the seeds to soil, the initial root
length of each seedling was measured. After each
growth period (1 and 3 days), the pots were cut and the
soil was gently removed to expose the roots. Each root
was washed in running water to remove the excess soil
and the root length was measured. Root growth (RG)
was calculated as the final length (after growth in soil)
minus the initial length. The relative root growth (RRG)
of each maize line was calculated as the RG of all the
seedlings grown in acid soil divided by the mean RG of
all the seedlings grown in control soil times 100.

Aluminum quantification
Al quantification was carried out as described by Bloom
et al. [94] after the roots were washed in acidified water
(pH 4.0). Measurements were performed in a spectro-
fluorometer (ISS PCI Photon Counting Spectrofluorom-
eter) with lamp intensity of 10 A, emission and
excitation gap of 2 mm. The excitation wavelength was
390 nm and the emission wavelength was 497 nm. Each
sample was measured 10 times with a quartz cuvette
(optical length of 1 cm). A standard curve was made
with serial dilutions of AlCl3.

Callose quantification
Callose content was quantified as described by Jones et
al. [95] with modifications. Ten root apexes were fixed
in formalin. After 48 h, the solution was replaced with
200 μL of NaOH (1 M) and the root tips were disrupted
with the use of a pistile. After 24 h, an additional 800
μL of NaOH (1 M) was added to each sample and they
were placed in a water bath at 80°C for 15 minutes. The
samples were rapidly centrifuged at 1000 g after cooling
off. A total of 400 μL of the upper phase was transferred
to a new tube and 800 μL of aniline blue solution (0.1%
- w/v), 420 μL of HCl (1 M) and 1,180 μL of glycine/
NaOH buffer (pH 9.5) were added, and they were incu-
bated at 80°C for 20 minutes. Callose content was quan-
tified in a spectrofluorometer, as described above, but
with an excitation wavelength of 385 nm and an emis-
sion wavelength of 485 nm. Each sample was read 10
times with a quartz cuvette (optical length of 1 cm). A
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standard curve was made with serial dilutions of curdlan
solution. The amount of Al-induced callose deposition
was calculated as the quantity in the acid soil treatment
minus the quantity in the control soil treatment.

RNA extraction
RNA was extracted with an RNeasy Plant Mini Kit (Qia-
gen, Valencia, USA). The RNA was evaluated in an
agarose/formaldehyde gel, quantified in a spectrophot-
ometer and stored at -80°C.

Microarray hybridization and analysis
For the microarray experiment, three independent repli-
cates were used, for a total of 24 samples. Two micro-
grams of each RNA sample was processed and
hybridized to the Affymetrix GeneChip® Maize Genome
Array as described by the manufacturer’s protocol. The
hybridization, staining, washing and scanning were per-
formed at Laboratório Nacional de Luz Sincrontron
(LNLS), Campinas, SP, Brazil, with the use of the Com-
mand Console Software (Affymetrix, USA). The data
were normalized with the RMA method, log2 trans-
formed and loaded into SAS (SAS Institute, USA) to
perform the contrasts. A one-way analysis of variance
(ANOVA) was used to separate the contribution of each
effect on the expression level of a given gene. The
model used was: yikl = μ + Gi + Tak + Tel + (G × Ta)ik
+ (G × Te)il + (G × Ta × Te)ikl + ξikl where μ is the
sample mean, Gi represents the genotype effect for the
ith genotype (e.g., Cat100-6 or S1587-17) (df = 1), Tak is
the effect of the kth Treatment (e.g., acid soil or control
soil) (df = 1), Tel is the effect of lth time point (e.g., 1 or
3 days) (df = 1), (G × Ta)ik is the effect of interaction
between genotype and treatment (df = 1), (G × Te)il is
the effect of interaction between genotype and time
point (df = 1), (G × Ta × Te)ikl is the effect of interac-
tion between genotype, treatment and time (gl = 1) and
ξikl is the residual error. Least-square means for each
gene in each sample were generated and differential esti-
mates (DE) of expression were calculated as the differ-
ence between least-square means for each of the terms
in the model. DE values were calculated between the
acid and control soil treatments and also between geno-
types. The false discovery rate (FDR) was set to 10% to
control Type I errors [96]. Q values were calculated
from P-values using the software Q-value from the R
platform [97]. Only the genes with DE above 1 were
further analyzed. The list of differentially expressed
genes was annotated with the use of Blast2GO software
http://www.blast2go.org[98-100] using default settings.

Hydroponic culture
To validate the microarray data and to separate the
effect of pH from that of Al, a hydroponic experiment

was performed. The basic solution consisted of 0.5 mM
CaCl2; 0.125 mM MgCl2; 1 mM KCl; 1 mM NH4NO3.
This basic solution was divided into two portions and
their pHs were corrected to 5.5 (control solution) and
4.2. The solution with the pH of 4.2 was again divided
in two and one portion received 36 μM AlCl3. This Al
concentration yielded the same RRG as was obtained
with soil treatment (data not shown). The plants were
grown in a growth chamber at 26°C (light: dark, 16:8 h)
with constant solution aeration.

Real Time qPCR
To validate the microarray results, RNA from two addi-
tional independent replicates was treated with DNase I
Amplification Grade (Invitrogen, USA) and cDNA was
synthesized from 2 μg of RNA using High Capacity
RNA-to-cDNA Kit (Applied Biosystems, USA). Real-
time qPCR for eleven genes identified as differentially
regulated in at least one of the experimental conditions
was performed with an ABI 7500 (Applied Biosystems,
USA) using Sybr Green I PCR Master Mix (Applied Bio-
systems, USA). The primers were designed using Primer
Express 2.0 software (Additional file 2: Table S6). The
efficiency of each pair was tested with a relative stan-
dard curve experiment. The maize tubulin gene
(Zm.6045.1.A1_s_at) was used as an endogenous con-
trol. As the efficiency of all the primers was near 100%,
the relative expression was calculated by the ΔΔCt
method. For microarray validation, the ΔCt values were
calculated for each gene in each sample, log2 trans-
formed and plotted against its corresponding least-
square means data from the microarray. For the hydro-
ponic experiment, the ΔΔCt values were calculated rela-
tive to the ΔCt from the pH 5.5 treatment.

Note
Accession numbers: The gene expression data were
deposited at The Gene Expression Omnibus (GEO)
Database under access number GSE21070
Supplementary Materials: Submitted as a additional

files

Additional material

Additional file 1: Figure S1. Root phenotype under control (first and
third row) and acid soil (second and fourth row) conditions after one day
of treatment (A), three days of treatment (B). Figure S2. Functional
analysis of genes differentially expressed in S1587-17 after one day of
treatment in acid soil. A: Up-regulated; B: Down-regulated. All of the
genes that did not present Gene Ontologies were removed from the
analysis. Figure S3. Functional analysis of genes differentially expressed
in S1587-17 after three days of treatment in acid soil. A: Up-regulated; B:
Down-regulated. All of the genes that did not present Gene Ontologies
were removed from the analysis.

Additional file 2: Table S1: Genes differentially expressed in Cat100-
6 after one day of acid soil treatment. FDR = 10% and DE ≤ 1. Table
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S2: Genes differentially expressed in Cat100-6 after three days of acid soil
treatment. FDR = 10% and DE ≤ 1. Table S3: Genes differentially
expressed in S1587-17 after one day of acid soil treatment. FDR = 10%
and DE ≤ 1. Table S4: Genes differentially expressed in S1587-17 after
three days of acid soil treatment. FDR = 10% and DE ≤ 1. Table S5:
Genes that were differentially expressed in Cat100-6 grown both in soil
(this work) and hydroponics [27] and in S1587-17 grown in soil (this
work) and L53 in hydroponics [27]. Table S6: Primers designed for real-
time qPCR.
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