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Abstract

about the genes related to TPD in rubber tree.

understanding the TPD process in rubber tree.

Background: Tapping panel dryness (TPD) is one of the most serious threats to natural rubber production. Although a
great deal of effort has been made to study TPD in rubber tree, the molecular mechanisms underlying TPD remain
poorly understood. Identification and systematical analyses of the genes associated with TPD are the prerequisites for
elucidating the molecular mechanisms involved in TPD. The present study is undertaken to generate information

Results: To identify the genes related to TPD in rubber tree, forward and reverse cDNA libraries from the latex of
healthy and TPD trees were constructed using suppression subtractive hybridization (SSH) method. Among the 1106
clones obtained from the two cDNA libraries, 822 clones showed differential expression in two libraries by reverse
Northern blot analyses. Sequence analyses indicated that the 822 clones represented 237 unique genes; and most of
them have not been reported to be associated with TPD in rubber tree. The expression patterns of 20 differentially
expressed genes were further investigated to validate the SSH data by reverse transcription PCR (RT-PCR) and real-time
PCR analysis. According to the Gene Ontology convention, 237 unique genes were classified into 10 functional groups,
such as stress/defense response, protein metabolism, transcription and post-transcription, rubber biosynthesis, etc.
Among the genes with known function, the genes preferentially expressed were associated with stress/defense
response in the reverse library, whereas metabolism and energy in the forward one.

Conclusions: The genes associated with TPD were identified by SSH method in this research. Systematic analyses of
the genes related to TPD suggest that the production and scavenging of reactive oxygen species (ROS), ubiquitin
proteasome pathway, programmed cell death and rubber biosynthesis might play important roles in TPD. Therefore,
our results not only enrich information about the genes related to TPD, but also provide new insights into

Background

Rubber tree (Hevea brasiliensis Muell. Arg.) is a perennial
tropical tree for the production of natural rubber (NR). In
the world, at least 2000 plant species are recognized for
producing latex, but the rubber tree is the only economi-
cally viable source of NR. Rubber molecules are pro-
duced, aggregated and packaged in the latex vessels
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(laticifers) of rubber tree. The latex, a cytoplasmic com-
ponent of the laticifers, expels from the laticifers upon
tapping. Over the past decades, the rubber yield has been
significantly increased, due to the cultivation of high-
yielded clones and the utilization of ethephon (an ethyl-
ene generator). However, latex production still faces seri-
ous economic losses caused by TPD. At present, there are
no effective measures to prevent or treat TPD in rubber
tree. It was estimated that the losses due to TPD
accounted to 12-14% of the annual rubber production [1].
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The first symptom of TPD is the appearance of partial
dry zones (no latex flow) along the tapping panel. In the
advanced stage, the tapping panel may even become com-
pletely dry and other symptoms such as browning, thick-
ening, or even flaking of bark can occur [2]. A great deal
of work has been done to reveal the nature and molecular
mechanisms of TPD. It was initially thought that TPD
might be caused by pathogens [3-5], but no further evi-
dence has been found to support this claim [6,7]. Physio-
logical studies suggested that the TPD syndrome was a
complex physiological disorder resulted from over tap-
ping and overexploitation (excessive tapping as well as
overstimulation with ethylene) [8-12]. During the process
of TPD, the lutoids burst and consecutive in situ latex
coagulation caused by membrane destabilization, which
has been proposed to be associated with the occurrence
of an uncompensated oxidative stress within the latex
cells [8]. In TPD tree, the contents of protein, nucleic
acid, thiols and ascorbic acid decreased [10], whereas the
activities of RNase and proteinase increased in general
[13-15]. In addition, the levels of variable peroxidase and
superoxide dismutase (SOD) also decreased [16].
Through proteomics, some researchers have identified
proteins related to TPD by comparing the expression pat-
terns between healthy and TPD trees [2,17-19], but their
functional relations with TPD still remain unknown.

Besides the reports mentioned above, the identification
and characterization of genes associated with TPD also
made some progresses in rubber tree. Our group
reported a key transcription factor, HbMybl. Compared
with healthy tree, the expression of HbMyb1 was signifi-
cantly decreased in barks and latex of TPD tree [20].
Functional analyses further indicated that HbMyb1 nega-
tively regulated programmed cell death (PCD) in trans-
genic tobacco plants (unpublished data). Venkatachalam
et al. identified 134 genes associated with TPD in rubber
tree by SSH method. Moreover, they analyzed the expres-
sion patterns of partial genes and discussed the relation-
ship between differentially expressed genes and TPD [21].
Two years later, they identified a gene, HbTOM?20, associ-
ated with TPD by mRNA differential display. HbTOM20
might play an important role in the alteration of mito-
chondrial metabolism, which finally resulted in impaired
latex biosynthesis [22].

Although significant progress has been made on TPD,
the molecular mechanism underlying TPD still remains
largely unknown. Identifying the genes related to TPD
and analyzing their expression patterns are the prerequi-
sites for elucidating the molecular mechanism involved in
TPD. Venkatachalam et al. has identified the expression
profiles of the genes related to TPD from Hevea latex
[21]. It is necessary to identify the genes related to TPD
with different rubber clones since TPD is genetically
determined [10]. Overstimulation with ethylene may
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result in TPD [8-12], so it is reasonable for identifying the
genes associated with TPD to select the rubber trees with
ethylene stimulation as materials. At present, the data on
genes related to TPD is scarce; the molecular mechanism
underlying TPD could be precisely elucidated only if
enough the genes related to TPD were identified. With
these considerations, we designed the experiments to
identify the genes associated with TPD, and then further
analyzed the functional categories and expression pat-
terns of the genes associated with TPD. Combined with
the results from Venkatachalam et al., the potential path-
ways involved in TPD are discussed.

Results

To identify the genes related to TPD, subtracted cDNA
libraries were constructed. In this experiment, the elite
clone (RY8-79) with ethylene stimulation was selected as
experimental material; the latex has been harvested from
these trees for the past 11 years (Figure 1A). The healthy
and TPD rubber trees were selected according to the phe-
notypes. After 11 years of exploitation, more than 80% of
the rubber trees had normal latex flow after tapping (Fig-
ure 1B) while the remaining trees had a partial or com-
plete stoppage of latex flow (Figure 1C and 1D). The trees
with normal latex flow were considered as "healthy" trees,
whereas the trees with a partial or complete stoppage of
latex flow were referred to as "TPD" trees. As for TPD
trees, the trees showing a partial and complete stoppage
of latex flow were defined as the initial and advanced
stages of TPD, respectively. In this research, the latex was
collected from the TPD tree at initial stage (Figure 1C).
To capture a wide spectrum of differentially expressed
genes, latex samples were collected and pooled from 5
different trees for mRNA isolation and c¢cDNA library
construction.

Figure 1 The growth states of an elite rubber clone (RY8-79). (A)
The plantation of an elite rubber clone (RY8-79) at the experimental
farm of Chinese Academy of Tropical Agricultural Sciences. (B) A
healthy tree with normal latex flow (indicated by arrow). (C) A rubber
tree partially affected by TPD in which latex flow is observed in patches
(indicated by arrow). (D) A rubber tree completely affected by TPD in
which no latex flow is observed (indicated by arrow).
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Two subtracted cDNA libraries were successfully gen-
erated. One, "forward" library from healthy trees, was
subtracted by the cDNA pool of TPD trees; the other,
"reverse" one, was obtained from TPD trees subtracted by
the cDNA pool of healthy trees. In total, 1,106 positive
colonies containing cDNA inserts were identified by PCR
detection from the forward and reverse libraries.

Evaluation of subtractive efficiency

It is well-known that the subtraction efficiency is vital for
the successful construction of subtracted cDNA libraries.
In the research, the subtraction efficiency was evaluated
by amplifying rubber 18s rRNA gene (a house keeping
gene). If the subtraction process is efficient, the tran-
scripts of 18s rRNA gene should be reduced. As shown in
Figure 2, the 18s rRNA PCR products appeared to be
detectable after 19- and 31-cycle amplifications with
unsubtracted and subtracted cDNA as PCR templates,
respectively. Compared with the unsubtracted samples,
the abundance of rubber 18s rRNA was sharply
decreased in subtracted ones, which indicated that the
samples were effectively subtracted. Therefore, it was
expected that the genes differently expressed between
healthy and TPD trees were enriched in two cDNA librar-
ies.

Reverse Northern analysis of the cDNA clones identified by
SSH

Although SSH is a powerful method for identifying dif-
ferentially expressed genes, the subtractive samples may
still contain some cDNAs that correspond to mRNA
common to both tester and driver samples. In order to
exclude these clones before sequencing, the cDNA posi-
tive clones from two cDNA libraries were further hybrid-
ized with different probes, first with the unsubtracted
probes and then with the subtracted ones. For the for-
ward library, the clones, showing strong hybridization
signals with the unsubtracted cDNA probes from healthy
trees (Figure 3A) and weak hybridization signals with the
unsubtracted cDNA probes from TPD trees (Figure 3B),
were considered as specific ¢cDNAs upregulated in
healthy tree. For the reverse library, the clones, indicating
strong hybridization signals with the unsubtracted cDNA
probes from TPD trees (Figure 3C) and weak hybridiza-

Unsubtracted
19 22 25 28 31 34

Cycle Subtracted
No. 19 22 25 28 31 34

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2 The detection of subtraction efficiency by PCR. PCR was
performed on the subtracted (lanes 1-6) and unsubtracted (lanes 7-12)
samples with 18s rRNA primers. The numbers of PCR cycles are indicat-
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Figure 3 The differential screening of cDNA clones from rubber
SSH libraries. Duplicate dot-blots were prepared and the membranes
were hybridized with labeled probes. The spots displaying different hy-
bridization signals between two membranes were classified as either
up- (circled by continuous line) or downregulated (circled by dotted
line). (A) The clones from forward SSH library hybridized with unsub-
tracted tester probes. (B) The clones from forward SSH library hybrid-
ized with unsubtracted driver probes. (C) The clones from reverse SSH
library hybridized with unsubtracted tester probes. (D) The clones from
reverse SSH library hybridized with unsubtracted driver probes.

ed above the panel.

tion signals with the unsubtracted cDNA probes from
healthy trees (Figure 3D), were referred to as specific
c¢DNAs upregulated in TPD tree. The clones, indicating
the similar hybridization signals with the unsubtracted
c¢DNA probes from TPD and healthy trees (Figure 3),
were considered as common cDNAs that did not differ-
entially expressed between healthy and TPD trees. Simi-
larly, the secondary screening was also performed with
subtracted probes (data not shown). This screening step
made it possible to effectively eliminate the clones that
show common expression in subtracted samples.

After the screening steps mentioned above, a total of
822 clones differentially expressed in two cDNA libraries
were selected to sequence. The vector and adaptor
sequences were firstly removed from the sequencing
results, and then the poor-quality sequences were
deleted. Sequence analyses indicated that the 822 clones
represent 237 unique genes. The EST redundancy rate in
this study was about 71.2%. All the sequences were
deposited in the NCBI databases [GenBank: GO349116-
G0349154, GO349156-G0O349349 and GO788493-
GO788496]. Among 237 unique genes, 162 and 75 were
from the reverse and forward SSH libraries, respectively
(Additional file 1 and 2).

Annotation and functional classification of ESTs
237 unique ESTs were analyzed with the Blast program
from the NCBI database and the information was dis-
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played in Additional file 1 and 2. The results of the Blastn
searches indicated that about 94.9% of unique ESTs
matched with the known sequences in NCBI ESTs data-
base; the remaining ESTs showed 'no hits found. Among
237 unique ESTs, only 49 (about 20.7%) were aligned to
known EST sequences from rubber tree, that is to say, 188
were firstly identified in rubber tree. In addition, the 237
unique ESTs were also analyzed with Blastx program in
NCBI non-redundant protein database. As shown in
Additional file 1 and 2, about 90.7% of ESTs had high sim-
ilarities with the known proteins. Among these known
proteins, only 8.9% were from rubber tree.

Based on the similarities to the known proteins, the
functional classification was performed according to the
Gene Ontology (GO) convention [23]. The 237 unique
genes were classified into 10 functional categories such as
stress/defense response, transporter, metabolism and
energy, signal transduction, etc (Figure 4). The functional
diversity of the genes related to TPD suggested that TPD
might be a complex biological process. As shown in Fig-
ure 4, the reverse library contained all functional classifi-
cations from forward one except for rubber biosynthesis
(RB). In the two libraries, the major classification group
was the genes with unknown or unclassified roles; the
percentages were about 27.8% and 34.7% in the reverse
and forward libraries, respectively. Among the genes with
known function, the stress/defense response genes made
up the biggest group, followed by genes associated with
protein metabolism, transcription and post-transcription
in the reverse library (Figure 4A). In the forward library,
the largest classification group was metabolism and
energy, followed by protein metabolism and transcription
and post-transcription (Figure 4B). Compared with
healthy tree, the genes associated with stress/defense
response were largely upregulated; whereas the genes
related to metabolism and energy were largely downregu-
lated in TPD tree (Figure 4), suggesting that these genes
might play very important roles in TPD process.

o

5 5.6% 17.9% W stress/defense response

27.8% g = ”
689 W Transporters

Flmetabolism and energy

B Protein metablism

M signal transduction

W cell biogenesis

O rubber biosynthesis

Figure 4 The functional distributions of 237 ESTs from the re-
verse (A) and forward (B) libraries. The classification was performed
according to GO convention. The percentage of genes in each group
was listed, and the legend was showed in right.
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Validation of SSH data

To validate the genes differentially expressed between the
two libraries, 10 genes from the forward library and 10
genes from the reverse one were selected to perform the
expression analyses with RT-PCR and real-time PCR.
These genes were associated with signal transduction,
metabolism and energy, RB, unknown function, stress/
defense response, transcription and post-transcription,
protein metabolism, transporter and cell biogenesis. The
specific primers of these 20 genes are listed in Table 1. As
shown in Figure 5A and 5B, all genes from the forward
library were downregulated in TPD tree, whereas all
genes from the reverse one were upregulated in TPD tree.
In addition, the expression levels of these genes were also
quantified by real-time PCR analysis; all the data from
real-time PCR analysis coincided with the results
obtained from RT-PCR analysis. Among these genes, the
SAP transcripts in TPD tree were approximately 7.8-fold
than that in healthy tree; the translationally controlled
tumor protein (TCTP) transcripts in TPD tree were
about 0.2-fold that in healthy tree (Figure 5C). The
expression profiles of the 20 genes sufficiently validated
the reliability and accuracy of SSH data in this research.
Moreover, the results presented here further demon-
strated that the subtracted libraries might contain the
genes differently expressed between TPD and healthy
trees.

Discussions

We reported here the identification and characterization
of the genes associated with TPD in rubber tree. In our
research, the subtraction efficiency was validated by the
expression analyses of 18s rRNA gene (Figure 2). The
clones displaying the same expression levels between
TPD and healthy trees were effectively excluded by
reverse Northern blot analysis (Figure 3). In addition, the
validation of SSH data was further verified by the expres-
sion patterns of 20 genes selected for RT-PCR and real-
time PCR analysis (Figure 5). These results indicated that
the genes identified in our study differentially express
between healthy and TPD trees, suggesting that they
might be associated with TPD in rubber tree. To enrich
the information of genes related to TPD, all 237 unique
genes were deposited to the NCBI database. With the
SSH method, Venkatachalam et al. identified 134 unique
genes associated with TPD from Hevea latex [21]. Among
these genes, only 21 were identified in our research. The
few common genes may be a result of several factors,
such as the use of different Hevea clones, tapping systems
and stages of TPD, etc. Therefore, it was necessary to
identify more genes related to TPD with different experi-
mental materials. The molecular mechanism underlying
TPD could be precisely elucidated only if enough the
genes related to TPD were identified. Compared with the
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Table 1: The primers of genes detected by RT-PCR and real-time PCR analyses.
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Putative Genes? (Accession No.)

RT-PCR primers (5'-3")

Real-Time PCR primers (5'-3')

WIP (GO349116)

SAP (GO349117)

HSP (GO349120)

MT (GO349141)

CP450 (GO349147)

Cullin (GO349159)

UL (GO349162)

PPA (GO349189)

LPH (GO349193)

DBP (GO349205)

TCTP (GO349268)

SRPP (GO349270)

AGPS (GO349278)

HH2A (GO349279)

CT (GO349296)

GR (G0O349295)

VPSAP (GO349303)

HbMyb1 (GO349308)

CHP (GO349321)

Y17HO05 (GO349330)

F:GACATCGTATCATCAGGAAAAG
R: CTCTCACCTGGGTAATTATC

F: GAATACGAACCGTGAAAGCG
R: CTAGGTTGAATTACCATCGC
F: TTGTCCCTTAGAGCTTGTG

R: CTCCACCAAGAGTGGTGATG
F: ACCAAGGCAGAACTGAAGG
R: CCACTTTCTGATTCCTCCTC

F: GACAAGGGGAATCCGACTG
R: CCACACGAGATTTCTGTTCTC
F: GTCCAATTGGTAATGCTTAAAC
R:GGAAAGAGCCCATGAGTAAAG
F: AGGATTAGACTTGACATAGCG
R: CTCCAATTTATCAGTGCCGC
F: GTTGAACCGGAGGAATTTCC
R: TCATGGCCAGAAATGTCTCC
F: TGTGCCACCAAGGTGCAAAC
R: GTCGTGGCAAACATACGTTG
F: TGAACTGGAACAGAGCAAGC
R: TTGACCCCGAACAATCTCAG
F: GCCTCCATCAGCGTTTTCAG
R: CCCTCAATGATATCGACACC
F: CTGAAGAGGTGGAGGAAGAG
R: CAGAGCTTTTGCGCCTTCCT
F: TTCTCACTCTCTCACGATGG

R: CGAGGTTCATTCCACACATC
F: AAGAATTCCGCGGCCTCCTG
R:ACTCGAGAACGGCAGCCAAG
F: ATCCTTCTCCTGATCTCCTC

R: GGGAGCGAGAGGAAGCTAG
F: TGAGGCATTGAGTCTGGAAG
R: TGCTCTATTGCCTGCTCTTC

F: ATTGTATGAGGACTCGAGATC
R:AGAACTTTGCTGAGCTCTATG
F: AGGATGAACCTGATCGATGG
R: CTTCTCTCATCCTTCCCTCC
F:CTCAACAACTCCAGTTGGTG

R: ACCACTTCGACATATCCTCC
F:GTGATGCATGATGTGAGGAG
R:GAAATCCTAGGGCATCATTG

F: CGTATCATCAGGAAAAGTTGG
R: GCTAGAATCGCAGCCTTCAG
F: GTGGCCTATCGATCCTTTAG

R: ACGTCGCTATGAACGCTTGG
F: GTTGTCCCTTAGAGCTTGTG

R: GACCGTGTTGTTGATTCTCC

F: CACCAAGGCAGAACTGAAGG
R: CTGGATGTAGGATTCATCGG
F: CAATGTGATTTCTGCCCAGTG
R: TGACGAGGCATTTGGCTACC
F: CCTGCTCAAGCTATCCCTTC

R: GTCACGATTTCTGGCCAACC
F: GATGGCCGATGGTTGAAAATG
R: CTGGATCTGAGTTTGCTGTTG
F: GAATCGGATTCGTGGAAGTG
R: CTGTCCCTCAATCTCAAAAGG
F: GCAAGGGATCCAGGTTCATC
R: CACCTTATGTGCGACATCGAC
F:GATGAACTGGAACAGAGCAAG
R: CTGTTCACGTTCTTTCAGAAC
F: GTGTCAACAACTTGATGAACC
R: ATGAGGGTGTTGATGACCAG
F: CCTTTATGCCAAGGACATATC
R: GTCTACAAACTTGACAGCCTC
F: CCATACAATCTTACACTCACC
R: CTATGTCCAGCTCGTCCTTC

F: GAAGCCAGTTTCTAGGTCTG
R: GGCAGCCAAGTAAACTGGAG
F: TTCTCCTGATCTCCTCCAAG

R: CAAACAAGAGCGTTACCTCG
F: TGAGGCATTGAGTCTGGAAG
R: GAAAACTAGGTCCACAGTGG
F: GAGGACTCGAGATCAAAGTG
R:GAAGACAAAGATGAAAGAGTGG
F: CCAGACACCAAGTCTCCTTC
R: ATCCTTTGGCCATGCCAACC
F: TCTTCAAAGCTCAACAACTCC
R: TTGCAGGCTCTCAATTGCTC

F: TGGTGATGCATGATGTGAGG
R: GTAAGACCATTGGACAAACGG



Li et al. BMC Plant Biology 2010, 10:140
http://www.biomedcentral.com/1471-2229/10/140

Page 6 of 12

Table 1: The primers of genes detected by RT-PCR and real-time PCR analyses. (Continued)

18s rRNA gene (AB268099)

F: GGTCGCAAGGCTGAAACT
R: ACGGGCGGTGTGTACAAA

F: GCTCGAAGACGATCAGATACC
R: TTCAGCCTTGCGACCATAC

aWIP, SAP, HSP, MT, CP450, UL, PPA, LPH, DBP, TCTP, SRPP, AGPS, HH2A, CT, GR, VPSAP, HoMyb1, CHP and Y17HO05 represent Wound-induced
protein, Senescence-associated protein, Heat shock protein, Metacaspase type Il, Cytochrome P450-like TBP protein, Ubiquitin ligase,
Posphotyrosyl phosphatase activator, Latex profilin Hev b8, DNA-binding protein RAV1, Translationally controlled tumor protein, Small
rubber particle protein, Alpha-1,4-glucan-protein synthase, Histone H2A, Copper transporter, Glutathione reductase, Vacuolar protein
sorting-associated protein, HbMyb1 transcription factor, Conserved hypothetical protein and Hevea brasiliensis clone Y17H05 mRNA,
respectively. F and R represent forward and reverse primers, respectively.

functional classification of TPD-related genes from Ven-
katachalam et al. [21], one obvious similarity between the
two studies was that a large numbers of stress/defense
response genes were upregulated in TPD tree (Figure 4).
The upregulation of these genes might destroy the nor-
mal cellular metabolism and result in the occurrence of
TPD in rubber tree.

Potential ROS producing and scavenging pathways

ROS, as toxic molecules, are capable of injuring cells. 17
genes probably involved in producing and scavenging
ROS were identified in this research (Additional file 1, 2
and Table 2). Two genes, SSH235 matching OsRacl and
SSH37 matching phospholipase C, were all upregulated
in TPD tree. It was reported that the upregulation of
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Figure 5 The expression analyses of differently expressed genes
by RT-PCR and real-time PCR. Total RNA extracted from the latex was
used for RT-PCR and real-time PCR analyses with the 18s rRNA as the
internal reference.H and T represent healthy and TPD trees, respective-
ly. The gene-specific primers were provided in Table 1. (A) The RT-PCR
analyses of the genes upregulated in TPD tree. (B) The RT-PCR analyses
of the genes upregulated in healthy tree. (C) The relative expression
levels of the genes related to TPD in healthy and TPD trees. The data
were collected from the real-time PCR analyses and shown as averages
+ SE. The expression level of each gene in healthy tree was defined as
1.0.

OsRacl and phospholipase C might induce ROS produc-
tion in plants [24-26]. Intriguingly, a putative gene encod-
ing cinnamoyl-CoA reductase (CCR), an effector of
OsRacl, was also increased in TPD tree. The CCR activ-
ity and ROS production were enhanced in the transgenic
cell cultures constitutively expressing active OsRacl [27].
Therefore, the three genes mentioned above might play
the similar functions in rubber tree. On the other hand,
the putative ROS-scavenging genes, such as thioredoxin

Table 2: The genes associated with TPD involved in
putative pathways

Putative pathways Putative genes?

ROS Rac1, Cinnamoyl-CoA reductase,
Thioredoxin fold, Thioredoxin H-type,
GLR, Phospholipase C,
Oxidoreductase, Alcohol
dehydrogenase, CAT, MnSOD, APX,
Cytochrome C oxidase, Late
embryogenesis abundant protein, GR,
S-adenosylmethionine-dependent
methyltransferase, TCTP, Metal ion
binding protein.

UPP Putative ubiquitin ligase, cullin,
Ubiquitin-conjugating enzyme,
Ubiquitin, Ubiquitin carrier protein,
26S protease regulatory subunit 6b,
Ubiquitin-like protein, Ubiquitin-
conjugating enzyme rad6, Ubiquitin-
protein ligase.

PCD Metacaspase type Il, CED-12,
Farnesyltransferase alpha subunit,
Translation initiation factor 5A,
Aquaporin, Translation elongation
factor 1-alpha, Senescence-associated
proteins (3), DNA topoisomerase Il
ADP-ribosylation factor, Heat shock
proteins (2), Cysteine desulfurylase,
Phosphatase 2¢, Speckle-type POZ
protein, Mlo, HoMyb1.

RB 5-phosphomevelonate kinase, Rubber
elongation factor (2), Small rubber
particle, HoTOM20.

aThe numbers in the brackets represent the gene numbers
identified in the pathway.
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fold, thioredoxin H-type, oxidoreductase, glutaredoxin
(GLR), catalase (CAT), SOD, metal ion binding protein,
ascorbate peroxidase (APX), glutathione reductase (GR)
and cytochrome C oxidase, were all downregulated in
TPD tree. Among of these genes, the decreasing expres-
sion of metal ion binding protein and thioredoxin H-type
was also reported in TPD tree by Venkatachalam et al.
[21]. In addition, the expression patterns of GR in TPD
and healthy trees were further identified by RT-PCR and
real-time PCR analyses (Figure 5). The expression pro-
files of the genes in ROS network probably break the bal-
ance between producing and scavenging ROS, which
results in the accumulation and burst of ROS [28]. Fari-
dah et al. reported that an uncompensated oxidative
stress might be involved in the onset of TPD [12]. In TPD
tree, the NAD(P)H oxidase activities increased [11],
whereas the levels of variable peroxidase and SOD
decreased [16]. Based on the above analyses, the accumu-
lation and burst of ROS might occur in TPD tree. Being
consistent with the hypothesis, the genes, encoding late
embryogenesis abundant protein, S-adenosylmethionine-
dependent methyltransferase and alcohol dehydrogenase,
were all upregulated in TPD tree. The upregulation of
three genes played important roles in protecting cells
against oxidative stress [29-33]. A gene with high similar-
ity to TCTP was downregulated in TPD tree, which was
in agreement with the result from Venkatachalam et al.
[21]. The transgenic Escherichia coli overexpressing
rBmTCTP in vivo was subjected to oxidative stress [34].
Moreover, the genes encoding LEA 3 and chitinase were
upregulated in TPD tree [21]. It was reported that LEA 3
and chitinase were involved in protecting macromole-
cules and membranes against oxidative stress [29].

Potential ubiquitin proteasome pathways

The cell response to stress is complex and is often con-
comitant with damage to a number of biomolecules
including proteins [35-37]; therefore, it is conceivable
that some repair mechanisms such as ubiquitin protea-
some pathway (UPP) are involved in the cell response to
oxidative stress. For example, the exposure to oxidative
stress could produce high levels of damaged proteins that
could be, at least in part, eliminated by the UPP [38,39]. It
was reported that the oxidative stress could induce the
expression of the major components involved in UPP [40-
42]. In this research, nine putative genes involved in the
UPP were identified in TPD tree (Additional file 1 and
Table 2); the expression of putative genes encoding E2
(ubiquitin-carrier or conjugating proteins), E3 (ubiquitin-
protein ligase), 26S protease regulatory subunit 6b, ubiq-
uitin, ubiquitin-like gene and cullin forming E3 ubiquitin
ligase complexes were all upregulated in TPD tree. More-
over, the expression patterns of E3 and cullin were further
validated by RT-PCR and real-time PCR analyses (Figure
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5). UPP is the major system for protein degradation
[43,44], so the upregulation of key genes involved in UPP
might facilitate the protein degradation in TPD tree.
Interestingly, Venkatachalam et al. also identified the
expression alteration of genes related to protein degrada-
tion in TPD tree [21]. Being consistent with our specula-
tion, the low protein content in TPD tree was reported by
Fan and Yang [10]. It is well-known that proteins play a
vital role in maintaining normal cellular processes,
whereas the low protein content caused by protein degra-
dation in TPD tree might affect some of normal pro-
cesses, such as PCD, rubber biosynthesis, cell biogenesis,
etc. Oxidative stress is a prerequisite for inducing UPP;
and therefore the upregulation of the key genes associ-
ated with UPP further suggested the accumulation and
burst of ROS in TPD tree.

Potential PCD pathways

Besides the induction of UPP, ROS can also initiate the
programmed cell death process [45-47]. It is crucial for
induction of PCD to produce more ROS and decrease
ROS scavenging capacities [48,49]. In TPD tree, the
expression patterns of genes involved in scavenging and
producing ROS corresponded with the condition of initi-
ating PCD (Additional file 1 and 2). Interestingly, twelve
genes likely involved in inducing or executing PCD were
identified in this research (Additional file 1, 2 and Table
2). A gene encoding putative metacaspase type II was
upregulated in TPD tree, and its expression was verified
by RT-PCR and real-time PCR analyses (Figure 5). In
Arabidopsis, the upregulation of metacaspase type II
could result in activating the downstream proteases,
whereas proteases are required to mediate cell death via
oxidative stress [50]. The gene similar to CED-12 was
increased in TPD tree. The engulfment of cells undergo-
ing apoptosis is the ultimate objective of the apoptotic
program, and CED-12 is required for engulfment of dying
cells and cell migrations [51-54]. HbMyb1 was decreased
in TPD tree, and its expression profiles were verified by
RT-PCR and real-time PCR (Figure 5). The downregula-
tion of HbMyb1 might induce PCD in rubber tree [20,21].
The putative gene with homology to farnesyltransferase
alpha subunit (FTase-alpha) was decreased in TPD tree;
the antisense FTase-alpha resulted in cell death in Rat-2/
H-ras cells [55]. A gene matching translation initiation
factor 5A (eIF5A) was reduced in TPD tree; the previous
findings indicated that elF5A negatively regulated pro-
grammed cell death [56-61]. An aquaporin-like gene was
downregulated in TPD tree; the transgenic lines down-
regulating aquaporin showed small plants, early senes-
cence and lesion formation in Arabidoposis [62]. A gene
with high similar to elongation factor 1-alpha was identi-
fied and it was upregulated in TPD tree; the gene plays an
important role in executing the apoptotic program under
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oxidative stress [63,64]. Three genes encoding putative
senescence-associated protein were all induced in TPD
tree; the upregulation of senescence-associated protein
(GO349117) was verified by RT-PCR and real-time PCR
analysis (Figure 5), which was in agreement with the
result of Venkatachalam et al. [21]. It was reported that
the increased expression of senescence-associated pro-
teins predispose tissue to senescence and cell death
[65,66]. A gene being high similarity with a DNA topoi-
somerase II was upregulated in TPD tree, and this gene
had the potential to trigger cell death pathways [67-69].
The ADP-ribosylation factor-like gene was increased in
TPD tree. The transgenic tobacco overexpressing ADP-
ribosylation factor showed cell death [70]. Due to high
identifies to the known genes, the putative genes
described above might induce or execute PCD in TPD
tree.

PCD has been defined as a sequence of events control-
ling and organizing the cell destruction [71]. In this
research, six genes probably protecting or inhibiting cells
from PCD destruction were identified in TPD tree (Addi-
tional file 1, 2 and Table 2). Two homologies with heat
shock protein were upregulated in TPD tree. Interest-
ingly, Venkatachalam et al. also reported that two mem-
bers of the heat shock proteins were increased in TPD
tree [21]. It was found that heat shock protein protected
cell form apoptosis [72]. A gene similar to cysteine desul-
furylase was enhanced in TPD tree; The plants with
reduced cysteine desulfurylase expression exhibited a
disorganized chloroplast structure, stunted growth and
eventually became necrotic and died before seed set [73].
The expression of a phosphatase 2c-like gene was
induced in TPD tree. In plants and human, the phos-
phatase 2c negatively regulated cell death and oncogenic-
ity, respectively [74,75]. A gene matching speckle-type
POZ protein (SPOP) was downregulated in TPD tree, and
HeLa cells overexpressing SPOP underwent apoptosis
[76]. The expression of a gene with homology to the bar-
ley Mlo gene was elevated in TPD tree. In barley, Mlo
transcripts were increased during leaf senescence, sug-
gesting that M/o might play important roles in preventing
cell death [77]. Chen et al. and Venkatachalam et al. all
suggested that PCD might occur at the onset of TPD [20-
22]. In addition, the typical characters of PCD, such as
DNA laddering, chromatin condensation, nuclear mem-
brane blebbing and cytoplasm shrinkage, etc, were
detected in TPD tree (communicated with Prof. Shiqing
Peng). PCD is accepted as a fundamental cellular process
in plants. It is involved in defense, development and
response to stress. During the PCD process, the rubber
tree might try to keep itself survival by executing the par-
tial cell death. In fact, the phenotypes of cell death always
appear on the tapping panel of TPD tree but not healthy
one.
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Potential rubber biosynthesis pathways

Natural rubber is synthesized via the mevalonate (MVA)
pathway in Hevea brasiliensis [78-80]. Besides the genes
involved in the MVA pathway, rubber elongation factor,
HbTOM20 and small rubber particle protein also play
important roles in rubber biosynthesis [22,81-84]. In this
study, two rubber elongation factors, HbTOM20, one
small rubber particle protein and one 5-phosphomeve-
lonate kinase were all downregulated in TPD tree (Addi-
tional file 2 and Table 2); the expression profiles of small
rubber particle protein between TPD and healthy tree
were further identified by RT-PCR and real-time PCR
analysis (Figure 5). Besides the above genes, Venkatacha-
lam et al. reported that a rubber biosynthetic gene,
HbHMD-CoA, was upregulated in TPD tree [21].
Although the exact roles of those genes in the occurrence
of TPD are not clear, they may be associated with the
decreased latex biosynthesis and/or flow in TPD tree.

Conclusions

Altogether, the genes associated with TPD were identi-
fied and their characterizations were further analyzed in
the paper. Among 237 unique genes, 205 were firstly
reported to be related to TPD in rubber tree; these genes
laid the foundations for unraveling the molecular mecha-
nisms involved in TPD. This result also demonstrates that
it is necessary to identify the genes associated with TPD
from different clones, tapping systems and stages of TPD.
Of different functional categories, the large numbers of
genes related to TPD were associated with transcription
and post-transcription, metabolism and energy, protein
metabolism or stress/defense response. In addition, the
characterization and expression of the genes related to
TPD suggested that ROS producing and scavenging, UPP,
PCD and RB might play important roles in TPD occur-
rence, which provides new insights into understanding
TPD in rubber tree.

Methods

Plant material

The RY8-79, a high-yielding clone but prone to TPD, was
planted at the experimental farm of Chinese Academy of
Tropical Agricultural Sciences. In this experiment, the
latex has been harvested for the past 11 years. During the
past 11 years, the rubber trees were regularly tapped with
a standard tapping system (S/2 d/4, i.e. half spiral cut
tapped at the fourth daily frequency). Besides, 1.0% ethe-
phon was applied to stimulate latex yield two days before
tapping, and the stimulation frequency was once three
tappings. The trees affected by TPD syndrome were still
tapped along with healthy trees to maintain uniform con-
ditions until sample collection. The fresh latex samples
were separately collected and pooled from five healthy
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and TPD trees, and immediately frozen in liquid nitrogen
for total RNA extraction.

RNA isolation

Total RNA was extracted from the latex samples of
healthy and TPD trees according to the method of Tang
et al. [85]. The RNA quantity and quality were deter-
mined by the spectrophotometrically.

Construction of SSH cDNA libraries

For PCR-select cDNA subtraction, Poly(A)* mRNA was
purified from total RNA with an Oligotex™-dT30 mRNA
Purification Kit (Takara). SSH was performed using the
PCR-Select™ ¢cDNA subtraction kit (Clontech, CA, USA)
according to the manufacturer's protocol and the method
of Diatchenko et al. [86]. For forward library, the cDNA
from healthy and TPD trees was used as "tester” and
"driver", respectively. On the contrary, the cDNA from
TPD and healthy trees was separately used as "tester” and
"driver" in reverse one. The double-stranded cDNAs were
separately synthesized from 2 ug Poly(A)* RNA samples
generated from healthy and TPD trees. The driver and
tester cDNAs from forward and reverse libraries were
separately digested with Rsal and then purified. The
digested tester cDNA was subdivided into two portions,
and each was separately ligated to different adaptors
(adaptor 1 or adaptor 2R) provided by the manufacturer.
After the ligation, the resulting cDNAs (tester cDNAs
ligated with adaptors) were divided into two populations:
one for subtraction study and the other for the evaluation
of subtraction efficiency.

Two hybridizations were then performed. In the first
hybridization, an excess of driver was added to each tes-
ter samples, leading to the enrichment of differently
expressed sequences. During the second hybridization,
the two primary hybridization samples were mixed
together to form new double-stranded hybrids with dif-
ferent ends. Fresh denatured driver cDNA was added to
further enrich differentially expressed sequences. After
two hybridizations, the resulting annealed material was
used as the PCR template. The primary PCR was per-
formed with the following parameters: 94°C for 25 s fol-
lowed by 27 cycles of 94°C for 30 s, 68°C for 30 s and 72°C
for 1.5 min, and then 72°C extension for 7 min. The pri-
mary PCR products were diluted 10-fold and used as the
template in secondary PCR. The secondary PCR was per-
formed for 14 cycles with the same parameters as the pri-
mary one. The subtraction efficiency was evaluated by
PCR reaction with the primers of rubber 18s rRNA. The
PCR products from subtracted samples were inserted
into the pMD18-T vector (Takara) and then transferred
into chemically competent E. coli (DH5a) cells to gener-
ate SSH libraries. The transformants were planted on LB
agar plates with 100 ug/ml ampicillin, 40 ug/ml 5-Bromo-
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4-chloro-3-indolyl -D-galactopyranoside (X-Gal) and 1
mM isopropyl-beta-D-thiogalactopyranoside (IPTG) for
blue-white screening. The white colonies were picked
and cultured at 37°C in LB liquid culture medium with
100 ug/ml ampicillin. The glycerol stocks of bacterial cul-
tures were frozen in liquid nitrogen and stored at -80°C.

Amplification of cDNA insertions

All recombinant clones from the two subtracted libraries
were picked and cultured overnight in LB liquid culture
medium with 100 ug/ml ampicillin. The cDNA inserts
were amplified with nested PCR primers (F 5'-tcgagcggc-
cgeeegggeaggt-3' and R 5'-agegtggtegeggeegaggt-3'). The
PCR amplifying conditions were as follows: 94°C for 5
min; 30 cycles of (94°C for 30 s, 68°C for 30 s and 72°C for
2 min); and a final extension at 72°C for 10 min. The PCR
products were then electrophoresed on 1.2% agarose gel.

Differential screening of the cDNA clones by reverse
Northern analysis

To identify and select the differentially expressed clones,
reverse Northern bolt was performed with labeled cDNA
probes. The subtracted and unsubtracted cDNAs were
labeled with 4-32P-dCTP using Random Primer DNA
Labeling Kit (Takara). The labeled probes were obtained
and purified on Sephadex G50 columns. The denatured
PCR products of inserts (about 10 ng) were spotted onto
nylon membranes. The membranes were incubated in
standard prehybridization solution at 65°C for 3 h and
then hybridized with a-32P-labeled probes at 65°C for 12
h. Following hybridization and sequential washing, the
radioactive membranes were exposed to x-ray film. The
clones, only hybridizing with the labeled tester probes or
indicating at least threefold signal with the labeled tester
probes than the labeled driver ones, were selected to
sequence.

DNA sequencing and sequence analysis

The differentially expressed clones in two cDNA libraries
were selected and sequenced. Raw sequence trace files
were performed by DNA Sequencing Analysis Software
5.1 (Applied Biosystems) to obtain base-calling with qual-
ity scores. Low quality (quality score < 16), short (< 100
bp), vector and adaptor sequences were removed by Lucy
program [87]. All unique ESTs were searched NCBI data-
base with basic local alignment search tool (BLAST) pro-
gram [88]. The functional categories of all unique ESTs
were performed according to GO [23].

RT-PCR and Real-Time PCR analysis

The cDNA synthesis was performed using 2 ug total RNA
according to the manufacture's protocol (Invitrogen,
USA). All RT-PCR experiments described here were
repeated at least three times using independent cDNA
samples. In each PCR reaction, the gene-specific primers
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were used, and rubber 18s rRNA gene was used as the
internal reference. All primers used for expression analy-
sis are provided in Table 1. RT-PCR was performed with
the following parameters: 94°C for 4 min followed by 30
cycles of 94°C for 30 s, 58°C for 30 s and 72°C for 1 min.
The final extension was performed at 72°C for 10 min.
The RT-PCR products were analyzed by electrophoresis
in 1.2% agarose gels.

For real-time PCR analysis, the RNA samples were pre-
pared from three biological repetitions; one was used to
construct SSH library; two were different from those used
for SSH. The real-time PCR reactions were performed
with ABI 7900 real-time PCR system. The SYBR Premix
Ex Taq kit (Takara) was used according to the manufac-
turer's protocol. The expression level of each gene was
normalized against the 18S rRNA gene. The cDNA sam-
ples were prepared with a series of 100-fold dilutions, and
the amplification efficiency of each gene was adjusted to
be equal to 18S rRNA. For each target gene, the PCR
reactions were carried out in triplicate. The relative
expression values were calculated from three biological
replicates using a modified 2-2ACT method [89].

Additional material

Additional file 1 The identification of non-redundant clones upregu-
lated in TPD trees from the reverse SSH library. The file contains func-
tional classification, SSH clone ID, cDNA insert size, GeneBank accession no.,
putative identify and E-value of non-redundant clones from the reverse SSH
library.

Additional file 2 The identification of non-redundant clones down-
regulated in TPD trees from the forward SSH library. The file contains
functional classification, SSH clone ID, cDNA insert size, GeneBank accession
no., putative identify and E-value of non-redundant clones from the for-
ward SSH library.
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APX: ascorbate peroxidase; BLAST: basic local alignment search tool; CAT: cata-
lase; CCR: cinnamoyl-CoA reductase; DDRT-PCR: differential display reverse
transcription PCR; EST: expressed sequence tag; GO: Gene Ontology; GLR: glu-
taredoxin; IPTG: isopropyl-beta-D-thiogalactopyranoside; MVA: mevalonate;
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