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Abstract

Background: Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals
make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is
controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase
(LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate
monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic
and developmental pathways, which along with its production of multiple transcript types and complex exon/intron
structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus
interesting both from applied standpoint and for basic plant metabolism.

Results: The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes.
The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates
all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes
suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls.
Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional
bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR
transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar.

Conclusions: The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among
available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and
the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings
suggest variation in activity of LKR/SDH genes among plants. Although most plant genomes seem to contain a single
conserved LKR/SDH gene per genome, poplar possesses multiple contiguous genes. A preponderance of SDH
transcripts suggests the LKR region may be more rate-limiting. Only switchgrass has EST evidence for LKR
monofunctional transcripts. Evidence for monofunctional SDH transcripts shows a novel intron in wheat,
Brachypodium, and poplar.

Background

Monogastric mammals, which include humans, depend
on external dietary sources for half of the amino acids
needed for protein synthesis. The aspartate-family path-
way controls synthesis of the essential amino acids lysine,
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threonine, and methionine, with lysine feedback-inhibi-
tion and rates of lysine degradation being factors in this
important pathway. Among the essential amino acids,
lysine is the most severely limiting in the cereals - crops
that make up half of the human diet [1]. In contrast to
animals, plants synthesize lysine and have evolved com-
plex metabolic pathways to maintain lysine levels [2]. To
understand lysine metabolism, a thorough understanding
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of all aspects of these pathways is necessary. For the cata-
bolic portion of lysine metabolism, the bifunctional
enzyme lysine ketoglutarate reductase saccharopine
dehydrogenase (LKR/SDH; synonym a-aminoadipic-8-
semialdehehyde synthase) converts lysine to glutamate
and a-aminoadipic acid via a 2-step pathway; i.e., the LKR
activity (E.C. 1.5.1.8) catalyzes the formation of saccha-
ropine from lysine and «-ketoglutarate (2-oxoglutarate),
and the SDH activity (E.C. 1.5.1.9) processes the saccha-
ropine into glutamate and an a-aminoadipic-8-semialde-
hehyde which is further catabolized to two glutamates
[2,3]. In both plants and animals, the LKR/SDH gene
encodes an open reading frame composed of fused LKR
and SDH domains - compared to yeast and fungi where
the LKR and SDH activities are encoded by separate
genes [4,5]. In plant LKR/SDH genes, there is a linker, or
interdomain, sequence not present in animals that sepa-
rates the LKR and SDH encoding domains - leading to
speculation that there are controls and functions unique
to plants [6]. Both LKR/SDH and monofunctional SDH
mRNAs have been detected in mouse [7]. Similarly in
plants, an Arabidopsis SDH mRNA is reported that initi-
ates transcription inside the 3' sequence of the interdo-
main [8], and a cotton LKR mRNA is reported that
terminates at the 5' junction area of the linker [9]. One
question in the latter report was that the 3' noncoding
sequence is not present in the LKR/SDH gene - leaving
the origin of this sequence uncertain but attributed to a
possible trans-splicing event. The function of such
mono-functional mRNAs is not clear, but the SDH
mRNA and protein levels were consistently higher than
the LKR/SDH mRNA and protein levels in Arabidopsis
tissues - leading to the proposal that the LKR activity was
the rate limiting step and that the relative SDH excess
assured rapid flux through the pathway for LKR/SDH
[10].

The exact site of activity of LKR/SDH is considered to
be the mitochondria [11], but evidence is not clear. The
LKR/SDH enzyme has been localized to the cytosol in
plants [6,12], while lysine-a-ketoglutarate reductase and
saccharopine dehydrogenase enzymatic activities were
located only in the mitochondrial matrix in animal livers
[13,14]. Possible roles in transcription regulation include
evidence of LKR/SDH being a co-factor involved in hor-
mone-mediated transcription through regulation of H3
and H4 histone methylation [15] and the LKR/SDH gene
is reported to be regulated by the Opaque2-type tran-
scription factors that also control the expression of at
least some classes of cereal seed proteins [6]. In addition
to a direct role in lysine metabolism, LKR/SDH has been
reported to be regulated by a number of environmental
and metabolic influences including osmotic balance, hor-
mome levels, and salt and water stresses [10,16,17]. Sug-
gestive evidence for more complex regulatory roles for
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LKR/SDH are that expression is enhanced in developing
seeds of cereals and floral tissues known to contain lim-
ited amounts of lysine, and analyses suggesting LKR/SDH
expression is not highly coordinated with other catabolic
enzymes [8]. Similarly, the finding of multiple transcripts
from the same gene (encoding mono- and bifunctional
enzymes) and a coding region composed of 25 exons in a
dicot and 26 exons in a monocot [12] suggests complex
regulation and roles in plant metabolism and develop-
ment [2,10].

The importance of lysine to animal/human nutrition
and the role of LKR/SDH in lysine catabolism has lead to
several approaches to increase plant seed lysine. These
approaches include increasing seed lysine by transforma-
tion with feedback-insenstive versions of lysine anabolic
genes [18], down-regulating the LKR/SDH gene [19], a
combination of those two approaches [20], transgenic
expression of a foreign protein high in lysine [21], and
reducing synthesis of lysine-poor seed proteins [22].

Plant LKR/SDH genomic sequences have been formally
reported only for Arabidopsis [8,23] and maize [6]. A
comparison of these dicot and monocot genes found high
conservation in exon size and sequence, with the maize
gene having one additional exon in the 5' region [12]. The
dicot and moncot intron sequences have diverged com-
pletely and the maize introns are generally larger - from
start to stop codons the maize LKR/SDH gene spans 9515
bp while the Arabidopsis gene spans 5590 bp. Additional
plant LKR/SDH sequences are available (rice, poplar,
grape, etc.), but have not been comparatively analyzed.
The Triticeae crops (wheat, barley, rye, triticale) are, as a
group, the largest direct fraction of the human diet
worldwide, but no LKR/SDH gene has been reported for
this important crop group.

The current report describes a BAC clone of a wheat
genomic fragment containing an LKR/SDH gene, deter-
mines genome assignments of the BAC and EST contigs
in hexaploid wheat, and compares relative homoeologue
expression among the three hexaploid wheat genomes.
Also described are a comparative analysis of a set of plant
LKR/SDH genes including variant structures in the pop-
lar and grape genomes. Wheat and other plant LKR/SDH
ESTs are analyzed to determine splicing sites and evi-
dence for alternative splicing. This analysis also finds EST
evidence for both monofunctional LKR and SDH tran-
scripts.

Results and Discussion

Wheat LKR genomic region

To isolate a wheat LKR/SDH gene, a durum wheat (7riti-
cum turgidum) tetraploid 5x BAC library was screened.
Six BACs were positive for LKR/SDH sequences and
formed two contigs of four and two BACS respectively, as
seen from Southern analysis and BAC fingerprinting (not
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shown). Each contig contained single LKR/SDH
sequences - suggesting that there are single LKR/SDH
genes in each of the wheat A and B genomes of tetraploid
wheat. BAC 0006 M07 was chosen for sequencing as hav-
ing the LKR/SDH gene relatively centrally located in the
BAC. This BAC was sequenced and found to be 161,506
bp in length. The sequence can be found as Genbank
accession GU182251.

The annotation of this region of the wheat genome
found three known genes and one unknown gene as
shown in Figure 1A; i.e., genes for a pectinesterase (PE), a
mitochondrial termination factor (mTERF), LKR/SDH,
and an unknown gene. These four genes are clustered
within about 43,000 bp composed of two pairs of gene
sequences (purple boxes in Figure 1A) and non-coding
and non-repetitive sequences (grey boxes) that include
gene promoters. These two gene pairs are separated by a
short region of transposable elements. The remainder of
the 161,506 bp BAC sequence is composed of nested
transposable elements of various classes (white boxes).
This organization is consistent with previous reports that
the wheat genome is composed of small "islands" of 1-4
genes separated by regions of transposable elements [24-
271].

Structure of the a wheat LKR/SDH gene and protein

Analysis of the wheat LKR/SDH gene sequence indicates
the structure shown in Figure 1B. Consensus exon/intron
boundaries were determined using wheat EST sequences
aligned to the genomic sequence. At least one wheat EST
exists that overlaps all the coding sequence except for the
region around exon 10 where maize and rice LKR/SDH

A
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[
mTERF Unk [] Transposable Elements
D Noncoding/non-repetitive sequences
F— 10k
Oke - Genes
Interdomain
ATG ptnker TGA
]
Intron 14
1 234567 8 9 10 1112 1314 15 1617181920 2122 23 242526
I !
L 1
1000 bp LKR SDH

Figure 1 Organization of an LKR/SDH gene segment of the wheat
genome. (A) Diagram of the wheat LKR/SDH genomic region spanned
by BAC clone 0006M07. Genes are identified by purple boxes and re-
gions of transposable elements by white boxes. Sequences of non-
coding and non-repetitive type are indicated by grey boxes. Arrows in-
dicate direction of transcription. (B) The LKR/SDH gene region is ex-
panded to show exon/intron organization. Exons are indicated by
numbered boxes and introns by intervening lines. The LKR domain
exon boxes are blue and the SDH boxes are red. Two yellow exons are
the proposed interdomain coding region of the full-length LKR/SDH
protein. Start and stop codon positions of the full-length coding re-
gion are marked.
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coding sequences were used to estimate exon/intron
boundaries. In regions with only 1-2 wheat ESTs, exon/
intron boundaries matched rice and maize sequences in
all cases. Similar to the previously reported maize LKR/
SDH gene structure [10], the wheat LKR/SDH gene is
comprised of 26 exons and 25 introns. The intron borders
matched the canonical plant intron borders (GT...AG) for
all 26 introns. The 5' portion of the sequence encodes the
LKR activity of the bifunctional enzyme, which is
encoded by eleven exons (blue boxes in Figure 1B); the 3'
part of the sequence encodes for SDH activity and con-
tains twelve exons (red boxes). The two regions are sepa-
rated by an interdomain region composed of two exons
(yellow boxes) and three introns, one of which (intron 14)
is the longest intron in the LKR/SDH gene (1122 bp). This
intron may include 5-UTR/promoter sequences for
monofunctional SDH transcripts (see below).

The coding sequence from the wheat LKR/SDH gene is
used to derive the complete bifunctional amino acid
sequence and is shown in Figure 2 along with indications
of exon boundaries (exon 1 is entirely 5' UTR sequence).
A similar analysis was carried out for available sequences
from Brachypodium, cotton, grape, Medicago, poplar, and
rice. These seven sequences are compared to the previ-
ously reported sequences from Arabidopsis and maize
and the nine derived amino acid sequences are aligned in
Figure 2. Highlighted are conserved amino acid positions
(no more than one difference) on all analyzed plants (yel-
low) and positions unique to monocots (blue). Exon/
introns positions are conserved among all plants analyzed
with an exception that exons 2 and 3 in monocots form a
single exon in dicots as previously noted [10]. Exons are
indicated for the monocots (dicot exon numbers are one
less since exons 1 and 2 are fused in dicots, i.e., monocot
exon 15 is homologous to dicot exon 14). Although much
of the sequence is conserved among all plants, several
portions are not and are characterized by both residue
differences and sequence length variation. Examples of
major differences between monocots and dicots include
the beginning of exon 8, the junctions of exons 12 and 13,
exon 15, and exon 22. The exons 12 and 13 junction
where differences in transcription termination suggest
monofunctional LKR transcripts (more below). Exons 8
and 22 are in the central portion of the LKR and SDH
domains, respectively. Exon 15 is both at the beginning of
the SDH domain and one of the largest exons. Exon 14 is
one of the most conserved exons, but is part of the inter-
domain region and not the LKR and SDH enzymatic
domains, suggesting conservation of function not yet
understood. The wheat LKR/SDH polypeptide is similar
in length to the other grass polypeptides except at posi-
tions starting at 563 and 617 in exon 15 of Figure 2 - the
wheat sequence is three and ten amino acid residues
shorter than in the other grasses, respectively. The func-
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Figure 2 LKR/SDH amino acid sequences. The derived amino acid sequence of a wheat LKR/SDH protein is shown and compared to sequences

derived from DNA sequences of other plants. Amino acid positions with no more than one difference among all plants are shaded yellow. Amino acids
unique to monocots are shaded blue. Red lines indicate exon boundaries. Arrowheads indicate predicted start positions of monofunctional SDH tran-
scripts for wheat (above sequences) and Arabidopsis (below sequences). An asterisk marks the approximately position ending the monofunctional LKR
transcript. Exon numbers above the sequences indicate monocot exon numbers - dicot numbering is one less since exons 1 and 2 are fused in dicots.

The poplar sequence is derived from poplar gene 1 as described below.
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tional significance of such differences is not known, but
may relate to regions of limited functional significance.

As suggested by the blue shading in the amino acid
alignment, the LKR/SDH amino acid sequences from
dicots and monocots form two distinct branches on phy-
logenetic analysis as shown more clearly in Figure 3. A
pair-wise distance table is given in Additional File 1. The
closest related sequence to wheat is from Brachypodium,
consistent with previous reports from BAC-end sequence
analyses [28] and from taxonomic placement of Brachy-
podium in the Brachypodieae tribe sibling to the Triticeae
tribe (that includes wheat and barley) - both tribes are
members of the Pooideae subfamily (ncbi.nlm.nih.gov/
Taxonomy). The tree in Figure 3 also shows that the only
two previously described LKR/SDH sequences, from Ara-
bidopsis and maize (which are considered models for
their respective groups), are each most distantly related
to the other plant proteins within their respective groups.

The coding regions of available LKR/SDH genes were
also compared and formed a phylogenetic tree of the
same form as in Figure 3 (not shown). A comparison of
intron sequences found no significant conservation of
intron sequences for available LKR/SDH sequences
within both dicots and monocots - with the exception of
the Brachypodium/wheat comparison where significant
conservation is evident (Additional File 2). Further
sequencing of LKR/SDH, and other genes from a larger
panel of more closely related plant genera and species is
needed to understand patterns of plant intron sequence
divergence.

100| Wheat =
93!—': Brachypodium | 3
w00 L Rice g
——— Maize L°

Poplar-1
77 L Poplar-2 s
% Grape g
L Cotton @

- Medicago
Arabidopsis L
Moss
0.05,

Figure 3 Phylogenetic analysis of LKR/SDH proteins. LKR/SDH
amino acid sequences were used to generate a phylogenetic tree us-
ing Clustal W and described in Methods. Length of branches represent
the number of amino acid substitutions per site. The percentage of
replicate trees in which the associated sequences clustered in the
bootstrap test are shown next to the branch points. Clusters of mono-
cot and dicot sequences are labeled.
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Chromosome and genome location of the wheat LKR/SDH
gene

Southern analysis of hexaploid wheat found that wheat
EST BE606591 hybridized to three genomic fragments
[29]http://wheat.pw.usda.gov/wEST. Two of the LKR/
SDH-encoding fragments were mapped to the 6AL and
6BL chromosome arms but a third fragment could not be
accurately mapped or assignment made to the 6DL chro-
mosome (see Additional File 3). The same analysis local-
ized the gene to the region of 0.4 to 0.55 of the wheat
consensus group 6 chromosome long arm. The wheat
group 6 chromosomes have most homology to rice chro-
mosome 2 [30] - consistent with the wheat LKR/SDH
gene on the group 6 chromosomes since the rice LKR/
SDH gene sequence is found on rice chromosome 2 http:/
/www.ncbi.nlm.nih.gov.

The wheat LKR/SDH gene sequence of BAC 0006M07
was compared to rice and conserved primers were
designed and used to amplify DNA from diploid ances-
tors of the hexaploid wheat (T. aestivum; A, B, and D
genomes) and tetraploid wheats (7. turgidum; A and B
genomes). Amplified fragments were sequenced and used
to design A-, B-, and D-genome specific primers (see
Materials). Genome-specific primer pairs are shown to
amplify from specific genomes using three wheat nulli-
somic-tetrasomic genetic stocks - each stock missing one
of the three group 6 wheat chromosomes (Figure 4).
These genome-specific primer pairs were used to deter-
mine the genome origin of the wheat BAC 0006 MO0?7.
Results showed that primer pair AF3 (A-genome specific)
and R3 (universal for all wheat genomes) amplified the
expected fragment size from BAC 0006M07 and DNAs
containing the A-genome (nulli6B-tetra6D, tetraploid
cultivar Langdon), but not from DNA missing the A-
genome (nullibA-tetrabD) - establishing that BAC
0006MO7 originated from the wheat A-genome (Addi-
tional File 4).

The previous results supported LKR/SDH genes exist in
each of the hexaploid wheat's A-, B-, and D-genomes. To
determine if all three genes were actively transcribed,
wheat LKR/SDH ESTs were identified (Additional File 5).
These ESTs assembled into three contigs, one of which
(contig 1) is identical over its 1574 bp to the sequenced
BAC LKR/SDH coding region (not shown). The relation-
ship of the three contigs to the same region in the BAC
sequence is shown in Additional File 6. Contig 1 also con-
tains all five T monococcum (diploid grass related to the
wheat A-genome donor) LKR/SDH ESTs, therefore con-
firming contig 1 and the BAC as originating from the A-
genome. Contigs 1 and 2 contain, respectively, 7 and 17
ESTs from tetraploid wheats (A- and B-genomes). Contig
3 contains no tetraploid or T. monococcum ESTs. There-
fore, contig 2 should represent the B-genome and contig
3 the D-genome. In support of these assignments, the
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Figure 4 Genome-specific LKR/SDH primers. Common priming
sites for all three genomes are F3 and R3. Genome-specific priming
sites were developed in intron 22 for the B- and D-genomes (BF3 and
DF3, respectively) and in exon 23 for the A-genome (AF3). (B) PCR
products generated with each genome-specific LKR/SDH primer plus
common primer R3 from genomic DNA of hexaploid wheat cv Chinese
Spring group 6 chromosome nullisomic-tetrasomic genetic lines (N6A
= nulli6A, N6B = nulli6B, N6D = nulliéD). Two amounts of sample were
loaded for each DNA.

sequences of contigs 1 and 3 are closer to each other than
to contig 2 (Additional File 7), consistent with the previ-
ous reports that the A and D common ancestor diverged
from the B-genome ancestor [27]. Finally, the sequences
amplified from specific genomes matched the three con-
tigs and confirmed the genome assignments (not shown).

When the ESTs for the three hexaploid wheat LKR/
SDH EST contigs are tallied, the distribution by genome
for the A-, B-, and D-genomes is 54, 47, and 35 ESTs,
respectively. A Chi-square goodness-of-fit test for depar-
ture from expected values yields P = 0.13. Thus, the num-
ber of ESTs from the three homoeologs is not considered
statistically significantly different from the expected
numbers. Further, more global, analyses are needed to
understand whether differential homoeologue transcrip-
tion has a role in polyploid plants.

Structure and expression of genes adjacent to the LKR/SDH
locus

Three other genes are found near the LKR/SDH gene in
this study (Figure 1). The first gene is for a pectinesterase
(PE; a.k.a. pectin methylesterase). This class of enzymes
catalyses the demethylesterification of cell wall polygalac-
turonans and produces de-esterified acidic pectins and
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methanol [31]. The plant pectinesterases comprise a large
family of enzymes with roles in a wide range of plant cell
activities including cell adhesion, cell elongation, organ-
elle formation, ribosome binding, and plant defense [31-
33]. The pectinesterase gene in BAC 0006M07 contains
one intron of 470 bp (not shown). No ESTs are found that
exactly match the BAC A-genome pectinesterase gene,
but Additional File 7 shows four similar wheat ESTs
(BQ806129, CA717792, C]525781, CJ634274) with 93-
96% sequences matches to the BAC pectinesterase gene.
These four ESTs are likely from one of the orthologous PE
genes in either the B- or D-genomes. In addition, the best
BLASTn match of these ESTs and the BAC PE sequence
is to the rice pectinesterase gene adjacent to the LKR/
SDH gene in the rice genome (not shown).

The second additional gene encodes a mitochondrial
termination factor (NTERF). These genes encode a pro-
tein family involved in the transcriptional regulation of
the mitochondrial genome. Mitochondrial DNA is tran-
scribed as polycistrons that include RNA for rRNA,
tRNA, and mRNAs. A preponderance of rRNAs is
achieved by mTERFs promoting transcription termina-
tion at the 3' end of the rRNA region [34] and pausing
transcription at other sites in the mitochondrial genome
[35]. An mTERF gene is found in the BAC sequence
between the pectinesterase and LKR/SDH genes at about
28,000 bp (Figure 1). The gene contains no introns and
has an intact mTERF reading frame that encodes a
mTERF highly similar to mTERF proteins reported for
other plants - an amino acid alignment is shown in Addi-
tional File 8 for rice and maize. The wheat BAC mTERF
gene is also expressed since several good matches to
wheat ESTs exist (Figure 5) including wheat ESTs
BE406624 and FL586458 which are exact matches over
their 365 and 312 bp lengths, respectively, and are there-
fore assigned to the A-genome. Wheat ESTs BQ608689
and AL820794 have DNA sequences that are 94% match-
ing the wheat A-genome LKR/SDH sequence, and are
likely from the B- and/or D-genome orthologous genes. A
single barley EST is also a 94% DNA sequence match to
the wheat A-genome LKR/SDH coding sequence. The
best rice genomic similarity to the BAC mTERF and
matching ESTs is to an mTERF gene adjacent to the rice
LKR/SDH gene.

Finally, immediately 3' to the LKR/SDH gene is an
apparent gene of unknown function. Similar genomic or
EST sequences are found only in the Triticeae, but a
unique 17 out of 18 bp sequence is found in the same rel-
ative position 3' to the LKR/SDH gene in rice. Although
no wheat ESTs exactly match this unknown gene, a simi-
lar region is apparently transcribed in barley since two
barley ESTs (BM099304 and BM372530) are close
matches (Additional File 9). The alignment of the two
barley ESTs to the wheat genomic region shows seven
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Figure 5 ESTs matching BAC mTERF gene. Wheat and barley ESTs matching the BAC mTERF gene are aligned with the mTERF coding sequence.
Start and stop codons are boxed. Sequence differences to the BAC are shaded in yellow and blue.

gaps with canonical intro/exon junctions at 14 of 15 posi-

tions.

used as queries in database searches, no significant match
is found to any DNA (best match e = 0.1) or protein
sequences (best match e = 0.28). The two barley ESTs are
from pistil and embryo sac, respectively. These two tis-
sues have not been commonly sampled for ESTs - which

could
plant

Triticeae, then the sequence must have arisen after sepa-
ration of the Triticeae from other grasses. Thus, although

the intron/exon structure and ESTs argue for a functional

When the apparent exons are spliced together and  gene, this remains to be further established.
the resulting DNA and derived amino acid sequences are

Comparison to other genomes

In addition to comparing the LKR/SDH derived protein
sequences (Figure 2), the region of the wheat genome
represented within BAC 0006M07 was compared to
other available plant genomic sequences, either from

account for the sequence not appearing in other complete genomes in the cases of Arabidopsis, Brachypo-
EST collections. If this sequence is found only in dium, Medicago, rice, and sorghum, or from BAC

sequences containing LKR sequences and some flanking
DNA as in the cases of grape and poplar (Figure 6). In



Anderson et al. BMC Plant Biology 2010, 10:113
http://www.biomedcentral.com/1471-2229/10/113

1?7 F———1"""F Wheat
0 —{+——{_ } Brachypodium

1 - [ FRice

1HI—1___ } Sorghum

114
3 ——1 T} Medicago

F Arabidopsis

3 FGrape

Poplar
R | LR [gene 1 gene2 }
: BAC sequence :

B PE [ mTERF [J LKR/SDH

Figure 6 Compare LKR/SDH genome regions. LKR/SDH genomic
regions of eight plants are compared for the relative location of three
genes, i.e, LKR/SDH, mTERF, and PE. LKR/SDH genes = white boxes.
mMTERF genes = grey boxes. PE genes = black boxes. The numbers at
the left indicated the total number of PE genes found 5' to the LKR/
SDH genes in available genomic sequences. No additional wheat ge-
nomic sequence is available as indicated by the question mark. Gene
lengths and spacing are drawn to scale. Gene lengths are the sum of
exons plusintrons. The three poplar genes are labeled LKR (monofunc-
tional LKR) and genes 1 and 2 for the two full-length LKR/SDH genes.
The poplar LKR/SDH genes are from BAC AC209229 and the PE genes
from the genome assembly.

seven of the eight species, the data supports a single LKR/
SDH gene per genome. The exception was for poplar,
where poplar BAC AC209229 (Genbank) contains two
full-length copies of the LKR/SDH gene plus a third gene
encoding only the LKR portion with a 5' LKR sequence
truncation at the end of the BAC sequence. In contrast,
searching the Poplar trichocarpa genome sequence http:/
/genome.jgi-psf.org found one apparently full-length
LKR/SDH gene flanked by two partial genes containing
either a fragmented LKR region or a fragmented SDH
region, respectively. For further discussion, the poplar
genes are referred to as the LKR gene 1 and gene 2. Sev-
eral observations argue against the poplar BAC sequence
being an artifact and that the BAC sequence assembly is
more accurate than the current version of the P
trichocarpa genome sequence. When aligned, the three
poplar gene sequences show more conservation of exon
sequences than intron sequences which have major diver-
gences (not shown), and the coding sequences all have
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distinct differences. Although the few poplar LKR/SDH
ESTs are from 3-4 different species of Populus (P. nigra,P.
trichocarpa, P. tremula, and a P. tremula x P. tremuloides
cross), the two complete LKR/SDH genes have distinctive
3' UTRs with matching ESTs (Additional File 10) that
indicates ESTs originating from both genes (gene 1
matches ESTs CV242527, DV242515, DB907693,
DB900296; gene 2 matches ESTs DB899866, CK105181,
CK095239, BI126461). The most likely cause of the dis-
crepancy between the BAC and the genomic assembly is
the three tandem LKR/SDH gene sequences led to errors
in the shotgun genome assembly, although not ruled out
are differences between P. trichocarpa germplasms.

The poplar monofunctional LKR gene in ends at about
200 bp 3' to the end of exon 11 when compared to the
full-length genes (not shown). In addition, the sequence
has a frameshift in exon 7 (not shown) caused by a TC to
TCTC difference in sequence compared to the two full-
length genes. Only five ESTs are available for the 5' end of
the poplar LKR sequences and none match the mono-
functional LKR gene sufficient to suggest any transcripts
from that gene. However, these are too few ESTs to rule
out gene activity, and the apparent frameshift would need
to be confirmed.

Figure 6 compares adjacent gene organization among
wheat and other plants (the unknown gene from wheat is
not shown since no other plant had a similar gene). To
find the location of the mTERF and PE genes, the relevant
wheat DNA coding and derived amino acid sequences
were used in BLAST searches to find the most similar
sequences. If the best match was adjacent to the LKR/
SDH gene, those matches are shown in Figure 6. The rela-
tive gene spacings are fairly conserved even with large
differences in genome size, i.e., the PE, mTERF, and LKR/
SDH genes share similar intergenic spacing despite as
much as a ~30-fold difference in genome sizes, such as
between Arabidopsis and one of the wheat genomes. Sim-
ilar spacings occur in all other examined plant sequences
which raises questions about the basis of genome size dif-
ferences (gene-islands vs repetitive regions), and possible
conserved functional clustering of genes. Figure 6 also
shows that the conservation of the gene complement in
this region with respect to the LKR/SDH gene, is not uni-
versal. All four monocot genomes contain the mTERF
gene, but no dicot has an mTERF gene in this position of
the genome. The PE gene is missing in Brachypodium but
present in one copy in other available monocot
sequences. Dicots show variation in the number of PE
genes, with only one in this position in Arabidopsis, three
each in Medicago and grape, and six in the current poplar
assembly. Whether the difference in PE copy number is
related to differential gene activity and function is
unknown.


http://genome.jgi-psf.org
http://genome.jgi-psf.org
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Multiple transcripts from single LKR/SDH genes
Alternative transcript production from individual genes
is a mechanism to expand potential protein diversity. This
strategy can include both differential splicing of exons
and multiple promoter sites, sometimes with the two in
concert. The most extensive analyses have been with
mammalian systems - where estimates are that more than
half of the genes are involved in alternative splicing and
nearly half have alternative promoters [36,37]. More lim-
ited analyses in plants indicate that upwards of 20% of
plant genes are involved in alternative splicing [38,39]. An
analysis of the conservation of alternative splicing
between a dicot (Arabidopsis) and monocot (rice) con-
cluded that since there was little conservation between
the two plant groupings, this implied a limited role for
alternative splicing in expanding the plant proteome [40].
However, even if specific alternative splicings are not
conserved between dicots and monocots, this does not
mean there are not important functional differences since
such major differences in plant architecture, develop-
ment, biochemistry, and genome organization are well-
known.

The LKR/SDH gene, with its large number of exons,
bifunctional nature, evidence of bi- and monofunctional
transcripts, and diverse functional associations, would
seem a good candidate for the study of multiple tran-
scripts. The few reports on the relative abundance of
monofunctional LKR or SDH mRNAs have not been con-
sistent. It has been reported that the SDH mRNA is more
abundant than LKR/SDH in Arabidopsis [10], a finding
not evident in an earlier report [9]. In comparison, in
mouse the LKR/SDH form was found more abundant
than the SDH form [7]. The mouse study also failed to
find evidence of a monofunctional LKR form. In plants,
the only report of monofunctional LKR mRNAs is in cot-
ton [9], although the authors speculate on the existence in
other plants.

An analysis was carried out on three potential sources
of multiple transcripts from the LKR/SDH gene - evi-
dence for monofunctional LKR ESTs, monofunctional
SDH ESTs, and alternative splicing using major collec-
tions of wheat and other plant ESTs. All available wheat
LKR/SDH ESTs were aligned to the predicted full-length
coding sequence (Figure 7; ESTs are shown as arrows and
are in the same vertical order as the list of wheat LKR/
SDH ESTs in Additional File 5). Of the 146 wheat ESTs,
only 11 initiate in the LKR or linker domains (red arrows
in Figure 7), while 135 ESTs match the SDH domain
(black and blue arrows). Two observations suggest that
most of the ESTs represent monofunctional SDH tran-
scripts with only a few full-length bifunctional tran-
scripts. If most of these SDH-domain ESTs were from
bifunctional transcripts, there would be a gradation of 5'
termini of the ESTs across the full-length sequence. Nor-
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Figure 7 Wheat LKR/SDH EST alignment. The full-length LKR/SDH
coding region derived from BAC 006MO7 was used to align wheat ESTs
matching with a BLASTn of e or lower. Red arrows indicate 5' reading
ESTs initiating in the LKR or interdomain regions. For the remainder of
the ESTs, black arrows show forward 5' reads and blue arrows show re-
verse 3' reads. Red vertical lines indicate the initial start codon of the
LKR domain, the proposed start codon for a monofunctional SDH mR-
NA, and the common stop codon for both the bifunctional and SDH
monofunctional mRNAs. Above the alignment are the numbered ex-
ons. Blue boxes indicate the LKR domain and red boxes the SDH do-
main. Yellow boxes are exons within the interdomain region. The black
box represents the short sequence from intron 14 that is found at the
5"end of presumptive monofunctional SDH transcripts and not found
in the red-arrowed ESTs. Three 5'and 3' EST pairs from the same clones
are labeled as follows: 1, CJ882974 + CJ894783; 2, CJ881957 +
(J893808; 3, CJ883733 + CJ895693.

mally, ESTs from the 5' end of a sequence would be less
represented for two reasons: longer transcripts, such as
for LKR/SDH, will tend to be represented by more trun-
cated clones during the cloning process, and since
mRNAs are isolated via their 3' polyA sequences, 3' cod-
ing sequences in clones will be favored. Therefore, within
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a specific EST collection the ESTs will tend to terminate
at the polyA site 3', and form a continuous pattern of
truncated to full-length 5' termini. Figure 7 shows that
instead of a gradual pattern, there is a relatively abrupt
concentration of 5' ends around the area appropriate for
the 5' end of monofunctional SDH transcripts. A second
observation suggests a lack of wheat monofunctional
LKR ESTs. All 11 ESTs that initiate within the LKR
domain are 5' to 3' sequence reads with no EST reads
consistent with 3' to 5' reads from the polyA end of
mRNAs, as would be expected if there were LKR mono-
functional ESTs in the existing wheat ESTs. Three of
those 11 LKR ESTs also have 3' reads off the same clones
(CJ882974 + CJ894783, CJ881951 + CJ893808, C]J883733
+ CJ895693), and in all three cases the 3' sequence is from
the 3' terminus of the SDH domain - thus confirming
these three clones as originating from full-length LKR/
SDH transcripts.

Similar analyses were taken for ESTs from other plants
(not shown). The sum result from rice, sorghum, maize,
Arabidopsis, Brachypodium, Medicago, and barley are
similar; i.e., a preponderance of SDH domain ESTs - 247
SDH and 64 LKR (of the 64 LKR, 36 are from rice and
include a large number of ESTs of almost identical size
from a restricted region of the LKR domain that may
indicate some artifact in EST reporting). Of those plant
LKR region ESTs, none are 3' reads - indicating bifunc-
tional transcripts in these plants, but no evidence for LKR
monofunctional transcripts. An exception was found in
ESTs of switchgrass (Panicum virgatum) where there
were 13 LKR ESTs and 20 SDH ESTs (Figure 8). Of the 13
LKR ESTs, there were five paired reads where clones were
sequenced from both ends. One of those five pairs is from
a chimeric cDNA clone since this 3' EST (GD015513) is
from a hypothetical gene elsewhere in the genome. Three
of these 3' ESTs from paired reads and two unpaired 3'
read ESTs (asterisks in Figure 8) had poly-A sequences
(Figure 9) - indicating support for monofunctional LKR
mRNAs. All five 3' EST included sequences within intron
12 and contain a stop codon (boxed in Figure 9) near the
position of the reported stop in the Arabidopsis (asterisk
in Figure 2) monofunctional LKR sequence [9]. EST
GDO041646 also reads into intron 12, but is not shown
since the sequence quality is poor. Thus, to generate
switchgrass monofunctional LKR transcripts, instead of
splicing out intron 12 at least part of the intron is retained
and poly-A added. Whether the monofunctional LKR
transcripts are the result of differential processing of a
full-length LKR/SDH initial transcript or termination
after transcribing the LKR domain is not confirmed, but
we assume the latter. Note that the switchgrass LKR ESTs
fall into two sequence classes with very similar sequences
through the presumptive coding sequence, but diverging
more 3' to the stop codon (Figure 9) - likely representing
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Figure 8 Switchgrass EST alignment. Switchgrass LKR/SDH ESTs are
aligned to the maize coding sequence given in base pairs. Arrows indi-
cate length of the ESTs and their direction of transcription. Black arrows
are 5'reads and blue arrows are 3' reads. Regions of the LKR and SDH
enzymatic domains are shown as boxes above the alignment. Paired 5'
and 3' reads off the same cDNA clones are indicated either by ESTs on
the same line or bracketed to the right of EST names. Asterisks indicat-
ed LKR ESTs with poly-A ends.

the two genomes of tetraploid switchgrass. No similar
evidence was found for other plants, including Brachypo-
dium which currently has the largest number of LKR/
SDH ESTs (328) of any plant. None of those Brachypo-
dium ESTs were in the LKR region. Similarly, BLAST
analysis with the portion of the Brachypodium gene
intron 12 resulted in no significant matches, and thus no
evidence of Brachypodium LKR monofunctional
sequences such as in switchgrass.

The second monofunctional sequence report from the
LKR/SDH gene is for the SDH domain only. As discussed
previously, the wheat EST alignment in Figure 7 supports
that most of the wheat LKR/SDH ESTs are from mono-
functional SDH transcripts and a smaller number of
bifunctional transcripts. Further support for these two
transcript populations is given in Figure 10A where a seg-
ment of the wheat sequence alignment is shown to
include two EST populations. The first seven EST
sequences directly join exons 14 and 15, in agreement
with consensus sequences of other plants. The remaining
ESTs start with a sequence found within intron 14 (bases
in blue). As shown in Figure 11B, the monofunctional
SDH transcripts includes an exon not found in the full-
length LKR/SDH transcript - an exon composed of
sequence from the middle of intron 14 DNA of a full-
length gene. This would be intron 1 of the monofunc-
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Figure 9 Switchgrass LKR ESTs. Five switchgrass ESTs that contain intron 12 sequence and a polyA tail are shown aligned to the maize LKR/SDH
coding region. Sequences are given in black except for intron 12 which is in blue. The first stop codon for the reading frame into intron 12 is boxed.
Differences among sequences are given in red and green for one or two differences to other sequences, respectively. PolyA tails of ESTs are shown in

magenta.

tional SDH sequence and separated from the following
exon (exon 15 of the complete gene) by 524 bp with splice
canonical junctions (GT..AG). Consistent with poly-
merase II initiation sites [41], a presumptive TATA box
(TATAA) is at -34 bp to the 5' end of the wheat ESTs with
the most 5 matching sequences (Figure 10A). Between
the TATA box and the EST sequences is a pyrimidine-
rich segment - again consistent with transcription initia-
tion sites [41]. Once the SDH transcript is spliced, the
first ATG codon that allows a reading frame consistent
with an SDH sequence occurs in the middle of SDH exon
2 (LKR/SDH exon 15) as indicated in Figure 10B and the
downward arrowhead at position 587 of Figure 2. This
position is consistent with the translation initiation site
reported for Arabidopsis (upward arrow at position 588
in Figure 2), but is in contrast to a previous report [12]
that predicted the maize monofunctional SDH transcript
used a TATA box at the end of exon 15 and initiated
translation near the beginning of exon 16. However, there
was no EST support of those previously reported predic-
tions.

Besides wheat, only two other plant species' EST collec-
tion contained sequences consistent with transcript initi-
ation within intron 14. One of those was Brachypodium
as shown in Additional File 11A. Four Brachypodium

ESTs (CCXG11317, CCXG13127, (CCX011098,
CCXG8102) have identical 5' ends that begin immedi-
ately following the pyrimidine-rich region and may repre-
sent the actual start site for

Brachypodium monofunctional SDH transcripts. Those
four ESTs plus six other Brachypodium ESTs all match
the junction of the intron 14-derived monofunctional
SDH first exon to SDH exon 2 (LKR/SDH exon 15) as
show in Additional File 11B - and match the same struc-
ture as with wheat (Figure 10). Finally, although there are
only a few Poplar LKR/SDH ESTs, they also support the
existence of both bifunctional and SDH monofunctional
transcripts. ESTs DV465683 and DY800647 have 5'
sequences reading from intron 12 sequence into exon 13,
suggesting SDH monofunctional transcript. Poplar ESTs
CX180963 and CN520125 read directly from exon 12 into
exon 13 with no intervening intron 12 sequence, support-
ing a bifunctional LKR/SDH transcript (not shown).

The lack of EST support for monofunctional mRNAs in
many systems does not mean they do not exist, but only
that the EST resources do not support them. However, it
does continue to support a preponderance of SDH tran-
scripts, bi- and monofunctional, which suggests differen-
tial contributions of the LKR and SDH domains to plant
cell metabolism.
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Figure 10 Monofunctional wheat SDH ESTs. (A) Wheat ESTs are aligned to the wheat consensus full-length LKR/SDH coding sequence. Intron 14
sequences are shown in blue and green. The sequences of the first seven ESTs have intron 14 spliced out (dashes indicate absent intron sequences).
The rest of the ESTs begin with sequence from the middle of intron 14 (bases in blue) to form an exon that is spliced directly to exon 15 in those ESTs.
Bases in green are the presumptive transcription initiation signal region. Base differences in red are assumed to indicate homoeologue LKR/SDH se-
quences of hexaploid wheat. (B) Diagram of exon/intron organization of LKR/SDH bifunctional and SDH monofunctional transcripts. Exons are shown
by boxes. The SDH first exon sequence is within the LKR/SDH intron 14 and is shown by the blue box. The green box is the non-transcribed sequence
indicated in frame A. Exon numbers are given above (LKR/SDH) and below (SDH) exon boxes.

Finally, the analysis of plant ESTs failed to convincing
support for major multiple populations of alternatively
spliced transcripts for the 25 dicot and 26 monocot LKR/
SDH exons (exceptions being the monofunctional tran-
scripts described above). Small numbers of differential
splicing were found in several plants (not shown), but
none in sufficient numbers to suggest differential roles in
plant cell metabolism rather than examples of aberrant
splicings with no functional roles. For example, a close
examination of the wheat ESTs suggests a small number
of such alternative splicings. The five wheat ESTs that
cover the region that includes the bifunctional consensus
start codon represent three sequences - presumably from
the three hexaploid wheat genomes. ESTs B]J266925 and
CJ702289 match the BAC A-genome sequence exactly,
while CJ882974 is a second sequence and FL577869 plus
BJ248520 represents the third sequence. Although EST
BJ266925 spans the start codon region of the BAC
sequences, it, unlike the other four ESTs, does not encode
the same ATG codon - exon 2 is missing, with the splice
going from the end of exon 1 to the beginning of exon 3.
In another wheat example, three pairs of ESTs (reads
from both ends) show multiple variant splicing at the 3'
end of the SDH sequence: CJ965444+CJ953360;
CJ950703+CJ962606; C]567209+CJ6741282. These three
different original cDNAs continue transcription into

post-exon-26 genomic sequence, and differentially splice
previous sequence after exon 23 (not shown). No obvious
consensus splice site sequences are evident, but the three
sequences use at least one different splice site from other
c¢DNAs. More in-depth EST sequencing of more plants
should clarify the existence and possible roles of specific
alternative splicings.

Conclusion

The isolation and characterization of a segment of the
wheat genome containing the LKR/SDH gene is shown.
The wheat LKR/SDH genomic segment was found to
originate from the A-genome of wheat, and EST analysis
indicates all three LKR/SDH genes in hexaploid wheat are
transcriptionally active, at least for monofunctional SDH
transcripts. Comparative analyses with other plant LKR/
SDH genes and ESTs shows conservation of the basic
exon/intron organization between the wheat gene and
previously analyzed genes from maize and Arabidopsis
and previously unanalyzed genes from rice, Medicago,
grape, poplar, sorghum, and Brachypodium. Relative con-
servation of exon+intron length, even in plants whose
genome sizes differ by 30-fold or more, further supports
the intergenic regions as sites of genome expansion.
Exceptions to the general gene length conservation are
Arabidopsis and grape, whose LKR/SDH genes are
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shorter and longer, respectively, due to shorter and longer
intron lengths. For Arabidopsis, the smaller introns are
consistent with the general compactness of the Arabidop-
sis genome. However, the basis and functionality of larger
grape introns is not consistent with genes from plants
with similarly-sized genomes. Both the structure of the
LKR/SDH gene and the sets of immediately adjacent
genes within the genome show lineage-specific differ-
ences between monocots and dicots, including different
gene positionings and different copy numbers of an adja-
cent pectinesterase gene. Two findings suggest variation
in structure and activity of LKR/SDH genes among
plants. First, although most plants seem to contain a sin-
gle conserved LKR/SDH gene, poplar possesses multiple
genes. Second, there are differences among plants in evi-
dence for bifunctional and monofunctional LKR and
SDH transcripts among the available EST data. The anal-
yses of ESTs provides some of the most detailed data for
multiple transcripts from a single gene, particularly evi-
dence for monofunctional LKR transcripts in switchgrass
and monofunctional SDH transcripts in wheat and Brac-
hypodium. There is also evidence in these plants that the
monofunctional LKR transcripts read into an intron of
the full-length sequence, and for an additional exon for
SDH transcripts composed of a central portion of a full-
length intron. The lack of similar EST evidence in other
species may be due to sampling differences in EST pro-
duction, but also may indicate fundamental differences in
LKR/SDH control and function.

Methods

BAC isolation and sequencing

A BAC library of wheat tetraploid T. turgidum ssp. durum
(2n - 4x = 28, AABB) cultivar Langdon [42] was screened
using a mixed probe composed of two wheat EST clones
encoding portions of the SDH domain (BE428366 and
BE498116) and a maize full-length LKR/SDH cDNA
clone (NM_001111403) obtained from P. Arruda [12].
Twelve BACs were isolated and further characterized by
Southern analysis and BAC fingerprinting to represent
two distinct sequences. BAC 0006 MO07 was selected for
sequencing based on its central position in one contig
and apparent central location of the LKR/SDH sequence
and was sized at about 160,000 bp. Sequencing of BAC
0006MO07 was carried out to a depth of about 20x by pro-
cedures described in detail elsewhere [27]. Briefly, ran-
domly shear BAC DNA was blunt-ended with mung bean
exonuclease (BioLab), dephosphyorylated with shrimp
alkaline phosphatase (USB), single A-tailed with Tag
polymerase, and the resulting DNA fractionated to 3-5 kb
with agarose gels and the Qiagen Gel Extraction Kit. This
DNA was used to generate shotgun libraries using the
vector pCR4TOPO and transformed into DH10B electro-
MAX cells (Invitrogen). Randomly picked clones were
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sequenced at both insert ends with T3 and T7 primers
and BigDye chemistry (Applied Biosystems) with an
ABI3730x1 sequencer.

Sequence analysis began with contig assembly using

both Phrap http://www.phrap.org and the Lasergene Seq-

Man module http://www.DNA Star.com. Gaps and uncer-
tain sequences were resolved by comparing the

assemblies from the two software packages and primer
walking. Regions of less coverage or ambiguous reads
were rechecked with primers designed to cover those
regions.

Analysis of sequences

NCBI http://www.ncbi.nlm.nih.gov was used for annota-
tion of the new wheat BAC sequence by BLAST analyses
and total EST analyses by direct querying to NCBI. Exon/
intron junctions are predicted by alignment with Trit-
iceae EST sequences, when available, or with other
monocot EST if no Triticeae ESTs covered those
sequences.

Sources of genomic sequences were as follows: Arabi-
dopsis thaliana LKR/SDH, Genbank ATU95759; Brachy-
podium distachyon, http://brachypodium.org; Medicago
truncatula, http://www.tigr.org/tdb/e2kl/mtal/; poplar
(Populus trichocarpa), http://genome.jgi-psf.org; sor-
ghum (Sorghum bicolor), http://genome.jgi-psf.org; grape
(Vitis  vinifera), http://www.genoscope.cns.fr/externe/
GenomeBrowser/Vitis/; rice (Oryza sativa), http://
gramene.org, MSU-TIGR pseudomolecule assembly
release 5 of IRGSP (The International Rice Genome
Sequencing Project) and Genbank AP004849. BAC
sequences from Genbank were as follows: cotton (Glossy-
pium  hirsutum), AF264146; maize (Zea Mays),
AF271636; poplar, AC209229. The Brachypodium
sequence data were produced by the US Department of
Energy Joint Genome Institute http://www.jgi.doe.gov/.
For ease of reading, it will be understand that common
names and genus names will be used unless referring to
different species than noted above; e.g., Brachypodium
instead of B. distachyon and rice instead of O. sativa.
Plant ESTs were searched at Genbank, except for Brachy-
podium ESTs that were found at brachypodium.org.
Determination of coding sequences and exon/intron
junctions were accomplished by comparing genomic
DNAs to ESTs and cDNA clones from the same plant, or
where necessary, comparing to ESTs and cDNAs from
closely related plants.

PCR primers for genome identification

The sequence of the rice LKR/SDH region from BAC
AP004849 was compared to the wheat BAC 0006MO07.
Primer pairs were designed from conserved regions and
tested against genomic DNA of a series of diploid, tetra-
ploid, and hexaploid wheats and wheat ancestors. Primer
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pair F3 (AAAGAAGCATCTACCGTATATAGG) and R3
(TTCATGGTGGAGCAGTACCATATC) amplified the
expected fragment size in all wheat DNAs including DNA
from the A, AB, D, and ABD genomes. PCR products
were sequenced from all these genomes and the
sequences compared. Unique bases were used to design
single genome-specific primers for the A, B, and D
genomes: A genome, primer AF3 GCATTCAGTGTT-
ATTTGCCAATGT; B genome, primer BF3 CTCCA-
CATCTAACACAAAGATATAC; D genome, primer DF3
GGATTTTTCTCAATGACCTCCTTG.

Phylogenetic analysis of LKR/SDH proteins

A phylogenetic analysis of LKR/SDH proteins was carried
out using the MEGA4 software package [43]. A protein
alignment used ClustalW and the evolutionary relation-
ship inferred by the Neighbor-Joining method [44]. A
bootstrap test was used to determine the percentage of
replicate trees in which the associated taxa clustered
together [45]. Evolutionary distances were computed
using the Poisson correction method [46] and are in the
units of the number of amino acid substitutions per site.

Additional material

Additional File 1 Pair-wise distances of LKR/SDH proteins. Evolutionary
relationship of full-length plant LKR/SDH coding regions.

Additional File 2 Intron conservation and divergence. The wheat LKR/
SDH introns were compared to the Brachypodium and maize genes from
start to stop.

Additional File 3 Bin-mapping the wheat LKR/SDH gene. EST BE606591
was bin-mapped to the long arm of wheat chromosomes 6A and 6B.

Additional File 4 Genome origin of BAC 0006M07. DNA fragments were
amplified from DNA the wheat BAC and several wheat genetic germplasms.
Additional File 5 Wheat LKR/SDH ESTs. The list of currently publicly
available wheat LKR/SDH ESTs.

Additional File 6 Wheat LKR/SDH EST contigs. Wheat ESTs containing
LKR/SDH sequences were assembled and compared to the BAC LKR/SDH
coding and 3'-UTR sequence.

Additional File 7 Wheat ESTs aligning to BAC 0006MO07 pectinest-
erase gene. Wheat pectinesterase ESTs are aligned to the wheat BAC.
Additional File 8 Amino acid alignment of mTERF proteins. The wheat
BAC mTERF protein is aligned to the best matches from rice and maize.
Additional File 9 Unknown gene aligned with wheat ESTs. The
unknown wheat gene region matching barley ESTs is aligned with those
ESTs.

Additional File 10 ESTs match two distinct poplar 3' UTRs. Poplar ESTs
aligned to the 3" UTRs of poplar LKR/SDH genes 1 and 2.

Additional File 11 Monofunctional Brachypodium SDH ESTs. Brachypo-
dium ESTs are aligned to Brachypodium and wheat LKR/SDH exon and
intron sequences.
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