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Abstract

transduction pathways.

are useful for follow-up testing of candidate genes.

Background: Understanding of the genetic architecture of plant UV-B responses allows extensive targeted testing of
candidate genes or regions, along with combinations of those genes, for placement in metabolic or signal

Results: Composite interval mapping and single-marker analysis methods were used to identify significant loci for
cotyledon opening under UV-B in four sets of recombinant inbred lines. In addition, loci important for canalization
(stability) of cotyledon opening were detected in two mapping populations. One candidate locus contained the gene
HY5. Mutant analysis demonstrated that HY5 was required for UV-B-specific cotyledon opening.

Conclusions: Structured mapping populations provide key information on the degree of complexity in the genetic
control of UV-B-induced cotyledon opening in Arabidopsis. The loci identified using quantitative trait analysis methods

Background

Higher plants have complex sensory mechanisms to
detect changes in the light environment [1-5]. There is
evidence from physiological experiments that low levels
of UV-B radiation (280-315 nm) induce photomorpho-
genic responses in Arabidopsis thaliana [6,7] and other
species [8,9]. Results from studies of UV-B-induced pho-
tomorphogenesis [6] and gene expression [10-12] point
to the existence of a complex web of interactions involv-
ing phytochromes and cryptochromes as a part of the
underlying perception, regulation and/or signaling sys-
tem [5]. However, several responses induced by low-dose
UV-B appear to be to some extent independent of the
photoreceptors that mediate responses to visible radia-
tion [6,7,11,13]. Cotyledon-opening under defined UV-B
conditions is a key phenotype, as this morphological
response is consistent with signalling through a photore-
ceptor [6]. Fluence-response curves and the indepen-
dence of the cotyledon-opening response from DNA
repair make this defined cotyledon-opening phenotype
especially useful for genetic screens [6].
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Screens for isolating mutants with altered sensitivity to
UV-B in hypocotyls have been performed and led to the
identification of u/i3, a UV-B hyposensitive mutant [13],
and uvr8, a mutant hypersensitive to UV-B [14,15]. Both
mutants appear to be altered in UV-B-specific signaling
pathways. Photomorphogenic mutant analyses implicate
the b-ZIP transcriptional factor HY5 as a component in
the UV-B regulation of the expression of selected genes
[11], and the COPI gene as a regulator of HY5 and addi-
tional gene expression under UV-B [16]. Extensive analy-
sis of UVRS8 indicates that nuclear localization of the
protein is important in UV-B signal transduction [17] and
that UVR8 and HY5 are part of the same signal transduc-
tion pathway for gene expression responses [18].

Genome scanning is another useful approach for the
isolation of loci that encode components of UV-B percep-
tion and signalling mechanisms. Genetic variability in
wild ecotypes of A. thaliana provides an opportunity to
discover genetic regions controlling phenotypic differ-
ences [19,20]. Genetically complex or polygenic inheri-
tance, quantitative measurement and the availability of
DNA markers allow access to quantitative trait loci
(QTL) [21,22]. QTL mapping studies delimit the chromo-
somal regions controlling quantitative traits, and in some
cases allow the identification of new alleles or causal
mutations [23-25]. In the Arabidopsis model system QTL
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analysis has been performed with potentially adaptive
traits like salt tolerance [26], aluminium tolerance [27],
and powdery mildew disease resistance [28], as well as
with developmental or physiological traits such as seed
size [29], leaf architecture [30], inflorescence develop-
ment [31] and growth rate [32]. It is possible to compare
genetic architecture in different environments, including
controlled treatment environments, although the power
to detect loci will be less than the detection power for
overall genetic effects [33].

Metabolic and signalling pathways can be identified
from epistatic interactions [34-37], and gene interactions
are widespread and important in theory and in most data
sets. Epistatic interactions can explain substantial
amount of variance [38], although power to detect epista-
sis is low in most recombinant inbred (RI) experiments
with 100-200 lines. Better understanding of the genetic
architecture of UV-B responses will thus be achieved by
incorporation of epistatic locus interactions into the anal-
ysis.

Differences in phenotype measurements between indi-
viduals of the same RI genotype are due to random fluc-
tuation and alleles genetically controlling stability
(canalization, for developmental traits) or variance (anti-
canalization) [39,40]. Arabidopsis loci for canalization of
flowering and plant growth have been found previously,
by QTL mapping of RI lines [41]. Full understanding of
phenotype and environmental constraints on phenotype
expression require consideration of the stability of the
phenotype as well as the extent of the effect of important
alleles.

No QTL studies have been reported with UV-B-
induced responses in Arabidopsis. In rice Sato et al. [42]
have reported three QTLs controlling UV-B resistance,
with a more precise mapping of the location of one of the
reported QTLs [43]. Recombinant inbred lines, or in
some species clones of F, families, are the most useful for
exploration of genotype and environment interactions, as
the same genotype can be exposed to multiple environ-
ments [33].

In the experiments described in this paper we used four
sets of RI lines to perform a QTL analysis of UV-B-
induced photomorphogenesis in Arabidopsis. We mea-
sured cotyledon opening in de-etiolating seedlings as a
model photomorphogenic response; under certain exper-
imental conditions this response is induced by UV-B (but
not UV-A) and the induction mechanism for cotyledon
opening does not appear to involve signals derived from
UV-B-induced DNA damage [6]. We used composite
interval mapping to locate additive, UV-B-specific and
epistatic QTL, by incorporating all the data including
replicates and multiple 'environments', which in this case
are UV-B treatment and control (-UV-B) growth condi-
tions. We also analyzed these data with a straightforward
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single-marker method to select the most robust loci for
candidate gene hypothesis testing. Loci for cotyledon-
opening stability were identified; these include loci at the
same position as the cotyledon opening QTL and new
loci that regulate stability but not extent of cotyledon
opening. We combined our QTL with information from
the literature to produce a list of candidate genes for fur-
ther testing. Mutations in our top candidate gene, HYS,
were defective in UV-B-induced cotyledon opening.

Results and Discussion

Cotyledon opening in Arabidopsis was induced specifi-
cally by low levels of UV-B, and not by control irradia-
tions without UV-B, as illustrated in Fig. 1. Cotyledon-
opening angle is a UV-B-photoreceptor-induced
response [6], and was thus the phenotype used for our
mapping experiments. The UV-B treatment was given to
young dark-grown seedlings from the RI populations as a
2.5 hr low-fluence pulse, as previously described for this
UV-B-cotyledon-opening response [6]. Statistical analysis
of these +UV-B and -UV-B measurements allowed identi-
fication of a total of 21 loci, with 16 loci controlling coty-
ledon opening (14 with additive main effects and two that
were epistatic-only), four loci controlling UV-B-specific
cotyledon opening, and three loci controlling the stability
of cotyledon-opening.

Chromosomal regions affecting cotyledon opening

A total of 16 separate loci that control cotyledon opening
are significant at our stringent experiment-wise P < 0.05
threshold (Figs. 2, 3, 4, 5). Loci are identified by chromo-
some and map distance codes. Details of the analysis,
including estimated effect sizes for contrasting alleles, are

a) b)

+ UV-B

-UV-B

Figure 1 UV-B-induced Cotyledon Opening. Wildtype Columbia
seedlings were grown and irradiated as described in Materials and
Methods. a) +UV-B (cellulose di-acetate) treatment b) -UV-B (Mylar)
control.
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Figure 2 Genomic regions with significant trait associations in the Bay X Sha recombinant inbred population. Colored boxes indicate regions
associated with UV-B-induced cotyledon opening (under cellulose di-acetate). White and hatched boxes indicate regions associated with cotyledon
opening with no significant environmental effect in the comparison of UV-B treatments with control no-UV-B (Mylar) treatments. Colored boxes indi-
cate UV-B-specific loci. Horizontal lines connect epistatic QTL. Significant loci are named by the population, chromosome, and map distance.

= Bay allele high additive

= Sha allele high additive

given in Additional File 1, Additional File 2, Additional
File 3 and Additional File 4, arranged by locus identifica-
tion code. Fifteen of these loci were also significant in the
single-marker analysis. The amount of variance explained
by difference in genotype differs in the four mapping pop-
ulations, with LerxCol and LerxCvi having the highest

heritabilities. Marker spacing is most dense in LerxCol
and LerxCvi, and most sparse in BayxSha. The combina-
tion of heritability of the trait, partition of the genome
into larger numbers of RI lines, and the marker parameter
space determines the power to detect loci [33]; as
expected, we detected the most loci in LerxCvi and Bayx-
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Figure 3 Genomic regions with significant trait associations in the Col X Kas recombinant inbred population. Colored boxes indicate regions
associated with UV-B-induced cotyledon opening (under cellulose di-acetate). White and hatched boxes indicate regions associated with cotyledon
opening with no significant environmental effect in the comparison of UV-B treatments with control no-UV-B (Mylar) treatments. Colored boxes indi-
cate UV-B-specific loci. Horizontal lines connect epistatic QTL. Significant loci are named by the population, chromosome, and map distance.
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Figure 4 Genomic regions with significant trait associations in the Ler X Col recombinant inbred population. Colored boxes indicate regions
associated with UV-B-induced cotyledon opening (under cellulose di-acetate). White and hatched boxes indicate regions associated with cotyledon
opening with no significant environmental effect in the comparison of UV-B treatments with control no-UV-B (Mylar) treatments. Colored boxes indi-
cate UV-B-specific loci. Horizontal lines connect epistatic QTL. Significant loci are named by the population, chromosome, and map distance.
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Figure 5 Genomic regions with significant trait associations in the Ler x Cvi recombinant inbred population. Colored boxes indicate regions
associated with UV-B-induced cotyledon opening (under cellulose di-acetate). White and hatched boxes indicate regions associated with cotyledon
opening with no significant environmental effect in the comparison of UV-B treatments with control no-UV-B (Mylar) treatments. Colored boxes indi-
cate UV-B-specific loci. Horizontal lines connect epistatic QTL. Significant loci are named by the population, chromosome, and map distance.
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Sha populations. New genotyping methods can locate all
the recombination junctions in RI populations [44],
although the specific lines in our study have not yet been
genotyped to this density.

Comparison of epistatic interactions

Gene interactions (epistasis) are likely to be important in
explaining genetic control of phenotypic traits; however,
these interactions are difficult to detect [45]. We scanned
for interactions between two loci, whether or not those
loci had an effect on cotyledon opening considered singly.
Significant two-locus epistatic interactions were detected
in the BayxSha (Fig. 2), ColxKas (Fig. 3) and LerxCvi (Fig.
5) populations. Larger mapping populations are needed
for detection of multiple loci by interval mapping meth-
ods [33], and these are the larger mapping populations in
our study. In BayxSha and LerxCvi the epistatic interac-
tions had lower heritability than any individual locus,
suggesting only small contributions to genetic control of
cotyledon opening. In contrast, for the ColxKas popula-
tion epistatic interactions are important, with heritabili-
ties as high as those seen in individual main-effect loci
(Additional File 2).

The BayxSha loci with significant epistasis also had sig-
nificant main effects (Fig. 2), although the main effects
were opposite in their allele contributions (Sha allele with
the higher effect in BS2_25 and the Bay allele having the
larger effect at BS5_53, Additional File 1). Thus, the epi-
static interaction is not a simple additive effect. The esti-
mated epistatic high allele is Bay, which suggests that the
Bay allele at BS5_53 interacts equally well with either
allele from the BS2_25 region, but the Sha allele at
BS5_53 is more specific.

As in BayxSha, the LerxCvi epistatic loci also have sin-
gle-locus main effects. In this case, both single-locus Ler
alleles contribute to cotyledon opening while the epistatic
alleles are from Cvi. This suggests that the Cvi alleles con-
tribute to a pathway or complex, while the products of
the Ler alleles work independently.

In the ColxKas population with the CK2_75/5_27 pair
the allele effect was of the same direction as the individ-
ual locus alleles and of intermediate effect size. In this
population there was also an epistatic interaction
between two new loci on chromosomes 4 and 5; these
new loci had no significant effect considered separately
(Fig. 3). This is an example of epistasis with no main
effect, which may indicate the epistatic alleles have a neg-
ative effect on their interaction partner.

Detection of interactions between loci may be useful
for predicting which genes under the QTL regions are
causal, as metabolic networks and gene families can cause
epistasis [34-37]. The four mapping populations vary in
extent of epistasis effects, indicating that particular allele
interactions underlay the statistical epistasis we detected.
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Chromosome regions with a UV-B-specific effect

Four loci with significant effects in the +UV-B-exposed
treatment environment (cellulose di-acetate filter) were
identified, BS2_25 from the BayxSha population, CK3_28
from the ColxKas population, and LC2_43 plus LC5_8
from the LerxCol population (Figs. 2, 3, 4, 5). Significant
loci detected explained only about one-fourth of the gen-
otype by environment variance. The remaining variance
could be explained by presence of a number of additional
small-effect loci or by epistatic interactions among more
than two markers in these populations.

Architecture of canalization loci

The striking differences in the range of cotyledon open-
ing in the RI lines (Additional File 5, Additional File 6,
Additional File 7, Additional File 8, Additional File 9,
Additional File 10, Additional File 11, Additional File 12)
suggested that genes for the stability of the trait might be
segregating in these mapping populations. Stability
(canalization) is known to have a genetic component in
flowering and general growth in the LerxCol and LerxCvi
populations [41]. We found QTL for cotyledon-opening
variance in three populations (Table 1). As expected from
previous work, some QTL alleles confer both an effect on
the amount of cotyledon opening and an effect on the
variance. The cotyledon-opening stability QTL in Lerx-
Col (S.LCo02_45) overlaps with the ERECTA region QTL
found by Hall et al. [41]. Cotyledon-opening stability was
also controlled by previously unidentified loci on Chro-
mosome 4 in LerxCol and Chromosome 3 in BaySha
(Table 1). The Chromosome 4 S.LCo4_57 locus spans 0.2
Mb; candidate genes in this interval include a protein dis-
ulfide isomerase (At4g27080) [46] and an ascorbic acid
biosynthesis gene, VTC2 [47]. The vtc2 mutant appeared
to have higher variance in vegetative growth in previous
studies [48]. The S.LCo2_45 erecta-region stability QTL
also has an allele-specific UV-B effect; the Ler allele vari-
ance is higher in the +UV-B environment.

Comparisons of chromosomal regions detected in the
different populations

We do expect to have the same alleles in geographically
distinct accessions if there is strong selection. There is
some overlap in the accession represented in the mapping
populations, in that Ler is in two populations and Col in
two populations. The Col common parent does not con-
dition any common loci but in mapping populations with
a Ler parent, a region in the top of Chromosome 5 is
present. The additional support for these loci derived
from detection in multiple populations illustrates the
value of including common parents in mapping popula-
tions or using a diallel design to derive RI lines [49,50].
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Table 1: Genomic Loci for Canalization

ID Chromosome Marker QTL Position QTL Position High-Effect QTL Pvalue h2of QTLs Comparison to cotyledon
Interval incM Range in cM Allele opening QTL
Bay x Sha population’
S.BS3_10 3 ATHCHIB2- 10.8 4-17.8 Bay P=6.9x 104 0.016 Same locus; higher variation allele
MSAT3.19 has lower effect on opening.
Ler x Col population?
S.LCo2_45 2 C2_074- 45.6 41-54 Locus is the same or nearby
C2_075 (intervals overlap), has significant
UV-B variation effect but no additive
main effect. Ler allele median
variance is high in +UV-B round 1
(P =0.0039), and Ler allele median
variance is low in -UV-B round 2
(P=0.016).
S.Lco4 57 4 C4_089- 57.1 55-58 Col P=3.5x 103 0.043 New locus, no UV-B-specific effect.
C4_090

'BayxSha QTL variance components: Vg/Vp = 0.016 Ve/Vp = 0.1675 Vge/Vp = 0.014 Vr/Vp = 0.864*
2| erxCol QTL variance components: Vg/Vp = 0.05 Ve/Vp = 0.266 Vge/Vp = 0.0744 Vr/Vp = 0.6094*

*Vg is variance of genetic main effects, Vp is phenotypic variance, Ve is environmental (UV-B) effects, Vge is variance of genotype-by-environment interaction effects, Vr is residual variance.
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Candidate genes

We examined chromosomal regions spanned by the four
UV-B-specific QTL for genes known to be important in
UV-B signalling (Table 2) and for genes with UV-affected
expression profiles or annotations suggesting UV func-
tion (Table 3).

We selected criteria for searching for candidate genes
under QTL by considering 1) loci found in multiple pop-
ulations with common alleles 2) loci with UV-B-specific
effects 3) loci confirmed with both QTL Network and
single-marker methods 4) size of region, and 5) the avail-
ability of additional information such as expression data
on genes located near significant markers and/or annota-
tion of genes with suggestive biochemical functions [21].
Based on these criteria, a region on the top of Chromo-
some 5 was selected.

Candidate gene mutant hy5 has a defect in UV-B-induced
cotyledon opening

In the LerxCol and LerxCvi populations there is a region
at the top of chromosome 5 identified by QTLNetwork
and single-marker analysis as controlling cotyledon open-
ing. Examination of this region of the AGI Arabidopsis
map http://www.arabidopsis.org suggested one obvious
candidate gene, HY5/At5g11260, in this interval. Global
gene expression experiments have implicated the HY5
gene in signal transduction from a UV-B receptor [11]
and additional expression measurements have placed the
UVR8 and HYS5 genes in that same signal transduction
pathway [18].

We examined the cotyledon-opening angles by calcu-
lating the medians split on significant parent markers for
Ler x Cvi and Ler x Col lines. For those Ler x Cvi lines
that have the BH.144L Ler marker the UV-B opening
angle is greater (median 101) than when Cvi allele is pres-
ent (median 74); thus the Ler allele of this marker is
responsive and Cvi allele is less responsive. For the Ler x
Col population, marker C5_017 has a higher median for
the Ler allele group than the Col allele subset, although
the UV-B treatment difference is not significant in the

Table 2: Comparison of UV-B signaling gene position to QTL
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QTL Network analysis. This suggests that the actual
locus conditioned by the Ler responsive allele is between
anchor markers nga249 and ngal51 on the physical map;
this region includes the HY5 gene. We examined the
available Ler genomic sequence [51] in this chromosomal
region. There were several polymorphisms in both the
coding region and in the 5' UTR region of the HY5 gene.

As Vreugdenhil et al. [52] note, the presence of multiple
polymorphisms makes testing of mutants the most effi-
cient strategy for QTL cloning in Arabidopsis. Thus, we
examined UV-B-induced cotyledon opening in a HY5
mutant, #y5-215. The mutant was defective in UV-B-
induced cotyledon opening (Fig. 6). This is the first iden-
tification of the role of HY5 in the low-fluence cotyledon-
opening responses to UV-B, which suggests that the gene
expression responses controlled by UVR8 and HY5 [18]
are also involved in UV-induced morphological
responses in de-etiolating seedlings. In the future candi-
date gene insertion mutations near the other UV-specific
loci that we have identified could be tested to connect
cotyledon opening phenotype differences to additional
specific genes.

Conclusions

Extensive characterization of morphological responses
such as cotyledon-opening, when combined with geno-
typed structured mapping populations, allow identifica-
tion of chromosomal loci and specific locus interactions
important for control of the growth response. In addition
to the region near HY5, we have identified several other
loci associated with UV-B-induced cotyledon opening as
well as loci specifying general light-induced opening.

Methods

Plant material

Four recombinant (RI) line sets of A. thaliana were used
for QTL mapping of cotyledon opening induced by UV-B.
Lines used in this work were obtained from the Arabi-
dopsis Biological Resource Center (ABRC) in Columbus,

UV-B signaling gene

comparison to QTLs

comments

Uvr8[15,18] No overlap

Hy5 [11] LCo5_9 UV-B specific QTL, also LCv5_10

Hyh [18] BS3_6 UV-B-specific QTL Partially redundant with Hy5
Cop1[16] No overlap Cop1 has pleiotrophic effects
Uli3 [13] LCv5_104
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Table 3: Highest priority candidate genes under UV-B-specific QTL

QTL candidate comment

LCo5_9 HY5 alsoLCv5_10

BS2_25 At2907190 hsp27-like Large QTL region that includes CEN2

CK4_27 At4g31500 RED1 RED1 is downregulated by PHYB [67] and
has auxin phenotypes.

LCo2_41 At2g26710 light signaling Involved in multiple light signalling

pathways; UV-regulated expression [11]

Ohio http://www.arabidopsis.org. The accession num-
bers include CS57921 for Bay x Sha, with 165 RILs devel-
oped by [53], CS84999 for Col x Kas, with 128 RILs
developed by [28], CS51899 for Ler x Col, with 99 RILs
(one is redundant), developed by [54], and CS22000 for
Ler x Cvi, with 162 RILs developed by [55]. The hy5-215
mutant seeds in the Columbia background were kindly
provided by X.-W. Deng (Yale University).

QTL experimental design

We designed our QTL-mapping experiment following the
guidelines described by Belknap [56] and Lynch and
Walsh [33], with the additional priority of ensuring that
populations with multiple parent ecotypes were included
[57]. As our priority was detection of loci important for
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Figure 6 UV-B-induced cotyledon opening in ecotype Columbia
and hy5-215. The median cotyledon opening angle for each line in
each of the three separate experiments is shown. Overall P value from
a general linear model for the comparison of the extent of opening in
the two lines is P = 0.0116. Interactions between experiment number
and line were significant. For experiment 1, Col n = 15, hy5n = 15. For
experiment 2, Col n =10, hy5 n = 16. For experiment 3, Col n = 10 and
hy5 n = 10. Pairwise permutation tests on each time point individually
gave P <0.0001.

UV-B-induced cotyledon opening, we chose to measure
more replicates. This allows better estimation of effect
sizes (amount of cotyledon opening conferred by the two
alternative alleles at a locus), at the cost of less precise
estimation of the position of the QTL on the map and less
ability to detect 'small' QTL that have relatively little
effect on the response [56,58]. Measurements on each RI
line under each treatment (+UV-B and -UV-B) were
repeated, with the two sets of measurements named
roundl and round?2 (Additional File 5, Additional File 6,
Additional File 7, Additional File 8, Additional File 9,
Additional File 10, Additional File 11, Additional File 12).
Eight seeds were planted for each treatment-RI line com-
bination for each round. The two rounds were analyzed
separately, in a way similar to traditional crop QTL analy-
ses where planting year is analyzed as a separate factor.

Plant growth conditions

Eight seeds of each RI line or 16 seeds of #y5-215 and Col
wildtype [59,60] were sown in 1 cm height plastic boxes
containing 0.8% agar (w/v). Boxes were covered with UV-
B transparent film (Rolopac, Buenos Aires, 0.025 mm)
and stored for three days in darkness at 6°C. To induce
germination, seeds were exposed to an R-light pulse (30
minutes) and incubated in darkness at 25°C for 24 hours
before being transferred to the UV-B irradiation cham-
bers. R light (30 pmoles m2s1) was provided by red fluo-
rescent tubes (40/15, Philips).

UV-B treatment

UV-B treatment and measurement of cotyledon opening
were carried out as previously described [6]. Briefly, one-
day-old etiolated seedlings were exposed for 3 days to a
daily period of 2.5 hours of UV-B followed by a 5 minute
R pulse. Seedlings were transferred to the dark for 24
hours and then the aperture of the cotyledons was mea-
sured on the fourth day. UV-B was provided by two UV-B
313 bulbs (Q-Panel 313, Cleveland), with a 0.1-mm-thick
cellulose di-acetate film (La Casa del Celuloide, Buenos
Aires) placed between the tubes and the seedlings to filter
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out the UV-C radiation emitted by the fluorescent tubes,
as previously described [12,15]. UV-B level was measured
with a IL1700 double-monochromator spectroradiome-
ter (International Light, Newburyport, MA), integrating
the spectral irradiance between 290 and 315 nm. The
radiometer was calibrated against a standard lamp (OL-
40, Optronic, Orlando, FL) in the short-wavelength range
and a model 1800 calibrator (LI-COR, Lincoln, NE) for
wavelengths greater than 320 nm. In order to obtain a
control treatment (-UV-B treatment), the UV-B portion
of the spectrum emitted by the Q-Panel 313 bulbs was
removed using a clear polyester film (Mylar-D, DuPont,
Wilmington, DE; 0.1-mm thick). Neutral density filters
were placed below the filters to reduce the intensity of
UV to 2.25 pmoles m-2sec -1. This photon flux was identi-
fied as a suitably low level from the action spectrum for
UV-B-induced-cotyledon-opening [6]. UV spectra under
each film type are provided in Additional File 13.

Measurement of cotyledon opening

Cotyledon aperture was measured with a protractor and
magnifying glass. Accuracy of measurement for each
assayer was checked by measuring test seedlings 6-9
times; the coefficient of variation of the measurements
within and between raters was less than 5% (data not
shown). Measurements were expressed as angle between
the cotyledons (0 to 180°). The raw measurement data (in
degrees) on all individual plants is available in Additional
File 5, Additional File 6, Additional File 7, Additional File
8, Additional File 9, Additional File 10, Additional File 11
and Additional File 12, arranged by population and date
of measurement.

Molecular markers

These RI lines have been characterized for molecular
markers and that data was accessed from the Natural
resource at http://arabidopsis.info/BrowsePage. We
removed uninformative markers from our analysis by
checking each adjacent marker for difference in the line
distribution pattern of the markers. If the line distribu-
tion pattern in two successive markers on the chromo-
some was exactly the same, the second marker was
removed. In order to determine if there was any artificial
(non-syntenic) correlation in the particular RI line sets
that we used, we performed Pearson correlations on each
line set, as previously described [61], using the SAS pro-
cedure CORR. There was little artificial correlation evi-
dent in the line sets we used (data not shown).

Variance phenotype

To adjust for the large numbers of zeros in the data set,
0.5 was added to each phenotype measurement. Levene's
median natural log statistic for each individual was then
calculated as previously described [41,62]. Using the
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median form is a conservative choice as compared to use
of the mean version of the Levene's statistics, as the
median form is less sensitive and less susceptible to arte-
facts with increasing variance in larger trait measure-
ments. The full data set was used for QTLNetwork
analysis.

QTL Network v. 2.0 analysis

This composite interval mapping program [63] was
accessed from http://ibi.zju.edu.cn/software/qtlnetwork/.
This particular CIM mapping program was chosen as it
has provision for appropriate analysis of multiple repli-
cates of each line and for multiple environments (+UV-B
and -UV-B, in our case) [64]. This program estimates
effect sizes using a Bayesian fitting method [64], and
chooses cofactors automatically. Program default settings
(test window of 10 cM, walk speed of 1 cM) were used,
except for deselection of the option for best genotype
prediction. The experiment-wise P value threshold
(across the whole experiment, two rounds of two treat-
ment environments for eight replicate genotypes of each
RIL in each of the four populations) was kept at P = 0.05,
with 1000 permutations for F-value threshold selection.

Marker-based analysis

A mixed model was constructed in SAS v9.1 (SAS Inc,
Cary, NC) for individual marker state and UV-B treat-
ment. Each round of the experiment was analyzed sepa-
rately. A genome-wide P value threshold of 104 was
chosen [33,65], as the marker density in these RI line sets
was not large enough to require adjustment for marker
correlation [66].

hy5 data analysis

Cotyledon opening angles in mutant and Columbia wild-
type were compared in individual experiments by permu-
tation test and then in all three experiments. The model-
ing of all 4#y5 and Col measurements was performed
using SAS PROC GENMOD with the angle measure-
ments divided by ten to generate truncated values
between 0 and 18 and specifying a Poisson distribution.

Additional material

Additional File 1 Details about significant quantitative trait loci from
the BayxSha mapping population.

Additional File 2 Details about significant quantitative trait loci from
the ColxKas mapping population.

Additional File 3 Details about significant quantitative trait loci from
the LerxCol mapping population.

Additional File 4 Details about significant quantitative trait loci from
the LerxCvi mapping population.

Additional File 5 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).
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Additional File 6 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 7 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 8 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 9 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 10 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 11 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 12 All measured cotyledon-opening angles, arranged
by experimental round and RIL population in excel spreadsheet for-
mat (xls). Each file contains angles for with both +UV-B (cellulose di-ace-
tate) and -UV-B (Mylar).

Additional File 13 UV Spectra. Additional description and a figure show-
ing the spectral output of the UV313 bulbs and the irradiance under the
Mylar-D and cellulose di-acetate filters used for -UV-B and +UV-B treatment
of cotyledons.
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