
Gutierrez-Gonzalez et al. BMC Plant Biology 2010, 10:105
http://www.biomedcentral.com/1471-2229/10/105

Open AccessR E S E A R C H  A R T I C L E
Research articleIntricate environment-modulated genetic 
networks control isoflavone accumulation in 
soybean seeds
Juan J Gutierrez-Gonzalez1,6, Xiaolei Wu1, Jason D Gillman2, Jeong-Dong Lee3, Rui Zhong4, Oliver Yu4, 
Grover Shannon1, Mark Ellersieck5, Henry T Nguyen1 and David A Sleper*1

Abstract
Background: Soybean (Glycine max [L] Merr.) seed isoflavones have long been considered a desirable trait to target in 
selection programs for their contribution to human health and plant defense systems. However, attempts to modify 
seed isoflavone contents have not always produced the expected results because their genetic basis is polygenic and 
complex. Undoubtedly, the extreme variability that seed isoflavones display over environments has obscured our 
understanding of the genetics involved.

Results: In this study, a mapping population of RILs with three replicates was analyzed in four different environments 
(two locations over two years). We found a total of thirty-five main-effect genomic regions and many epistatic 
interactions controlling genistein, daidzein, glycitein and total isoflavone accumulation in seeds. The use of distinct 
environments permitted detection of a great number of environment-modulated and minor-effect QTL. Our findings 
suggest that isoflavone seed concentration is controlled by a complex network of multiple minor-effect loci 
interconnected by a dense epistatic map of interactions. The magnitude and significance of the effects of many of the 
nodes and connections in the network varied depending on the environmental conditions. In an attempt to unravel 
the genetic architecture underlying the traits studied, we searched on a genome-wide scale for genomic regions 
homologous to the most important identified isoflavone biosynthetic genes. We identified putative candidate genes 
for several of the main-effect and epistatic QTL and for QTL reported by other groups.

Conclusions: To better understand the underlying genetics of isoflavone accumulation, we performed a large scale 
analysis to identify genomic regions associated with isoflavone concentrations. We not only identified a number of 
such regions, but also found that they can interact with one another and with the environment to form a complex 
adaptable network controlling seed isoflavone levels. We also found putative candidate genes in several regions and 
overall we advanced the knowledge of the genetics underlying isoflavone synthesis.

Background
Considerable evidence has implicated isoflavones in the
fitness of both humans and plants. A search of the litera-
ture reveals thousands of articles and subsequent reviews
describing effects on human health associated with iso-
flavone consumption and possible molecular mecha-
nisms of action (for recent reviews see [1-3]). Within the
plant itself, isoflavones play a critical role in defense
against fungal pathogens [4,5], and they also are required

for the establishment and perdurability of nodules in rhi-
zhobium-plant symbiotic associations [6,7]. Conse-
quently, there is an increasing interest in altering the
isoflavone content of soybean commercial varieties,
which requires an understanding of the genetics govern-
ing their synthesis and accumulation. However, unmask-
ing the genetics underlying isoflavone accumulation in
seeds is challenging because: i) isoflavones display a
broad range of variability over environments due to the
many factors that affect their synthesis and accumulation
[8,9]; ii) many QTL with small individual effects contrib-
ute in an additive manner [10-14]; iii) epistatic interac-
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tions are responsible for a great proportion of the
observed phenotypic variance [14]; and iv) soybean fea-
tures a complex genome which has undergone several
whole genome duplication events [15]. As a result, tissue-
differential expression or loss-of-expression or function
of some of the resulting paralogs may have occurred.

Soybean seed isoflavone levels are subjected to a great
oscillation because many biotic and abiotic factors influ-
ence their synthesis and accumulation [3,16-20]. For
example, in a four-location field trial a cultivar was found
to fluctuate from 460 to 1950 μg g-1 in its isoflavone levels
in seeds. Even within the same environment and year, an
almost 3-fold variation was reported for a single cultivar
[8]. Nevertheless, in spite of the environmental interac-
tions, the control of isoflavone content in seeds is largely
genetic [14,21-23], and numerous minor-effect QTL have
been found to determine soybean isoflavone amounts.
Unfortunately, many of them were identified solely based
upon a particular environment, location and/or year.
QTL that are stable over multiple environments are more
useful in breeding programs because they might contrib-
ute to a consistent phenotype under changing conditions.

A set of enzymes within the phenylpropanoid pathway
are responsible for the biosynthesis of the three known
soybean isoflavones: genistein, daidzein, and glycitein
(Figure 1). Phenylalanine ammonia lyase (PAL), cinnamic
acid 4-hydroxilase (C4H), and 4coumarate:CoA ligase
(4CL) are the first enzymes in the pathway. They convert
the amino acid phenylalanine into p-Coumaroyl-CoA. In
the next step, the critical enzyme chalcone synthase
(CHS) acts either alone or together with chalcone
reductase (CHR) to form isoliquiritigenin and naringenin
chalcone, respectively. Both are substrates of chalcone
isomerase (CHI), which converts them into liquiritigenin
and naringenin. These two compounds are the precursors
of the soybean isoflavones daidzein and genistein, formed
after the action of the key enzyme isoflavone synthase
(IFS). The enzyme flavanone 3-hydroxylase (F3H) com-
petes with IFS in the utilization of naringenin, in a branch
of the pathway leading to the formation of flavonols, con-
densed tannins and anthocyanins. Daidzein can also act
as a substrate, and after a series of reactions catalyzed by
the enzymes isoflavone hydroxylase (I2'H) and isoflavone
reductase (IFR), among others, leads to the synthesis of
glyceollins. The biochemical steps leading to the third
soybean isoflavone, glycitein, are not entirely known,
although isoliquiritigenin is likely a precursor [24].

Cellular systems are intrinsically complex and their
components often interact with one another in such an
elaborate way that they may never be entirely understood.
At the gene level, those interactions are known as epista-
sis. Under the quantitative genetics point of view, an epi-
static interaction is revealed when a particular
combination of alleles at distinct loci produces a different

phenotype than when they are found apart. Thus, it is the
particular combination of alleles that results in a change
in the phenotype, i.e. the same allele can produce differ-
ent phenotypes in a different genetic background. Epi-
static effects have often been disregarded in mapping
studies and left as a background distortion [25]. However,
since additional knowledge has been garnered over the
last several years, epistasis has passed from being consid-
ered the exception to the norm for many traits, and inter-
gene interactions have been proven to account for a great
proportion of the variability of complex traits, including
isoflavones [14,26,27]. This 'extra' source of variation has
been suggested to play an important role in biological
processes such as heterosis, fitness and adaptation to dif-
ferent environments, and subsequently to evolution and
speciation in natural populations [28-33]. Despite its
importance, detecting epistasis genome-wide is not
straightforward in experimental populations, and is cer-
tainly more difficult than for main-effect QTL. Statistical
power to detect pairwise epistatic interactions is lower
than for main QTL because tests of significance must be
conducted for two intervals rather than just one, and con-
sequently a higher critical threshold per test must be
applied to overcome the problem of multiple tests [33].
This can be translated into small-effect interactions that
would remain undetected unless a larger number of indi-
viduals are considered.

Interestingly, epistasis has been found to correlate with
genomic complexity and the number of chromosomes
[34,35]. The genome of soybean is known to be quite
complex [15], owing to two presumed recent whole
genome duplications (recently reviewed in [36]). As a
result, a single-copy gene in Arabidopsis can typically be
expected to be present as two or four homologous genes
in soybean [37]. Gene duplication is frequently associated
with either tissue-specific differential expression (a pro-
cess termed subfunctionalization), the acquisition of a
new mode of action (neofunctionalization), or loss of
expression or function of one or more copies (pseudo-
gene formation) [38]. Naturally, phenylpropanoid genes
are not oblivious to this complexity and attempts to
genetically modify the pathway have sometimes led to
unexpected results. For example, over-expression of key
enzymes such PAL, CHS, or IFS, either independently or
combined, have failed to enhance isoflavone accumula-
tion in seeds [39,40].

Over fifty loci have been reported in the few QTL map-
ping studies conducted on isoflavones [10-14]. However,
a great majority has not been confirmed by using differ-
ent parental lines, locations, or years. Attempts to vali-
date the QTL have failed in part due to the nature of
isoflavone QTL, with predominant minor main-effect,
for which uncovering the experimental design needs to
be optimized with, for instance, larger number of individ-



Gutierrez-Gonzalez et al. BMC Plant Biology 2010, 10:105
http://www.biomedcentral.com/1471-2229/10/105

Page 3 of 16
uals and replications, enough and evenly distributed
markers, and an adequate mapping methodology. We
previously used the Essex × PI437654 cross to study the
genetic control of seed isoflavone content [14]. Herein,
we first added data from one additional year and two
locations, with three replications per location, to perform
a comprehensive mapping analysis by a mixed linear

model approach aimed at discovering not only the most
stable main and epistatic QTL over environments, but
also the QTL environment-modulated. Mixed linear
models have been proposed as an efficient approach to
assess environmental effects [41]. Second, we conducted
an exhaustive search for candidate genes with homology
to important genes for isoflavone synthesis. Genes were

Figure 1 Schematic representation of the phenylpropanoid pathway (adapted from [56]). Phenylalanine ammonia-lyase (PAL), cinnamic acid 
4-hydroxilase (C4H), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS), chalcone reductase (CHR), chalcone isomerase (CHI), isoflavone synthase 
(IFS), flavanone 3-hydroxylase (F3H), dihydroflavonol reductase (DFR), flavonol synthase (FLS), isoflavone hydroxylase (12'H), and isoflavone reductase 
(IFR).
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placed onto the genetic map together with the QTL iden-
tified in an attempt to validate QTLs by finding candidate
genes, and thus, to begin to decipher the genetic network
underling soybean isoflavone seed content.

Results
Genetic and phenotypic variation within mapping 
population
Analysis of variance (ANOVA) and heritabilities in the
broad sense (H2) were calculated over the combined four
environments as they are good indicators of the origin of
the variation within segregating mapping populations
(Table 1). Results confirmed that the accumulation of iso-
flavones in soybean seeds is highly influenced by genetic
(G), environmental (E), and G×E interaction effects (P <
0.0001). Furthermore, the high heritability values (0.76-
0.92) suggested that, despite environmental influence, a
high proportion of the phenotypic variation is deter-
mined by genes. In addition, because H2 estimated on
RILs encompasses only additive (A) and additive-by-
additive (AA) epistatic genetic variances, the involved
genes could be acting alone or interacting. Frequency dis-
tribution and normal-distribution parameters of isofla-
vone seed content between locations and years clearly
indicated quantitative inheritance of these traits (Table 1,
Figure 2, and Additional file 1). Although parental lines
did not greatly differ in genistein, daidzein and total iso-
flavones in some environments, considerable transgres-
sive segregation was found, which indicated that both
parents bear positive-effect alleles for isoflavone synthe-
sis, and ultimately suggested that an elevated number of
QTL might be segregating and likely to be detected in the
mapping analysis.

QTL Mapping shows that numerous minor-effect loci 
control isoflavone amounts
Developing RILs may be time-consuming but allows for
testing the same genetic background under different con-
ditions. Seed isoflavone content is highly affected by the
environment (Table 1). Hence, it is not surprising that
very distinct sets of QTL data have been reported when
the same mapping populations were independently ana-
lyzed under different conditions [12,14]. In this study,
data from four different environments were used to per-
form an integrated analysis by a mixed linear model. A
total of 2460 (205 RILs × 3 replications × 4 locations)
individual observations were used to run the mapping
software. Running data from different locations and indi-
vidual replicates together under a unique model has been
proven to be a powerful tool for discovering minor-effect
QTL in complex traits because of the contribution to a
reduced experimental error associated with increased
observations [14,41], and might also allow the identifica-
tion of the most stable QTL over the pooled locations. As
a result, ten additive main genomic regions were found to
influence genistein accumulation in seeds (Table 2 and
Figure 3). A major QTL was found on chromosome 5
(Gm05, following the new nomenclature for soybean
chromosomes) named qGEN5, with an estimated herita-
bility of the additive effect, h2(a), of 5.5%. Other identified
important regions were in Gm02, Gm15, Gm13, Gm19
and Gm07, which were named qGEN2, qGEN15,
qGEN13, qGEN19, and qGEN7, respectively. All were
previously reported [14]. Importantly, two newly identi-
fied loci were found in Gm12 and Gm20, qGEN12 and
qGEN20. Among them, qGEN5, qGEN2, and qGEN19,
also displayed an additive by environment (A×E) interac-
tion effect, reflecting differences in accumulation over

Figure 2 Distribution of averaged total isoflavones in three replications of Essex × PI 437654 RILs growing in two field locations, BREC (A) 
and DRC (B) in year 2007. See supplemental material for individual isoflavones (year 2006 data detailed in [14]). Arrows indicate the position of the 
two parental lines. Horizontal axis shows each particular isoflavone seed content in μg/g of seeds.
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locations (Additional file 2). We also used each environ-
ment alone as input data for the mapping software. As a
result, two other regions were found to explain genistein
accumulation: qGEN4 and qGEN2_2 (at BREC in 2007).
For daidzein, nine different regions were exerting influ-
ence on its accumulation (Table 2 and Figure 3). Two key
loci were found in Gm05 and Gm12, qDAI5 and qDAI12.
Other influencing loci were mapped in Gm08, Gm04,
Gm01, Gm02, and Gm16: qDAI8, qDAI4, qDAI1, qDAI2,
qDAI16, respectively, and two in Gm17, qDAI7 and
qDAI7_2. Apart from their additive effect, qDAI2,
qDAI12, and qDAI17_2 also showed a significant A×E
interaction effect. Glycitein accumulation was found to
be influenced by a total of six different genomic regions
(Table 3 and Figure 3). Two of them, qGLY15 and qGLY6,
explained a greater percentage of the variation than any
other QTL. Newly found glycitein loci were detected in
Gm05, Gm06, Gm02, and Gm09 (qGLY5, qGLY6, qGLY2,
and qGLY9). Reflecting the variability of this particular
isoflavone over environments, five out of six loci had an
A×E interaction effect. In the latter instance, total isofla-
vone content was mapped as the sum of the previous
three, resulting in the discovery of ten genomic regions
that influenced its content in seeds. The most influencing
locus was again placed in Gm05 (qTOT5). This was previ-
ously reported, as well as the other five (qTOT2, qTOT15,
qTOT12, qTOT19, and qTOT7). Newly discovered
regions were found in Gm04 (qTOT4), Gm02 (qTOT2_2),
and Gm16 (qTOT16). Another QTL (qTOT8) was
detected only at BREC in 2006. Five of these QTLs also
bared a component of A×E interaction effect. The total
percentage of phenotypic variance accounted for additive
QTLs were 24.5, 24.3, 7.7, and 25.9% for genistein, daid-
zein, glycitein and total isoflavones, respectively.

Epistasis is decisive in determining seed isoflavone 
amounts
Accumulated evidence suggests that gene-gene interac-
tions may be accountable for a great part of the pheno-
typic variation observed in complex traits. Particularly,
additive × additive (AA) epistatic interactions have been
proven to be responsible for a great part of isoflavone
seed amounts in certain environments, even more than
main QTL [14]. Despite its interest, mapping epistasis in
complex traits is a daunting task because of the great
number of pair-wise combinations implicated and their
small individual effects. Analogous to the additive main-
effect QTL, performing a combined analysis with repli-
cated observations and over different environments
allows not only recovery of a great number of small-effect
AA epistasis, but also the more stable-over-environment.
A total of fourteen, twenty one, seven, and eight AA epi-
static interactions were found to influence genistein,
daidzein, glycitein and total isoflavones accumulation,
respectively (Additional file 3). In addition to the AA epi-
static main-effect, some of the interactions also possessed
an AA×E interaction effect (Additional file 4). The
importance of epistasis was most revealed for daidzein,
for which the percentage of the variation explained for by
the sum of epistatic interactions was 22.7%. For genistein,
glycitein and total isoflavones this percentage was 10.7,
4.7, and 12.0, respectively. Importantly, the maximum
contribution by any particular interaction was only 3.6%.
All chromosomes had at least one epistatic connection.
Overall, our results suggested that epistasis is a major
determinant of phenotypic variance for isoflavone seed
contents, and that many small individual interactions
contribute to the total effect.

Table 1: ANOVA, Effect Mean Squares, and heritability over environments of the mapping population.

Effect Mean Squaresc

Trait Mean ± SDa Range CVb(%) V(G) V(E) V(GE) V(ε) H2d Skewness Kurtosis

Genistein 730.4 ± 288.3 82--1980 39.47 425223.1 14106588.3 56107.6 17610.1 0.88 0.409 -0.078

Daidzein 417.0 ± 210.1 33--1477 50.37 314677.8 2505067.7 28451.8 8586.1 0.92 0.798 0.990

Glycitein 126.8 ± 61.8 0--342 48.75 11792.1 1057117.8 3582.1 524.9 0.76 0.460 -0.580

Total Isoflav. 1272.7 ± 485.0 186--3008 38.11 1522309.0 19163038.5 163081.8 49308.0 0.90 0.350 -0.186

aMean ± Standard deviation (SD) and range units in μg of isoflavones per gram of seeds.
bCoefficient of variation within the segregating mapping population over environments.
cVariance of genetic V(G), environmental V(E), genotype by environment interaction V(GE), and residual V(ε) effects.
dHeritability of the traits in the broad sense over environments.
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Isoflavone synthesizing genes as candidate genes for 
additive QTL
The recent release of the whole genome sequence
Glyma1 assembly for Williams 82 [15] (accessible at http:/
/www.phytozome.net/soybean) provides a powerful tool
with which to interrogate QTL data. Previously reported
genes for isoflavone biosynthesis [3] were used in BLAST
searches against the whole genome sequence to identify
homologous regions in the genome with assigned or
putative functions (Additional file 5). All twenty soybean
chromosomes had regions sharing a high percentage of
homology with genes of known function in the phenyl-
propanoid pathway (Figure 4). In an effort to add more
information onto the network map, we also included
other reliable QTL reported earlier by our and other

groups [10-12,14]. In total, out of the twenty soybean
chromosomes that form the soybean genome, nineteen
were found bearing at least one additive QTL accounting
for seed isoflavone accumulation, reflecting the wide-
spread distribution of isoflavone influencing loci. In addi-
tion, to make the genetic map as informative as possible,
all homologous sequences found during the blast search
were also placed on the map at their approximate posi-
tions, including the ones with only putative function or
potential pseudogenes. Candidate genes were considered
those falling in the interval of confidence (IC) of a main-
effect QTL, assuming the limits of the mapping resolu-
tion.

Accordingly, several matches were found between QTL
and biosynthetic genes. In Gm01, qDAI1 and another

Table 2: Additive QTLs for genistein and daidzein accumulation in soybean seeds of Essex × PI 437654.

Namea Interval ICb A ± SEc F-valued P-Value h2(a)e

Genistein

qGEN5* SATT236-SAT_271 27.4-34.4 82.1 ± 5.2 35.2 0.00000 5.5

qGEN2* SAT_279-EACAMCTT123 0.0-6.0 54 ± 4.3 34.7 0.00000 2.0

qGEN15* SAT_112-SATT691 8.0-11.0 58.9 ± 4.6 24.8 0.00000 2.3

qGEN13* SATT490-SAT_197 3.4-11.0 25.3 ± 4.4 13.1 0.00000 1.3

qGEN12 SCTT009-SATT541 0.0-6.0 41.9 ± 4.3 11.9 0.00000 1.2

qGEN20 GMLPSI2-SCT_189 72.5-74.5 -32.5 ± 4.1 8.1 0.00000 0.4

qGEN19* SAT_113-SAT_286 141.4-149.8 -47.5 ± 4.5 13.3 0.00000 1.9

qGEN7* SATT175-EAGGMCTT095 76.1-83.1 42.9 ± 4.9 14.7 0.00000 2.3

qGEN4 SAT_337-SAT_140 6.2-17.6 -47.5 ± 7.2 19.8(17.3) 0.00000 3.3

qGEN2_2 SAT_139-SAT_289 107.6-126.2 -44.8 ± 9.0 27.2(17.3) 0.00001 5.3

Daidzein

qDAI5* SATT174-SATT236 21.5-28.4 50.3 ± 3.2 32.8 0.00000 8.3

qDAI8* SATT187-EAGGMCTT205 23.0-25.1 -27.9 ± 2.9 17.5 0.00000 2.2

qDAI4 SATT396-SAT_337 0.0-6.0 -27.5 ± 3.2 15.7 0.00000 1.2

qDAI1 SAT_106-AW781285 34.7-42.6 20.9 ± 3.1 14.2 0.00000 1.2

qDAI2* SAT_279-EACAMCTT123 0.0-8.0 27.5 ± 3.2 20.4 0.00000 1.4

qDAI12* SCTT009-SATT541 0.0-3.0 63.6 ± 3.1 25.2 0.00000 4.3

qDAI16 SAT_339-SATT280 0.0-15.0 -58.8 ± 3.9 15.5 0.00000 2.3

qDAI7* SATT175-EAGGMCTT095 75.1-83.1 55.7 ± 3.5 13.6 0.00000 2.4

qDAI7_2 SAT_147-SAT_330 145.7-151.7 -38.5 ± 3.1 9.2 0.00000 1.0

aName given to a particular QTL, GEN and DAI for genistein and daidzein content, respectively, followed by the chromosome number and a 
number when more than one in the same chromosome. Asterisks highlight QTL reported in our previous study [14]. bInterval of confidence in 
centiMorgans with respect to the first marker in the LG. cMain additive effect in μg/g plus/minus standard error. Mean effect of substituting both 
Essex alleles by PI437654 alleles. Thus, positive values indicate that the PI437654 allele increase the phenotypic value. dF-values of significance 
of each QTL. Threshold F-values were 7.4 and 7.5 for genistein and daidzein, respectively, for the 4-environmentcombined analysis. Between 
brackets is the threshold F-value for QTLs identified at a particular environment. P-values represent the significance of each effect. eh2(a) is the 
heritability of the additive effect or percentage of variation (%) that is explained by the additive component of the QTL.

http://www.phytozome.net/soybean
http://www.phytozome.net/soybean


Gutierrez-Gonzalez et al. BMC Plant Biology 2010, 10:105
http://www.biomedcentral.com/1471-2229/10/105

Page 7 of 16
locus reported somewhere else for glycitein synthesis [11]
overlapped a copy of chalcone synthase (CHS6). Another
region at one of the ends of the chromosome was previ-
ously reported to account for glycitein seed content
[10,12] and embraced three phenylpropanoid genes
(CHS7, 4CL4, and HIDH). Nearby the end of Gm02, two
F3H copies matched the position of four QTLs (qGEN2,
qDAI2, qGLY2, and qTOT2). In the same chromosome,
two other QTL were found to explain genistein and total
isoflavones (qTOT_2 and qGEN2). A C4 H gene is cen-
tered in their IC. Another C4 H copy on Gm14 is found
within the interval of the QTL gen-B2, and also of two
other QTL for genistein and daidzein previously reported
[10]. In Gm03 a glycitein QTL found by the same group
[10,11] coincides with a copy of another important gene,
PAL1. At the beginning of Gm04, three QTL (qGEN4,
qDAI4, and qTOT4) were in the same region in which an
isoflavone reductase copy (IFR2) was mapped. Several

genomic regions in Gm07 account for the synthesis of
distinct isoflavones (qGEN7, qDAI7, qTOT7, and
qDAI7_2). However, despite the observation that critical
isoflavone genes (IFS1 and 4CL4) are present in this chro-
mosome, those QTLs remain without a clear candidate.
An extensive area of approximately 50 cM was shown to
influence genistein, daidzein, glycitein and total isofla-
vone accumulation [12]. This region was apparently
reduced to ~15 cM by another group [11], because the
latter is included in the former and both accounted for
the same isoflavone compounds. The 4CL4 gene is less
than 5 cM apart from this region and about 10 cM from
qGEN7, qDAI7, and qTOT7. Numerous QTL reported for
this chromosome suggests the presence of a large number
of polymorphisms associated with isoflavone synthesis.
In Gm11, a region identified to affect glycitein content
[10,11] was found to overlap a 4CL homolog. A chalcone
isomerase (CHI3) and isoflavone synthase (IFS2) genes

Table 3: Additive QTLs for glycitein and total isoflavone accumulation in soybean seeds of Essex × PI 437654.

Namea Interval ICb A ± SEc F-valued P-Value h2(a)e

Glycitein

qGLY5 SATT236-SAT_271 26.4-35.4 7.1 ± 1.1 18.2 0.00000 1.4

qGLY6* SATT281-SATT291 40.0-52.7 -7.1 ± 0.9 9.2 0.00000 1.4

qGLY6_2 SATT319-EAACMCAC113 41.2-48.8 9.2 ± 0.9 8.3 0.00000 1.0

qGLY2 SAT_279-EACAMCTT123 0.0-5.0 5.9 ± 0.8 13.7 0.00000 0.9

qGLY15* SAT_112-SATT691 8.0-11.0 10.7 ± 1 19.9 0.00000 2.1

qGLY9 SATT242-EAACMCAC227 25.1-36.3 6.4 ± 0.9 10.0 0.00000 0.9

Total

qTOT5* SATT174-SATT236 20.5-25.4 161.7 ± 8.3 36.7 0.00000 7.0

qTOT4 SAT_337-SAT_140 3.0-9.2 -104.1 ± 7.8 9.8 0.00000 1.1

qTOT2* SAT_279-EACAMCTT123 0.0-7.0 87.4 ± 8.1 34.7 0.00000 2.1

qTOT2_2 SAT_139-SAT_289 107.6-118.2 -63.2 ± 7.7 11.6 0.00000 1.9

qTOT15* SAT_112-SATT691 8.0-11.0 52.9 ± 8.5 15.0 0.00000 1.7

qTOT12* SCTT009-SATT541 0.0-4.0 95.2 ± 7.8 20.5 0.00000 3.4

qTOT16 SAT_339-SATT280 3.0-19.0 -125.8 ± 11.2 9.2 0.00000 1.3

qTOT19* SAT_286-SATT229 144.8-159.9 -69.9 ± 8.8 14.3 0.00000 1.4

qTOT7* SATT175-EAGGMCTT095 76.1-85.1 115.8 ± 9 11.0 0.00000 3.1

qTOT8* SATT187-EAGGMCTT205 23.0-29.1 -50.5 ± 14.6 19.3 (16.2) 0.000554 3.0

aName given to a particular QTL, GLY and TOT for glycitein and total isoflavone content, respectively, followed by the chromosome number 
and a number when more than one in the same chromosome. Asterisks highlight QTL reported in our previous study [14]. bInterval of 
confidence in centiMorgans with respect to the first marker in the LG. cMain additive effect in μg/g plus/minus standard error. Mean effect of 
substituting both Essex alleles by PI437654 alleles. Thus, positive values indicate that the PI437654 allele increase the phenotypic value. dF-
values of significance of each QTL. Threshold F-values were 7.2 and 8.0 for glycitein and total isoflavones, respectively, for the 4-
environmentcombined analysis. Between brackets is the threshold F-value for QTLs identified at a particular environment. P-values represent 
the significance of each effect. eh2(a) is the heritability of the additive effect or percentage of variation (%) that is explained by the additive 
component of the QTL.
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were located in the region identified by qGEN13, in
Gm13. In this chromosome, another QTL was reported
for glycitein [12], with a PAL and 4CL copies lying nearby
the QTL IC. In Gm14, one of the two C4 H homologous
copies is within the genomic area delimited by gen-B2
[14] and by two other QTL for genistein and daidzein
[10]. The only known copy of the isoflavone hydroxylase
(I2'H) gene is in the region delimited by the IC of
qGEN15, qGLY15, and qTOT15, in Gm15. Two glycitein
loci were previously reported by our group in Gm17 (gly-
D2_1 and gly-D2_2), had a copy of 4CL1 and DFR2 as
candidate genes, respectively. Another QTL for glycitein

in Gm18 (gly-G) is nearby a IOMT and CHR copies,
although not overlapping. A phenylalanine ammonia-
lyase copy (PAL) located on Gm19 is clearly a good candi-
date for qGEN19, qTOT19, and dai-L. Finally, in Gm20, a
copy of the IOMT gene is within the region demarcated
by qGEN20. In addition, copies of CHI-1A, CHI-1B1, and
CHI2 are present in close proximity (<10 cM).

Discussion
Genetic control of isoflavone seed content
The phenotype of complex traits is the result of diverse
genetic and environmental factors, many of which have

Figure 3 Linkage group map summarizing QTL locations detected for distinct isoflavone species. Blue ovals indicate additive main-effect loci 
associated with genistein, red ovals indicate loci associated with daidzein, green ovals indicate loci associated with glycitein and brown ovals indicate 
loci associated with total isoflavones. Hatched ovals indicate particular loci discovered only in one location, when data was run separately by locations: 
hatched-brown indicate total isoflavone content at BREC in year 2006 and hatched-blue genistein at BREC in 2007. Flanking and other key markers 
used for linkage analysis are depicted at the left side of the linkage group. The name of the QTL, shown aside each oval, is a composite of the influenced 
trait: genistein (GEN), daidzein (DAI), glycitein (GLY) and total of isoflavones (TOT), followed by the chromosome number. Red asterisks show newly 
discovered QTLs while no asterisks indicate confirmation QTL.
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been found to interact with one another. Isoflavone con-
tent in soybean seeds is highly variable among lines, loca-
tions, and within cultivars. The origin of such variability
was found in genetic (G), environmental (E), and G×E
interaction factors. This grade of phenotypic unpredict-
ability inherent to the environment has long hampered
the use of molecular breeding technologies, such as
marker-assisted selection (MAS), to develop appropriate
isoflavone lines. Besides, the need for pyramiding of
numerous genes, most with very small effects and the
inconsistency in estimation of those effects may make
MAS quite difficult. Different MAS approaches have

been successfully attempted targeting traits governed by
many minor-effect QTL [42]. However, these approaches
rely on finding a close marker-trait association relatively
independent from the environment. Despite the environ-
mental interference, heritability in the broad-sense was
found high for all traits, which in a population of RILs
indicates that the observed phenotypic variability is
largely under the genetic control of additive loci, either by
itself or by AA epistasis. Supporting the broad range of
variation observed for isoflavones, several loci also have
an E and a QTL×E interaction effect (A×E or AA×E) by
themselves (Figure 4 and Additional files 2, 3 and 4).

Figure 4 Environment-modulated network of additive main-effect and interacting QTL controls isoflavone accumulation. Blue ovals indi-
cate additive main-effect loci associated with genistein, red ovals indicate loci associated with daidzein, green ovals indicate loci associated with gly-
citein and brown ovals indicate loci associated with total isoflavones. The name of the QTL, shown aside each oval, is a composite of the influenced 
trait: genistein (GEN), daidzein (DAI), glycitein (GLY) and total of isoflavones (TOT), followed by the chromosome number. Red squares surround the 
loci with effect-by-environment interaction, i.a. QTL with a significant additive component but also significantly different at each environment. In an 
effort to make the map more informative QTL reported for ours and other groups: yellow squares [10], light-orange [11], and light-blue squares [12]. 
Lines indicate en epistatic interaction between the interconnected genomic regions, maintaining the same color codes than for additive QTLs: blue 
for genistein, red for daidzein, green for glycitein, and brown for total isoflavone content. Dotted lines reflect epistasis with effect-by-environment 
interaction component. Genomic locations of candidate genes for isoflavone synthesis are located on the chromosomes by a red arrow and their ab-
breviated name.
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Our multi-environment approach allowed detection of
thirty-five main-effects QTL. Nearly 92% of them indi-
vidually account for less than 5% of the phenotypic vari-
ability, suggesting that isoflavone seed concentrations are
governed by numerous minor-effect QTLs. Successfully
detecting QTL and interactions of such small effects
could have been accomplished through including data
points of various environments and replications as inde-
pendent entities under the same mapping algorithm. Cer-
tainly, the presence of false positives cannot be ruled out
but, likely, the many individual observations (2640)
resulted in increased power and precision by reducing
the experimental error [41]. Many of these main-effect
QTL were also interacting, implying that they might have
different absolute effects in different genetic backgrounds
and environments. However, most of the interactions
occurred between loci that bear no additive effects. Our
results indicate that epistatic network of interactions for
isoflavones is largely changed when plants are grown in
different environments and may be one of the main
causes of their phenotypic variability over locations and
years. Corroborating this observation, approximately
one-third of the epistatic interactions detected in this
analysis also showed interaction with the environment
(QTL×E). The same proportion of QTL×E interactions
was found for different traits in a study in maize [43].
Recently, it has been shown that an epistatic interaction
can have a positive or negative effect upon plant fitness
depending on the environment by regulating the salicylic
acid stress signaling pathway [44]. We hypothesize that
the whole network of main-effect and epistatic QTL
changes to confront and adapt to external biotic or abi-
otic stimuli. This is in agreement with the role of isofla-
vones in defense mechanisms against damaging agents
such as pathogens, UV radiation and cold stress
[5,16,17,45-47]. However, the specific reason why isofla-
vones are directed towards accumulation in seeds
remains elusive.

Some observations suggest that we might currently
perceive only the tip of the iceberg and that the genetic
network controlling isoflavone synthesis is likely to be
even more intricate than previously thought. First, the
threshold applied to QTL detection must be very strict to
deal with the multi-test issue and keep the rate of false
positives low. For such complex traits likely imply that
many minor-effect QTL would remain undiscovered,
especially in sample mapping populations. This issue is
even more critical for epistatic QTL because two inter-
vals must be tested. For instance, taking into account
both main and epistatic QTL, our model was only able to
explain 37.9% of the variance (additive:25.8 + epi-
static:12.1), 49.1% (25.4+23.7), 16.7% (10.2+6.5), and 40%
(27.5+12.5) for genistein, daidzein, glycitein and total iso-
flavones, respectively. The high percentage of remaining

unassigned variance is likely due to minor-effect loci and
epistasis that did not reach the threshold level of detec-
tion, further suggesting that numerous minor-effect loci
are involved in isoflavone synthesis. Underestimating the
number of QTL causes overestimation of the genetic
effects of the ones identified because of what is known as
the Beavis effect [48,49]. Therefore, special care must be
taken when considering the reliability of the parameter
estimates. Second, only polymorphic loci will segregate in
the progeny and consequently be detected. Important but
monomorphic loci may remain undiscovered. This is
especially crucial for epistatic QTL as both interacting
loci must be polymorphic, as otherwise they will not cre-
ate phenotypic variance. Third, a population of RILs may
underestimate the total epistasis if dominant interactions
exist [50]. Effectively, due to the structure of the mapping
population, it is not possible to map QTL bearing domi-
nant (D) main or epistatic effects (DD, AD or DA). How-
ever, due to the smaller number of genotypic classes, a
RIL population increases the statistical power to detect
the remaining AA component, which is the more useful
for MAS because it is heritable [51]. Moreover, the self-
pollinating nature of soybean, with usually less than 1%
cross-pollination [52], does not suggest those effects to
be important in natural populations. Fourth, third- or
higher-order epistatic interactions are not reflected on
the mapping analysis but could exist and be an important
component for complex traits such as isoflavones [53,54].
As a last observation, despite the marker-dense linkage
map and the threshold values considered for QTL detec-
tion, the presence of spurious QTL cannot be completely
discarded due to the limited number of individuals sam-
pled. Nevertheless, large sample size in experimental
populations is not only economically unfeasible but also
does not guarantee detecting all possible minor-effect
QTL [55].

Complex networks of interacting genes govern isoflavone 
content in soybean seeds
The soybean genome is believed to have undergone at
least two independent duplications from a diploid ances-
tor to render the actual polyploidy [15,37]. This degree of
duplication is also reflected in the phenylpropanoid genes
and increases the difficulty in performing gene-function
association analysis because polyploidization may bring
about gain-of-function, loss-of-function or neo-function-
alization of certain copies [38]. It is also common to find
tissue-specificity for some gene copies. For example, CHS
has nine paralogues distributed along seven chromo-
somes, out of which CHS5 and CHS6 were not found in
seeds at detectable levels [56]. With regards to CHS6, it
has been suggested that it is present as a single copy in
Gm09 [57,58]. However, our BLAST searches revealed a
second matching locus in Gm01 (Glyma01g22880.1),
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which features only a few SNPs when compared to the
NCBI entry for CHS6 (Additional files 6, 7, 8 and 9).

A separate discussion of the CHS genes present on
Gm08 is merited. According to BAC sequencing, as many
as 12 CHS-related genes are thought to be present on
Gm08, organized in two clustered regions [58]. One such
region is composed of two perfect inverted repeated
regions each containing CHS1, CHS3, CHS4 genes. This
region is commonly referred to as the I locus, and
although the specific silencing RNA is unclear, appears to
act through siRNA-mediated gene silencing to inhibit
seed coat pigmentation by specific degradation of seed
coat specific CHS7 and CHS8 transcripts [58-60]. The
CHS6, CHS7 and CHS8 genes are not apparently present
in clusters on Gm08 but rather in single copy regions on
other chromosomes [58]. In addition, at least four addi-
tional CHS genes (CHS5, CHS3, CHS1, and CHS9) are
thought to be present in another CHS cluster on Gm08,
for a total of 12 CHS genes on Gm08. The current Glyma
1.01 assembly of Gm08 contains only 7 CHS-correspond-
ing regions (6 CHS gene models, and an additional
matching region which does not have an annotated gene
model, Additional file 5) as determined by BLAST
searches using CHS sequence as queries http://www.phy-
tozome.net/soybean. It seems likely that a miss-assembly
has occurred in this region and the number of CHS genes
present on Gm08 remains to be resolved. It is not cur-
rently clear to what extent other similar regions with gene
repeats may have impacted on the assembly of the whole
genome shotgun sequence. Furthermore, as many as ten
regions were found sharing homology to the IFR gene.
Although several of them may be pseudogenes, genes
inactivated by the accumulation of deleterious mutations,
it may be quite difficult to ascertain in which tissues, if
any, these genes are expressed if they share a high per-
centage of homology. In addition, we currently have only
a single sequenced genome (Williams 82) for reference. It
is highly likely that other cultivars will have differing
numbers and dispositions of phenylpropanoid genes. In
particular, large scale rearrangements and deletions have
been noted for the CHS gene clusters present on Gm08
[61].

The network of genes and interactions appears to have
several interconnected neuralgic centers. The CHS gene
cluster in Gm08 emerges as key node controlling the syn-
thesis and accumulation of all individual isoflavones. The
cluster rests within the IC of two important QTL for
daidzein and total isoflavone content. In addition, it has
connections with two other influential QTL and candi-
date genes: in Gm05, and Gm19(PAL). Importantly, all
three isoflavones have at least one epistatic line converg-
ing in the CHS cluster. One of those pair wise interactions
connected the cluster with the focal locus at the end of
Gm05, and explained both genistein and daidzein, which

is a rare phenomenon and further validated the interac-
tion. This locus itself accounted for genistein, daidzein,
glycitein, and total isoflavones (qGEN5, qDAI5, qGLY5
and qTOT5), and it is by far the most principal of all QTL
reported herein in terms of explained percentage of vari-
ance and additive value. However, for this QTL of largest
effect, no known biosynthetic gene was found to be
located within this region. Perhaps a heretofore unknown
isoflavone biosynthetic gene is within this region. Alter-
nately, a trans-acting factor affecting the expression or
activity of isoflavone biosynthetic genes may be present
(transcription factor, ubiquitin-related protein, etc). Con-
sistent with this hypothesis, the epistatic interactions that
this locus has with another central locus (Gm08/CHS
cluster) reinforces the hypothesis of an action through
trans-regulatory control. Whether this region contains
such a factor remains for future fine-mapping work.
Strengthening its central role, the CHS cluster is also epi-
staticaly connected with two other regions: a genistein
interaction with the locus Gm19/(PAL), and a glycitein
interaction (Gm11) with a locus in the proximity of a
QLT implicated in glycitein production [10,11]. A third
strategic node in Gm07 accounts for genistein, daidzein
and the sum of all isoflavones, and it is also connected
with two other important areas in the genome. First, a
daidzein epistatic interaction with the region in Gm01/
(CHS6) of qDAI1 and a QTL reported for glycitein [11].
The second is an interaction for genistein with Gm13/
(IFS2, CHI3), which itself also explains genistein seed
concentrations in an additive manner. Three loci located
in Gm02/(F3H1, F3H2)-Gm05-Gm15/(I2'H) formed
another key three-node subnet for isoflavone synthesis. If
a single genomic region harbors QTL for genistein, daid-
zein, glycitein and total isoflavones, it is certainly a good
candidate to be considered for marker assisted selection.
The underlying gene could be an enzyme acting early in
the pathway or a trans-acting factor, which impacts
expression or activity of one or more of these genes. One
such region is found at the beginning of Gm02 corre-
sponding to two F3 H genes (F3H1 and F3H2). This focal
locus also featured two epistatic interactions accounting
for daidzein and total isoflavones, respectively, with
another locus in Gm05 for daidzein accumulation [10]. In
addition, this Gm02 locus was also linked by means of an
epistatic interaction for total isoflavones to a QTL in
Gm15 for genistein, glycitein, and total seed isoflavone
content, which is also connected with Gm10(CHI-1B).
Finally, two other important additive nodes, in Gm04
(qGEN4, qDAI4, qTOT4) and Gm16 (qDAI16, qTOT16),
were connected by a daidzein epistatic union.

Downstream and substrate-competing enzymes are less
tractable to an intuitive interpretation, and likely require
metabolite quantification to more precisely assess flux
before considering their role as candidate genes. It is also

http://www.phytozome.net/soybean
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difficult to establish a relationship with enzymes which
govern reactions occurring far removed, or in another
biosynthetic branch, from the QTL. This may be the case
of for example the QTL region in Gm02 explaining the
accumulation of all isoflavones (qGEN2, qDAI2, qGLY2,
and qTOT2) and overlapping a copy of F3H. Other exam-
ples are: IFR2 for qDAI4, qTOT4, and qGEN4 in Gm04;
DFR2 for gly-D2_2 in Gm17; IOMT for gly-G in Gm18;
and 12'H for qGEN15, qGLY15, and qTOT15 in Gm15.
Product inhibition and other metabolic controls are likely
involved and maintain the proportion of the different iso-
flavones within acceptable biochemical ranges.

Having placed the phenylpropanoid genes on the
genetic map also offered us the possibility to formulate
hypotheses on the genetic basis underlying epistasis. Sur-
prisingly, a great number of the epistatic QTL have isofla-
vone synthesizing genes located in their IC (Figure 4),
suggesting that a great number of the interacting loci
could have a tractable genetic basis. Epistasis might be a
critical factor for fitness-related traits in some plant spe-
cies [62,63]. This is in perfect agreement with the role
that isoflavones have in the fitness of soybean plants.
However, epistatic QTL are subjected to dramatic adjust-
ments, even more than their additive counterparts, when
different environments are considered [12,14]. Despite
these difficulties, researchers have successfully assigned
genes to epistatic QTL that also had additive effects
[44,64-66]. Finding the genes underlying epistatic QTL
with no main-effect is more challenging but in some
cases they have been revealed [67,68]. Trying to assess
the complete network of isoflavone epistasis appears to
be a colossal task because the number, environmentally-
influenced, and small-effects of the interactions. More-
over, only genes on the phenylpropanoid pathway were
placed on the linkage map, and although epistasis is more
likely to occur between genes on the same or related
pathways [69], undoubtedly interactions with other
enzymes or transcription factors exist. Under these
premises, one should be very cautious when intending to
assign candidate genes to epistatic QTL. However, con-
sidering the genetic network as a whole might help not
only in validating the individual components but also in
deciphering genes underlying epistasis. For instance, if an
epistatic locus also bears a main-effect, it may warrant
further study. Moreover, if both epistatic and main-effect
QTL account for the same trait it seems more likely not to
be a spurious QTL. This extreme, frequently observed in
our analysis, further validated many of the epistatic inter-
actions, as opposed to being artifacts due to a limited
sample size. For example, in Gm17 two independent
main-effect QTL accounted for glycitein concentrations.
Both had candidate genes in their IC, and both were

found to interact with each other by an epistatic interac-
tion, which accounted for glycitein accumulation itself.

Conclusions
A large scale analysis was accomplished to identify
genomic regions associated with isoflavone accumula-
tion. We identified a number of such regions, which form
a complex network controlling seed isoflavone levels
Overall, our results suggest that isoflavone accumulation
in soybean seeds is controlled by a complex environment-
adaptable network of interacting nodes. The study clari-
fies, from a genetic point of view, why isoflavone concen-
tration in soybean seeds is such a complex and variable
trait. We could also place robust candidate genes for sev-
eral main-effect loci in an attempt to find the gene lying
beneath the QTL. Nevertheless, it remains for future
research to determine the nature of the proposed allelic
differences between candidate genes in the lines we
examined, and the manner in which these differences
correlate with impacts on isoflavone content of seeds.
Validation of the entire network of interactions, however,
is likely to remain a monumental task due to the numer-
ous small-effect QTL involved and their environmental
unpredictability. For breeding programs targeting seed
isoflavones, the many QTL involved, their small percent-
age of the variance accounted for by each, at least in this
population, and the complexity of the interactions do not
forecast applying MAS with success.

Methods
Plant material and growing conditions
In a previous study we used a cross between Essex (low
seed-isoflavone content) and the plant introduction PI
437654 (high seed-isoflavone content) to map isoflavone-
content QTL [14]. The same 205 F7-derived recombinant
inbred line (RIL) mapping population was planted in two-
row plots in April of the following year (2007) at the same
two locations: University of Missouri Bradford Research
and Extension Center (BREC, 38°9'N) and the University
of Missouri Delta Research Center (DRC, 36°44'N), with
three replications per location. Plants were maintained
under irrigated conditions until physiological maturity at
which seed samples were harvested from a pool of at least
three plants per RIL for each replication. Records of pre-
cipitation, temperatures, and other climatological param-
eters during the growing period for both locations and
years can be found at http://aes.missouri.edu/bradford/
weather/ and http://aes.missouri.edu/delta/weather/,
respectively. Consequently, four different environments
were used for the study, which consisted of 2 years (2006
and 2007), and 2 locations (BREC and DRC), and a total
of 2460 (205×4×3) pooled seeds were phenotyped and

http://aes.missouri.edu/bradford/weather/
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later used as independent observations to perform an
ample QTL mapping analysis.

Isoflavone Extraction and Quantification
Genistein, daidzein, and glycitein amounts were deter-
mined as previously described [14]. Briefly, ~ 20 seeds
from a pool of at least three plants per RIL for each repli-
cation were ground to a fine powder and extracted with 7
mL of 80% methanol at 55 °C for 2 h, vortexing every 30
min. The supernatant was cleaned using Fisherbrand 0.45
μm 25 mm nylon syringe filters (Fisher Scientific, Pitts-
burgh, PA). 10 μl of the filtered extraction was used for
reverse-phase HPLC on an Agilent 1100 HPLC system
(Santa Clara, CA). Separation and elution were per-
formed by an 18 min linear gradient starting with 20%
methanol/80% 10 mM ammonium acetate (v/v) (pH 5.6)
and finishing with 100% methanol at 1 ml/min. A RP-C18
Lunar C2 column was used (Phenomenex, La Jolla, CA).
Metabolites were detected by photodiode array. Identifi-
cation and quantification of each isoflavone component
were based on available standards (Indofine Chemical
Co., Somerville, NJ).

Statistical analysis, linkage map and QTL analysis
Statistical analysis was performed using the SAS STAT
9.1 program (SAS Institute Inc., Cary, NC). For the
ANOVA, the pooled linear model contained the effect of
environment, replication within environment, genotype,
and environment × genotype. Effects were tested using
PROC GLM. Heritability in the broad-sense over repli-
cates and environments (H2) was calculated according to
[70] for which the variance components were determined
by the PROC GLM. The linkage map was previously
described [71], and contained a total of 276 markers (SSR
and AFLP) distributed on 26 linkage groups. The mixed-
model based composite interval mapping implemented in
QTLNetwork v2.0 (Institute of Bioinformatics, Zhejiang
University, Hangzhou, China), and described in [72], was
used for the QTL mapping analysis and run with two-
year two-location input data and three replications per
location. QTLNetwork, which was specifically developed
for complex traits, can perform an integrated analysis
using each replicate data as an independent entity, pre-
cluding the need to average, and thus allowing greater
statistical power through larger data samples [41]. This
mapping approach efficiently integrates effects of multi-
ple QTLs, epistasis, and QTL-by-environment, by first
conducting a whole genome scan for candidate marker
intervals. The selected markers are subsequently used as
cofactors for putative QTLs, followed by detection of sig-
nificant marker-interval interactions. Finally, all is inte-
grated by a whole-genome scan of epistasis conditioned
on previously found QTLs and marker-interval interac-
tions. Candidate interval selection, epistatic effects, and

putative QTL detection were calculated with an experi-
mental-wise Type I error of α = 0.05, α = 0.001, α = 0.001,
respectively. QTL effects were estimated using Markov
chain Monte Carlo method. Genome scan was performed
using 10 cM window size and 1 cM walk speed. Critical
F-value was assessed by permutation test using 1000 per-
mutations rendering 7.4, 7.5, 7.2, and 8.0 for genistein,
daidzein, glycitein, and total isoflavones, respectively.
Individual replicated data and the four environments
together were used to run QTLNetwork; however, data of
each separate location and year were also used for com-
parison.

To calibrate the statistical power of the experimental
design for detecting QTLs, a Monte Carlo simulation was
conducted with the actual linkage map, sample size (2460
observations), and trait broad sense heritabilities, as pre-
viously reported [72]. For the simulations, a complex trait
was supposed to be controlled by ten QTLs, with additive
(A) and/or additive by environment interaction (A×E)
effect components. One hundred simulations were run
and the average estimates (± SE) were computed. Support
intervals were calculated as described in [72]. Overall,
simulations found a 100% power of detecting QTLs with
relative contributions (RC) larger than 3.8%, a 68% with
contributions larger than 1.5%, and a 58% larger than
0.8% (Additional file 10. Epistatic effects were not
included in the simulations due to the overdemanding
computational needs for their estimation with the afore-
mentioned experimental parameters. However, including
epistasis would likely further improve the statistical
power to detect QTL as well as the false discovery rate
estimates [14,73].

Candidate gene identification
To discern the genomic location of candidate genes for
isoflavone synthesis we assembled a list of NCBI gene
entries derived from Glycine max and Medicago truncat-
ula. The coding sequence of each entry was used as query
in BLASTn searches, using an E-value cut off of 1.0E-05
against the Williams 82 Glyma1.01 sequence http://
www.phytozome.net/. For one of these gene categories,
chalcone synthase (CHS), we utilized tBLASTn with pre-
dicted protein sequences as query, with an E-value cut off
of 1.0E-20. A list of gene models identified by BLAST
searches were assembled and evaluated (Additional File
5). We assigned the best matching gene model the gene
name corresponding to an NCBI entry (a list of all entries
used is shown in Additional File 1), other matches are
labeled "putative". Glyma1.01 gene model protein and
nucleotide coding sequences were aligned to NCBI
entries using AlignX software (Invitrogen, Carlsbad, CA)
to determine protein and coding sequence % identity.
Genetic map position for candidate genes were estimated
by identifying the nearest flanking SSR or SNP genetic
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markers using the generic genome browser hosted on:
http://www.soybase.org.
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