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Abstract 

Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present 
the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is cel-
ebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio 
long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, 
which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length 
of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 
that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mito-
chondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 
tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida 
mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pin-
natifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing 
sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. 
Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced 
the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn 
mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.

Keywords  Hawthorn, Mitochondrial genome, Homologous RecombinationMulti-partite, Phylogenetic analysis, RNA 
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Introduction
Mitochondria are the primary organelles derived from 
the maternal parent. They are only found in the cyto-
plasm of most eukaryotic cells, and the mitochondria 
produce energy to sustain the cells and are known as 
the "powerhouse" or "energy factory" of the cell [1, 2]. 
In addition, plant mitochondria are the only organelles 
that are likely to incorporate foreign DNA [3]. They 
are also involved in numerous metabolic processes, 
including programmed cell death [4], proliferation [5], 
the production of male sterility [6] and the synthesis 
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and degradation of several compounds [7]. Thus, after 
the first land plant mitogenome of common liverwort 
(Marchantia polymorpha) had been sequenced [8], many 
plant mitogenomes were sequenced and assembled. This 
practice has increased dramatically in recent years with 
the rapid development of high-speed sequencing tech-
nologies and improvements in the methods for assembly.

Plant mitogenomes vary dramatically in size, synony-
mous substitution rates, structural complexity and gene 
content among the sequenced land plants. The mitog-
enome sizes range from 66 kb to 11.3 Mb [9, 10], which 
can be attributed to their repetitive sequences and incor-
poration of foreign DNA by intracellular and horizontal 
gene transfer during the process of evolution [11, 12]. 
Plant mitogenomes are conventionally depicted as circu-
lar-mapping molecules, but they are not exclusively lim-
ited to a single circular chromosome model. For example, 
a complex in vivo structure that consisted of both mono-
meric circles and multimeric forms was found in mito-
chondrial genomes from the gynodioecious species 
bladder campion (Silene vulgaris) [13]. The highly modi-
fied mitogenome of the parasitic plant Rhopalocnemis 
phalloides is uniquely arranged in 21 minicircular chro-
mosomes that vary in size from 4,949 to 7,861 bp, with 
minicircular and extremely heteroplasmic stuctures [14]. 
Moreover, the number of genes in the plant mitochondria 
also varies considerably, and the numbers of protein-cod-
ing genes and other genes are generally around 20 – 40 
and 20 – 30 [15]. These genes encode relatively conserved 
proteins, such as ATP synthase, NADH dehydrogenase, 
ubiquinol cytochrome and cytochrome oxidase, these 
protein-coding genes (PCGs) have been widely used to 
resolve evolutionary relationships, whereas others, such 
as sdh3, sdh4, and rps11 are not conserved and have been 
frequently lost in many angiosperms [16, 17]. Although 
mitochondrial DNA (mtDNA) in land plants exhibits sig-
nificant evolutionary plasticity with peculiarities of gene 
expression, most notably RNA editing and trans-splicing, 
compared with the chloroplast and nuclear genomes, the 
mtDNA sequence evolved the most slowly with a low rate 
of mutations [18]. Thus, mitogenomes serve as an attrac-
tive reservoir for phylogenetic and evolutionary studies 
to trace the phylogeny of older land plant clades, which 
may help to provide new insights into the evolution of 
species. Although the mtDNA sequences are conserved 
in multiple species, the open reading frames (ORFs) have 
been disrupted by frameshift indels, particularly in ATP 
synthase genes, and are often involved in cytoplasmic 
male sterility [19], which is useful to improve breeding 
for heterosis in flowering plants.

Plants in the genus Crataegus are known as haw-
thorns. They are members of an interesting genus that 

are members of Maloideae subfamily and Rosaceae 
family, which consists of approximately 280 species 
and has a very long history of cultivation. There is still 
much disagreement over the origin and evolution of 
hawthorns, which were widely believed to have origi-
nated in North America or Europe [20, 21]. Currently, 
a chromosome-level genome of the hawthorn cultivar 
"Qiu Jinxing" has been assembled, which provided an 
improved context for understanding the evolution of 
Maleae [22]. Moreover, the chloroplast genomes of the 
three Hawthorns from C. scabrifolia, C. chungtienensis 
and C. oresbia were also reported, and they enriched 
the chloroplast genome resources of five Crataegus 
species [23]. The mtDNA may have different evolution-
ary histories compared with the chloroplast cpDNA 
and nuclear DNA [24]. However, there are no mitoge-
nomes resources of hawthorns to provide novel insights 
into the evolutionary relationships.

Crataegus pinnatifida is a wild edible shrub that 
bears fruit and is widely cultivated in North China, it is 
known as Chinese hawthorn or "Shanzha" (in Chinese) 
[25, 26]. The desiccative ripe fruits are considered to be 
a medicinal herb that can improve digestion, invigorate 
blood circulation, enrich weakness, and provide other 
positive effects on the heart, lungs and stomach in Tra-
ditional Chinese Medicine (TCM) [27]. As an edible 
shrub that bears fruit, its fruits are also widely used 
as preserves and teas, and are a popular global dietary 
supplement [28]. C. pinnatifida has been shown to 
contain a variety of lignans [29, 30], phenylpropanoids 
[31, 32], flavonoids [33] and triterpenoids [34]. These 
are all active components that have widespread phar-
macological effects, including hepatoprotective [35], 
cardiovascular protective [36], neuroprotective [37], 
anti-inflammatory [38] and anticancer effects [39].

This study assembled a complete mitochondrial 
genome of C. pinnatifida, and the organization of 
mitogenome is characterized by annotation, codon 
usage, repeat sequence and RNA editing. Gene trans-
fer events between the chloroplast and mitochondrial 
genomes were also identified. Furthermore, the poten-
tial subgenomic structures of the C. pinnatifida mito-
chondrial genome that resulted from homologous 
recombination mediated by repeats is clearly illus-
trated. In addition, the mitochondrial genome organi-
zation of C. pinnatifida was compared to the genomes 
of previously published species of the Rosaceae to 
examine patterns of the evolution of organelle genome 
across this large angiosperm clade. Our data provide 
basic information on chimeric gene and provides a bet-
ter understanding of the evolutionary processes of C. 
pinnatifida mitochondrial genomes.
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Results
Assembly and structural characters of the C. pinnatifida 
mitogenome
A total of 799,862 reads that represent 13.8 Gb were gen-
erated based on the PacBio Sequel II platform, with an 
average read length of 17.3 Kb, the longest read and N50 
length was 58.5 Kb and 18.0 kb (Table S1). To correct the 
draft mitogenome generated from the PacBio sequenc-
ing data, a total of 6.6 million raw paired reads that 
represented 9.96  Gb were generated using the Illumina 
novaseq6000 sequencing platform, and 6.2 million clean 
paired reads that represented 9.35 Gb were obtained for 
subsequent assembly (Table S2).

The C. pinnatifida mitogenome was assembled 
440,295 bp long with a GC content of 45.42% (Table 1). 
The mitogenome is more likely to be assembled into 
three circular-mapping chromosomes, and their 
sequences were submitted to the NCBI Genome Data-
base (Accession number, OR448911—OR448913). The 
largest assembled circular chromosome (Chr1) was 
207,313 bp long, the two small assembled circular chro-
mosomes were 119,854  bp (Chr2) and 113,128  bp long 
(Chr3) (Table  1, Fig.  1b). The obtained PacBio and Illu-
mina reads were mapped to the assembly C. pinnatifida 
mitogenome, the rate of mapped reads is both 100%. The 
mean depth of coverage of long reads and Illumina reads 

Table 1  Basic information of the Crataegus pinnatifida mitogenome

NCBI Accession number Contigs Type Length (bp) GC content (%)

OR448911—OR448913 Mt-Chromosome 1–3 branched 440,295 45.42

OR448911 Mt-Chromosome 1 circular 207,313 45.67

OR448912 Mt-Chromosome 2 circular 119,854 45.75

OR448913 Mt-Chromosome 3 circular 113,128 44.60

Fig. 1  The assembled mitogenome structure of Crataegus pinnatifida. Gene map showing 54 annotated genes of different functional groups. The 
genes on the outside are transcribed in the clockwise direction, and those inside the circle are transcribed in the counterclockwise direction
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mapped to the assembly C. pinnatifida mitogenome was 
98 X and 51 X, respectively (Table  S1, S2, Fig. S1). The 
multi-partite mitogenome of C. pinnatifida was the most 
similar in size and GC content to those of the Amygda-
loideae mitogenomes, such as loquat (Eriobotrya japon-
ica), cherry (Prunus avium), plum (Pyrus communis), 
and European crab apple (Malus sylvestris) among oth-
ers [2]. These results suggested the quality of assembly C. 
pinnatifida mitogenome was high.

Annotation of the C. pinnatifida mitogenome
A total of 39,628  bp were annotated coding sequences, 
which comprised 9% of the whole mitogenome, while 
more than 90% were located in intergenic regions. There 
were 54 genes annotated in the C. pinnatifida mitog-
enome, including 34 PCGs, which were divided into 24 
unique core genes and 10 variably present protein genes, 
as well as 17 tRNA genes and three rRNA genes (Table 2). 
These unique core genes mostly encode for respiratory 
proteins. This mitogenome did not have large repeated 
regions, and most of the annotated genes were single-
copy genes. Several of the annotated genes, included 
nad4 that encodes NADH dehydrogenase; trnE-UUC​ 
and UGG, that are both tRNA genes; and rrn18 that is 
rRNA gene with two copies. Only the rrn18 rRNA gene 
has three copies. According to the annotation, those 24 
unique core genes could be divided into seven classe, 
ATP Synthase (five genes), NADH dehydrogenase (nine 
genes), cytochrome c biogenesis (one gene), ubiquinol 
cytochromec reductase (four genes), cytochrome c oxi-
dase (three genes), maturases (one gene) and transport 
membrane protein (one gene). Moreover, 10 non-core 
genes were identified, including three from the large 

ribosomal subunit, five from the small ribosomal subunit, 
and two associated with succinate dehydrogenase.

All three chromosomes of the mitogenome can encode 
proteins. There are 29 genes on Chr1 (13 complete PCGs, 
13 tRNA genes and all three rRNA genes), 23 genes on 
Chr2 (15 complete PCGs, six tRNA genes and two rRNA 
genes), and 10 genes on Chr3 (10 complete PCGs). Most 
of the PCGs were annotated on a single chromosome, 
while the exons of the gene nad1 were distributed on 
Chr1 and Chr2, and the exons of nad5 were distributed 
on three different chromosomes (Fig. 1).

Gene transfer between the mitogenome 
and chloroplast genome
The transfer of DNA sequences from the chloroplast 
genome to the mitogenome is an important event in 
the evolution of higher plants. To better understand the 
intracellular gene or sequence transfer events in C. pin-
natifida, the individual chloroplast genome of C. pin-
natifida was assembled into a single, circular mapping 
molecule that contained a pair of inverted repeat (IR) 
regions, which were divided by short-single copy (SSC) 
and long-single copy (LSC) regions (Fig. S2). The mito-
chondrial genome of C. pinnatifida is approximately 2.7 
times larger than those of the chloroplast genome, at 
159,657  bp long. The mitochondrial genome was used 
as a query and compared to the chloroplast genome, 
and 1,933 bp sequences were transferred from the chlo-
roplast to the mitogenom. These accounted for 0.44% of 
the mitochondrial genome and 1.21% of the chloroplast. 
A total of 17 recombinant fragments of mitogenomes 
(MTPTs) were homologous with specific regions of the 
chloroplast genome (Fig.  2). The longest homologous 
recombinant fragment, designated MTPT17, was 646 bp 

Table 2  Gene annotation of the Crateagus pinnatifida mitogenome

Gene Group Gene names

Core genes ATP synthase atp1, atp4, atp6, atp8, atp9

NADH dehydrogenase nad1, nad2, nad3, nad4 (× 2), nad4L, nad5, nad6, nad7, nad9

Cytochrome c biogenesis cob

Ubiquinol cytochrome c reductase ccmB, ccmC, ccmFC, ccmFN

Cytochrome c oxidase cox1, cox2, cox3

Maturase matR

Transport membrane protein mttB

Variable genes Large subunit of ribosome rpl5, rpl10, rpl16

Small subunit of ribosome rps1, rps3, rps4, rps12, rps13

Succinate dehydrogenase sdh3, sdh4

rRNA genes Ribosome RNA rrn5 (× 3), rrn18 (× 2), rrn26

tRNA genes Transfer RNA trnC-GCA​, trnD-GUC​, trnE-UUC​ (× 2), trnF-GAA​, trnfM-CAU​, trnG-GCC​, trnH-
GUG​, trnI-CAU​, trnK-UUU​, trnM-CAU​, trnN-GUU​, trnP-UGG​ (× 2), trnQ-UUG​, 
trnS-GCU​, trnS-UGA​, trnW-CCA​, trnY-GUA​
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long (Table  S3). Furthermore, six complete genes were 
annotated and distributed in the recombinant fragments, 
which were all tRNA genes, including trnD-GUC, trnH-
GUG, trnI-CAU, trnM-CAU, trnN-GUU​ and trnW-CCA​ 
(Table S4).

Analysis of codon usage in the PCGs in C. 
pinnatifida mitochondrial genome
AUG is a typical start codon in plant mitochondria, 
but plant mitochondria may also use several other start 
codons. Most of these PCGs annotated in the C. pinnati-
fida mitogenome have a typical AUG start codon, but the 
start codon of cox1, nad1 and rps4 is ACG; that of mttB 
is AUA and GUG for rpl16, which could be the result 
of RNA editing. In addition, three different typical stop 
codons were also identified in most of the PCGs, includ-
ing UAA, UGA and UAG. The codons of mutation sites 
were also found in the stop codons, the first codon posi-
tion U was replaced with C. For example, those of atp6 
and atp9 were CAA and CGA, respectively (Table S4).

The relative synonymous codon usage (RSCU) of the 
C. pinnatifida mitochondrial PCGs was analyzed (Fig. 3, 
Table  S5). RSCU = 1 indicates no preference for codon 
use, while RSCU > 1 indicates that the codon is a rela-
tively frequently used. As shown in Fig. 3, all the codons 

are present in the PCGs. The most frequently used 
codons included the stop codon (UAA, 1.55), Tyr (UAU, 
1.54), and Ala (GCU, 1.51), whose RSCU values > 1.5. 
Moreover, the RSCU values of almost all the codons with 
the third codon position A/T ≥ 1.0. Conversely, the RSCU 
values of almost all the codons with the third codon posi-
tion C/G ≤ 1.0 (Table  S5). This phenomenon indicates 
that there is a high content of A/T at the third codon 
position in the mitogenome of C. pinnatifida, which 
is very similar to what has been reported in the mitog-
enomes of other land plants. The strong AT bias of the 
third codon is considered to be a universal phenomenon 
in higher plants.

Repeat sequence analysis of the C. pinnatifida 
mitochondrial genome
Simple sequence repeats (SSRs) are singular, repeated 
sequences with one to six bases motifs that are widely 
used as DNA markers to study genetic diversity and 
identify species. In this study, 69, 36 and 29 SSRs were 
identified in Chr1, Chr2 and Chr3 of the C. pinnatifida 
mitogenome, respectively (Table  S6). Among the 134 
SSRs, more than 50% were monomeric and dimeric 
repeats. There were slightly fewer tetrameric repeats 
than monomeric ones in three Chrs. In contrast, there 

Fig. 2  The distribution of MTPTs of Crateagus pinnatifida. The mitochondrial genome and chloroplast genome were marked with purple and green, 
respectively. The blue ribbons show the MTPTs between the mitochondrial and chloroplast genomes. MTPTs 1–11 were found in chromosome 1, 
and MTPTs 13–16 were found in chromosome 2. MTPT 17 was found in chromosome 3. MTPTs, recombinant fragments of mitogenomes
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were fewere trimeric repeats than the dimeric repeats, 
and there was only one pentameric; there were no 
hexameric repeats in the C. pinnatifida mitogenome 
(Fig. 4a). An additional analysis of the SSR repeat units 
showed that A/T was more prevalent than the other 
repeat types, and it contributes to the AT richness of 
the complete C. pinnatifida mitogenome.

Tandem repeats, with lengths that range from 7 
to 200 base, are widely found in the mitogenomes of 
plants. A total of 22 tandem repeats were identified in 
the mitogenome of C. pinnatifida, with unit lengths 
that ranged from 8 to 39  bp. A total of 11 tandem 
repeats were distributed on Chr1, six on Chr2, and five 
on Chr3 (Table S7, Fig. 4b). Moreover, many non-tan-
dem long repeat sequences with repeat units ≥ 50  bp, 
except for the SSRs and tandem repeats, were distrib-
uted in plant mitogenome. Those dispersed repeats 
were classified into forward repeats, palindromic 
repeats, reverse repeats and complement repeats. 
ROUSfinder [40] was used to show that 42 dispersed 
repeats ≥ 50  bp were found in the C. pinnatifida 
mitogenome, including 27 palindromic repeats and 
15 forward repeats. Among these repeats, Repeat_1 
had the longest sequences of 12,818  bp, followed by 
Repeat_2 with sequences of 64,971 bp (Table S8). The 
pairs of the long repeats often cause isomerization of 
the genome by recombination.

Homologous recombination mediated by repeats
The assembly is composed of six assembled contigs, 
demonstrating a region of overlap along the linkages 
(Fig. 5a). It’s worth noting that ctg5 (Repeat_1) and ctg6 
(Repeat_2) exhibited distinct characteristics suggestive of 
potential repetitive sequences. To explore the potential 
subgenomic structures of the C. pinnatifida mitochon-
drial genome, the BLASTN program [41] was used to 
identify the repeats in three chromosomes. First, a unitig 
graph that contained two double bifurcating structures 
(DBS) (Fig. 5a) was archived by extracting the mitochon-
drial short reads using GetOrganelle [42] combine with 
performing the de novo assembly of the extracted reads 
using Unicycler software [43]. To determine whether 
these two repeats can mediate recombination, we 
extracted sequences that contained the flanking regions 
and the repeat sequences. Four alternative conformations 
were generated by artificially swapping extended 2,000 bp 
sequences to simulate recombination, and the recombi-
nant sequence represents four potential genomic paths, 
we then denoted the induced genomic paths as P1-1, 
P1-2, P2-1 and P2-2 (Fig.  5a). To confirm the presence 
of these paths within the C. pinnatifida mitogenome, 
we conducted PCR experiments. Eight specific primer 
pairs based on 1,000  bp sequences contaning repeated 
and flanking regions sequences were employed to vali-
date P1-1, P1-2, P2-1 and P2-2genomic paths deduced 

Fig. 3  Codon usage analysis of the PCGs in the Crataegus pinnatifida mitochondrial genome. Different codons of the same amino acid were 
marked with red, yellow, blue, green gray, and purple bars, respectively. The “end” represents stop codons. PCGs, protein-coding genes
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by switching the flanking regions. The PCR amplifca-
tion results showed eight bands having lengths consist-
ent with those expected (Fig. 5b), and Sanger sequencing 
results confirmed possible genomic paths (Fig. S3).

There were four possible genomic conformations in C. 
pinnatifida mitochondrial genome. Conformation 1 (C1) 
presents three independent circular structures, incorpo-
rating all six contigs and P1-1 and P1-2 genomic paths 
both induced by ctg5 and ctg6, respectively (Fig.  5c). 
Conformation 2 (C2) presents two independent circular 
structures, ctg2, ctg3, ctg4, P1-2 genomic path deduced 
by ctg5 and P2-2, P2-1 genomic paths deduced by ctg6 
collectively form a bigger circular arrangement, as well 
as ctg1 and P1-1 genomic path deduced by ctg5 form a 
smaller circular (Fig. 5d). Similarly, conformation 3 (C3) 
also showed two circular arrangement, ctg1, ctg3, ctg4, 
P2-1 and P2-2 genomic paths deduced by ctg5 collec-
tively form a circular arrangement, as well as ctg2 and 

P1-1 genomic path deduced by ctg6 form a smaller circu-
lar (Fig. 5e). Unlike C1, C2 and C3, conformation 4 (C4) 
presents a master circular structure encompassing all six 
contigs, P2-1 and P2-2 genomic paths induced by ctg5, 
and P2-1 and P2-2 genomic paths genomic path induced 
by ctg6 (Fig. 5f ).

Furthermore, the long PacBio reads were mapped to 
the eight genomic paths to determine the recombina-
tion frequency. A total of 34 high scoring pairs (HSPs) 
were identified that were associated with the four pos-
sible conformations (Table  S9). Conformations induced 
by p1-1 and p1-2 genomic paths were denoted as major 
conformations, on the contrary conformations induced 
by p2-1 and p2-2 genomic paths were denoted as minor 
conformations. The percentage of major conformations 
and minor conformations was 71.43% and 28.57% based 
on ctg5, respectively (Table 3). In addtion, the percentage 
of the major and minor conformations was 77.78% and 

Fig. 4  Repeat analyses in the Crataegus pinnatifida mitochondrial genome. a Number of different SSR repeat units distributed in three 
chromosomes. b Number of tandem repeats and different long repeat sequences distributed in the three chromosomes. SSR, simple sequence 
repeats
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22.22% based on ctg6, respectively (Table 3). Accordingly, 
C1 has the highest probability of 55.56%, followed by C2 
has the probability of 15.87%. Specifically, it seemed that 
there was no probability of C2 and C4, due to no mapped 
reads that supported P2-2 genomic path induced by ctg5. 
Although our results strongly supported the hypoth-
esis that C. pinnatifida mitochondrial sequences were 

separated from each other, and formed three independ-
ent circular DNA molecules (Fig. 5b). The three circular-
mapping chromosomes of C. pinnatifida mitogenome 
could be rearranged into two circular-mapping chromo-
somes at a low rate. In addion, three independent circu-
lar DNA molecules cloud be rearranged into one bigger 
circular-mapping chromosome accordding to the PCR 

Fig. 5  The graphic assembly and verification of Crataegus pinnatifida mitogenome. a Unitig graph of the C. pinnatifida mitogenome obtained 
from the de novo assembly of Illumina reads with Unicycler, ctg5 and ctg6 are the repetitive sequence. b Gel electrophoresis image for the PCR 
products. M. marker; 1–8 represents the electropherogram of eight paths, and the expected lengths of each fragment are shown at the bottom 
of the gel. c-f Four potential conformations that result from the rearrangement mediated by two pairs of repeat sequences, respectively

Table 3  The percentage of different genome configurations identified by long-reads in the Crataegus pinnatifida mitogenome

ID Length Number of Reads Supporting the Paths Percentage of 
configuration (%)

p1-1 p1-2 p2-1 p2-2 Major Minor

ctg5 12,818 bp 2 3 2 0 71.43 28.57

ctg6 6,497 bp 10 11 2 4 77.78 22.22
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amplifcation and Sanger sequencing results. Overall, C. 
pinnatifida is more likely has a multi-partite mitogenome 
which can be assembled into three circular-mapping 
chromosomes.

Prediction of the RNA editing sites of pcgs
RNA editing refers to the addition, loss, or conver-
sion of the base in the coding region of the transcribed 
RNA. This is a common phenomenon in plant mitochon-
dria that regulates the levels of expression of the genes 
involved in plant growth and development. This study 
used the predicted PREPACT3 program to predict 456 
RNA editing sites within 33 unique PCGs in the mitog-
enome of C. pinnatifida. All the RNA editing sites were 
C-U edits that occurred in the first (163, 35.75%) and 
second (293, 64.25%) positions of the codon, whereas no 
RNA editing was found in the third position, which is 
similar to the situation in most angiosperms (Table S10). 
Furthermore, RNA editing caused the substitution of 
eight amino acids (Aa), and the replacement of serine (S) 
with leucine (L) occurred most frequently. Among those 
PCGs, nad4L does not have any editing site predicted, 
while rpl10 and ccmFN have the least (1) and most edit-
ing sites (38) predicted, respectively (Fig. 6).

Phylogenetic analysis of C. pinnatifida
To understand the evolutionary status of the C. pinnati-
fida mitochondrial genome, a phylogenetic tree of C. 
pinnatifida together with the other 30 species, includ-
ing 24 species of Rosaceae and two of Rhamnaceae, 

Cannabaceae and Fabaceae (designated as outgroups), 
was created. The phylogenetic tree was obtained based on 
an aligned data matrix of 25 conserved PCGs, including 
atp1, atp4, atp6, atp8, ccmB, ccmC, ccmFC, ccmFN, cob, 
cox1, cox2, cox3, matR, nad1, nad2, nad3, nad4, nad5, 
nad6, nad7, nad9, rpl16, rps3, rps4 and sdh4, from these 
species. The taxa from the 24 Rosaceae species were well 
clustered, and the order of taxa in the phylogenetic tree is 
strongly consistent with the evolutionary relationships of 
those species according to the latest Angiosperm Phylog-
eny Group (APG). As shown in Fig. 7, C. pinnatifida was 
the most closely related to Chinese quince (Chaenomeles 
speciosa), which suggests that the Crataegus and Chae-
nomeles have a closer evolutionary relationship than the 
other species of Rosaceae.

Collinearity between the different Rosaceae 
mitogenomes
An analysis of the locally collinear blocks (LCBs, > 0.5 kb) 
is more suitable to identify large-scale rearrangement, 
gene gain and gene loss. The mitogenomes of C. pinnati-
fida and the closely related species, including pear (Pyrus 
communis), Malus sieversii, Chinese quinc, loquat (Erio-
botrya japonica), apricot (Prunus armeniaca) and the 
Iturup strawberry (Fragaria iturupensis), were compared 
and subjected to collinear analysis to explore the similari-
ties and differences between the multi-ring and single-
ring structures in more detail. A significant number of 
LCSs was detected among the seven Rosaceae species. 
However, the multiple synteny plots were not arranged 

Fig. 6  Number of the RNA editing events in the PCGs of Crataegus pinnatifida mitochondrial genome
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in the same order among the individual mitochondrial 
genomes (Fig.  8). This suggested that hawthorn and the 
other six Rosaceae species experienced extremely fre-
quent mitochondrial genome rearrangements to obtain 
new genomes through evolution. In addition, hawthorn, 
M. sieversii, Chinese quinc, and loquat had a good col-
linear relationship and shared numerous conserved 
colinear blocks. Conversely, there were relatively weak 
locally collinear blocks among hawthorn, pear, apricot 
and Iturup strawberry.

Discussion
Features of the C. pinnatifida mitochondrial genome
Plant mitogenomes are more complex than those of ani-
mals and most other eukaryotes because of their varia-
tion in size and repeated seqeunces [1]. In this study, we 
utilized short reads of Illumina novaseq 6000 sequencing 
in combination with long reads of PacBio RS II sequenc-
ing to complete the mitogenome of C. pinnatifida. This 

study produced the first detailed characterization of a 
complete mitogenome in Crataegus. The C. pinnatifida 
mitogenome encompassed a total length of 440,295  bp 
with a GC content of 45.42%. The C. pinnatifida mitog-
enome had a moderate content of GC and size relative 
to the mitogenomes of most other Rosaceae species. 
The GC content and size of C. pinnatifida mitogenome 
are the most similar to the mitogenome of loquat (Size: 
434,980  bp, GC content: 45.42%), Cherry ("Glory," Size: 
444,576  bp, GC content: 45.62%) and birchleaf pear 
(Pyrus betulifolia) (Size: 432,493 bp, GC content: 45.21%) 
[2, 44], but they were smaller than those of some gym-
nosperm, such as a gnetophyte (Welwitschia mirabilis) 
(Size: 978,846 bp, GC content: 53.00%) [45].

Although the genome size plant mitochondrial greatly 
varied, the number of mitochondrial genes is relatively 
conserved in the land plant lineage. Most sequences in 
the C. pinnatifida mitogenome are non-coding, while 
39,628 bp was annotated PCGs that comprised 9% of the 

Fig. 7  Phylogenetic tree based on 25 conserved PCGs. Two mitochondrial PCGs from sicca senna (Senna tora) and soybean, were settled 
as the outgroups, and the bootstrap support values were recorded at eachnode. PCGs, protein-coding genes
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whole mitogenome. This percentage was probably owing 
to a gradual increase in the duplication of sequences dur-
ing evolution. Moreover, most PCGs of the C. pinnati-
fida mitogenome had the typical AUG start codon, and 
the distribution of amino acids was also similar to that of 
other angiosperms. In contrast, the start codon of cox1, 
nad1 and rps4 is ACG, mttB is AUA and GUG for rpl16. 
This phenomenon also has been found in other stud-
ies. Repeat-induced duplicated genes are widespread in 
maize (Zea mays), sacred lotus (Nelumbo nucifera) and 
some vascular plant mitogenomes, 10 and six duplicated 
PCGs have been identified in the maize [46] and sacred 
lotus [47] mitogenomes, respectively. There are varying 
numbers of copies of Cox1 in the populations of different 
species, and it is frequently involved in horizontal gene 
transfer among angiosperms [48]. However, only nad4 is 
found had two copies, and no copies of cox1 were found 
in the C. pinnatifida mitogenome. This suggests that the 
recombination of repeat in the homogenization of the 
gene copies harbored appeared to be less frequent.

The conformations of C. pinnatifida mitochondrial 
genome mediated by repeats and homologous 
recombination
Plant mitochondrial genomes are conventionally 
reported as circular structures. Nevertheless, they are 
far more complex than a simple circular chromosome 
model and are typically described as multipartite and 

interconverting even within a single individual [49]. The 
repeats in mitochondrial DNA provide a solid founda-
tion for intermolecular recombination. They are consid-
ered to be one of the most important factors that induces 
mitochondrial genomes composed of multiple circulars, 
branched, linear or mixed forms of genomic structure 
[50, 51]. The repeats are larger and more frequent in the 
vascular plants. Non-tandem repeats usually include 
pairs of large repeats (> 1000 bp) that may cause isomeri-
zation of the genome by recombination, whereas short- 
and medium-sized repeated sequences (< 1000  bp) tend 
to recombine at minor to moderate levels [11, 40, 52].

In C. pinnatifida mitogenomes, the number of dis-
persed repeat sequences, particularly palindromic repeats 
and forward repeats, was larger than those of the SSRs 
and tandem repeats (Fig.  4). This indicates that moder-
ately repetitive sequence may be the primary contribu-
tor to the variation in observed sizes and structures. This 
prolific presence of repeats points towards their poten-
tial significance not only in size but also in influencing 
genome reconfiguration. Multiple configurations can be 
owing to a combination of linear, circular, and branched 
molecules in the plant mitogenomes. Some studies pro-
pose that structural variations within plant mitogenomes 
may arise from long repeat-mediated recombination. 
Within the mitogenome of C. pinnatifida, our analysis 
unveiled two pairs of lengthy repetitive sequences, meas-
uring 12,818 bp and 6,497 bp, respectively (Table 3). To 

Fig. 8  Genome synteny analysis of seven species of Rosaceae. The ribbons show the LCBs among the seven species. Highly conserved LCBs 
are shown in gray ribbons, and the pink ribbons indicate where the inversion occurred. The interstices between the LCBs represent the unique 
fragments in each mitogenome. LCBs, locally colinear blocks
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determine whether two long repeated sequences can 
mediate recombination, four alternative conformations 
were generated by simulating recombinationin C. pin-
natifida mitogenome (Fig.  5a). Furthermore, four con-
formations were verified through PCR experiments and 
Sanger sequencing (Fig. 5b) combined with long PacBio 
mapped reads (Table  S9). Our results suggested that C. 
pinnatifida mitogenome was most likely be formed three 
independent circular DNA molecules mediated, while 
three circular-mapping chromosomes could be rear-
ranged into two or one circular-mapping chromosome. 
This indicates that the mitogenome structure of C. pin-
natifida is not static but rather dynamically varies among 
these two conformations. These findings were similar to 
those found in the mitogenomes of Chinese quince [53], 
pear [54], Chinese photinia (Photinia serratifolia) [55], 
which suggested that circular arrangements appear to be 
the common form among the assembled Rosaceae family 
mitogenome induced by the recombination of repeated 
sequences[2].

Intergenomic sequence transfers and phylogenetic 
analysis of C. pinnatifida mitochondrial genome
Intergenomic DNA transfer events between different 
genomes (mitochondrial, nuclear and chloroplast) are 
a common and foundation phenomenon that occurs 
during the evolution of plants. Most studies have indi-
cated that the transfer of sequences from the organellar 
genomes to the nuclear genome and from the nuclear 
genome and chloroplast genome to the mitogenome were 
the primary directions [56, 57]. The transfer of sequences 
was found to be induced by the illegitimate repair of 
double-stranded breaks or as part of the stress or other 
responses that induce functional genetic diversity in the 
receiving genome [58, 59]. In this study, 17 recombinant 
fragments that were sequences of 1,933  bp long were 
transferred from the chloroplast to the mitogenome of C. 
pinnatifida and comprised 1.21% of the chloroplast and 
0.44% of the mitogenome, respectively (Fig. 2, Table S4). 
Furthermore, six complete genes that were annotated 
with transferred sequences that were shared between the 
nuclear and mitochondrial genomes all encoded tRNA, 
including trnD-GUC​, trnH-GUG​, trnI-CAU​, trnM-CAU​
, trnN-GUU​ and trnW-CCA​ (Table  S4). The transfer of 
tRNA genes from the chloroplast to mitochondrial DNA 
is common in angiosperm.

Plant mitochondria genomes are well-known to evolve 
rapidly compared with other organelles induced by het-
eroplasmy, genome recombination, and gene chimerism 
among others [60]. With the development of sequencing 
technology, the sequences of numerous mitochondria 
genomes of the Rosaceae family are publicly available. 
The accession number is listed in Fig. 6. The phylogenetic 

evolution results derived from mitochondria genomes 
of the C. pinnatifida and other 23 Rosaceae species 
strongly correspond to the evolutionary relationships 
of those species according to the latest APG. Hawthorn 
was placed in the Amygdaloideae clade and is the most 
closely related to the Chinese quince as a sister lineage 
to the combined clade of Eriobotrya, Malus, Sorbus and 
Pyrus, which agreed with the findings of a previous study 
based on the nuclear genome [22]. Collinearity analy-
ses between C. pinnatifida and the mitogenomes of the 
most closely related species also strongly supported the 
results of the analysis of phylogenetic evolution. C. pin-
natifida, M. sieversii, Chinese quince, and loquat had a a 
better collinear relationship and shared more conserved 
colinear blocks than the other three species of Rosaceae 
(Fig. 7).

Conclusions
In this study, we assembled and annotated the complete 
mitochondrial genome of C. pinnatifida, a wild shrub 
that bears edible fruit that are also medicinal, using 
Illumina short reads and PacBio long reads. The mito-
chondrial genome of C. pinnatifida was the most likely 
assembled into three circular chromosome structures 
acrroding to the recombination mediated by repeats. 
The genome size was 440,295  bp with a GC content of 
45.42%, which is similar to those of loquat, cherry, and 
birchleaf pear. A total of 54 genes were distributed on 
three chromosomes, and the number of genes positively 
correlated with the size of each chromosomes. We also 
identified 17 large fragments that were 1,933 bp long that 
had been transferred from the chloroplast genome to the 
mitogenome. In addition, phylogenetic and collinearity 
analyses based on the mitochondrial genome of C. pin-
natifida both supported its evolution, and it has a closer 
genetic evolutionary relationship with Chinese quince, 
M.sieversii, and loquat compared with the other spe-
cies of Rosaceae. Our findings provide a valuable genetic 
resource for further studies on the genus Crataegus.

Materials and methods
Plant materials, DNA extraction and sequencing
C. pinnatifida plants were collected at the Non-timber 
Forestry Research and Development Center, the forest 
planting base in Zhengzhou, Yuanyang County, China 
(34°55′-34°56′ N, 113°46′-113°47′ E). Fresh leaves were 
collected, frozen in liquid nitrogen and stored at -80 °C. 
The genomic DNA was extracted from frozen leaves 
using the CTAB method [61]. The purity and concentra-
tion of DNA were determined using a Qubit 3.0 fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) and 
1% agarose gel electrophoresis, respectively, and stored at 
-80 °C.



Page 13 of 17Zhu et al. BMC Plant Biology          (2024) 24:929 	

Purified genomic DNA was used to construct a SMRT 
sequencing library with an insert size of 15  kb. The 
genome was sequenced using the PacBio Sequel II plat-
form (Pacific Biosciences, Menlo Park, CA, USA) at 
SMART GENOMICS Technology Limited (Tianjin, 
China). In addition, for leaf samples from the same indi-
vidual, sequencing libraries of 150  bp paired-end reads 
with an insert size of 300  bp were constructed using a 
library construction kit (Illumina, San Diego, CA, USA). 
The libraries were sequenced using an Illumina Novaseq 
6000 sequencing platform by SMART GENOMICS Tech-
nology Limited. To ensure the quality of reads, Trimmo-
matic v 0.39 [62] was used to filter out raw reads that 
contained adapter contamination and duplication.

Mitogenome assembly and annotation
The mitogenome of C. pinnatifida was assembled using 
the data obtained from the PacBio RS II sequencing in 
combination with Illumina NovaSeq 6000 sequencing. 
The contigs were assembled based on Illumina paired-
end reads using GetOrganelle v. 1.7.5 [42] with default 
parameters. Subsequently, Bandage soft visualized these 
contigs assemblies as an annotated genome displayed as a 
circular map [63], and the single extended segments from 
the chloroplast and nuclear genomes were removed. 
Moreover, the HiFi sequencing data from PacBio were 
assemble de novo into contigs using SMARTdenovo [64] 
(https://​github.​com/​ruanj​ue/​smart​denovo) with default 
settings after a correction process with Canu [65] with 
the default parameter.

The putative mitochondrial molecule was obtained 
and assembled by comparing the assembly of short 
reads and long reads. A major mitogenome of C. pin-
natifida was assembled by the GetOrganelle v. 1.7.5 
pipeline based on the mitochondrial short reads. The 
GetOrganelle-extended reads were aasembled into a 
unitig graph using Unicycler (Pacific Biosciences), which 
was also used to resolve the DBSs in the unitig graph. 
Finally, the sequences that contained the repeats in DBSs 
and 2,000  bp sequences upstream and downstream of 
the repeats were extracted. Subsequently, the flanking 
regions were switched to form four conformations. To 
examine the accuracy of the Unicycler, the long-reads 
were aligned with duplicate fragments in the assembly 
mitogenome using BWA [66] with default parameters. 
To examine the mitogenome assembly in more detail, the 
PacBio long reads and Illumina short reads were mapped 
to the mitogenome sequences using minimap2 [67] and 
BWA [66], and samtools [68] was used to calculate the 
depth of coverage.

The complete mitogenome of C. pinnatifida was ini-
tially annotated using GESeq [69], and the mitogenomes 
of Arabidopsis thaliana (NC_037304) and tulip tree 

(Liriodendron tulipifera) (NC_021152.1) were used as the 
reference genome from GenBank. The PCGs and rRNA 
genes of the C. pinnatifida mitogenome were annotated 
using BLASTN [41] with parameters. tRNAscan-SE [70] 
with default parameters was used to predict the tRNA 
genes. Pseudogenes with clear frame shifts and internal 
stop codons were annotated manually using Apollo [71].

Analyses of codon usage, sequence repeat and RNA 
editing site
The RSCU values of C. pinnatifida were calculated 
using MEGA 7.0 [72], and the amino acid compositions 
of PCGs were analyzed using PhyloSuite [73]. SSRs and 
tandem repeat sequences were detected using the MISA 
(https://​webbl​ast.​ipk-​gater​sleben.​de/​misa/) [74], TRE 
(https://​tandem.​bu.​edu/​trf/​trf.​unix.​help.​html) [75] and 
REPuter (https://​bibis​erv.​cebit​ec.​uni-​biele​feld.​de/​reput​
er/) [76] programs with the default settings. Non-tan-
dem repeats ≥ 50 bp were identified and curated using a 
Python script called ROUSFinder [40]. The repeats that 
contained the overlap regions were manually verified 
and merged, and visualized using the Circos package 
[77]. The RNA editing sites in the mitogenome of C. pin-
natifida were predicted by PREPACT3 online software 
(http://​www.​prepa​ct.​de/) [78] with a cutoff value = 0.001.

Analyses and validation of the recombination 
products
The homologous recombination of the non-tandem 
repeats identified by ROUSfinder was analyzed. BLASTN 
[41] was used to search for the repeat sequences of 
ctg5 and ctg6. In addition, the extended sequences on 
both sides of the repeats that were 2,000  bp long were 
extracted to predict the presence of possible recombina-
tion products around the repeats. Furthermore, the con-
ventional PCR experiments combined with eigut specifc 
primer pairs were used for amplifying the repeated 
regions to validate the presence of multiple conforma-
tions. The primer sequences for PCR reactions were 
designed using the Primer-BLAST (https://​www.​ncbi.​
nlm.​nih.​gov/​tools/​primer-​blast) based on the 500  bp 
upstream and downstream sequences of the repeats 
combined with 500 bp flanking sequences (Fig. S3), and 
primer sequences were listed in Table S11. Subsequently, 
DNA was extracted using using a plant genomic DNA kit 
(Tiangen, Beijing, China), and the amplifications were 
performed using Veriti™ Dx 96-Well Fast Thermal Cycler 
(ThermoFisher). PCR reactions were performed in a 50 μl 
mixture, comprising 1 μl template DNA, 2 μl each of the 
forward and reverse primers, 25 μl 2 × Phanta Max Mas-
ter Mix, and 20 μl ddH2O. After an initial denaturation 
at 95 °C for 3 min, PCR reactions were conducted for 35 
cycles, respectively. Each cycle included denaturation 

https://github.com/ruanjue/smartdenovo
https://webblast.ipk-gatersleben.de/misa/
https://tandem.bu.edu/trf/trf.unix.help.html
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
https://bibiserv.cebitec.uni-bielefeld.de/reputer/
http://www.prepact.de/
https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.ncbi.nlm.nih.gov/tools/primer-blast
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at 95 °C for 15 s, annealing at 55 °C for 15 s, and exten-
sion at 72 °C for 15 s, and a final extension step at 72 °C 
for 5 min. The PCR products were visualized using 1.5% 
agarose gel electrophoresis (Fig. S4). Subsequently, the 
single bright bands were excised and sent to Sangon Bio-
tech (Shanghai, China) Co., Ltd. for Sanger sequencing. 
Sequence alignment was conducted between Sanger and 
selected sequences using SnapGene. Finally, the PacBio 
long reads were then mapped to the extracted sequence 
segments of four conformations, and the repeat-spanning 
reads were also counted to determine the recombination 
frequency.

Potential intracellular transfers
To detect the presence of intracellular transfers from the 
chloroplast genome to the mitogenome, the chloroplast 
genome of C. pinnatifida was also assembled based on 
the short reads using GetOrganelle v1.7.5 [42]. CPGA-
VAS2 [79] and CPGView web server [80] were used to 
annotate the chloroplast genome and check the annota-
tion, respectively. The mitochondrial genome was then 
mapped to the chloroplast genome using the BLASTN 
tool [41] with default parameters, and the gene transfer 
segments of C. pinnatifida were visualized by the Circos 
package [77].

Phylogenetic analysis
The mitochondrial genome data of 25 closely related spe-
cies from the Rosaceae and six other species from three 
angiosperm families were downloaded from the GenBank 
Organelle Genome Resource. The phylogenetic analy-
sis used soybean and sickle senna (Senna tora), which 
are members of the Fabaceae, as an outgroup. The com-
mon PCGs were first extracted using PhyloSuite (v1.1.16) 
[73]. Multiple sequence alignments among these selected 
PCGs were then performed using MAFFT soft [81]. A 
maximum likelihood (ML) phylogenetic tree was con-
structed using IQ-tree [82] with default parameters and 
1,000 bootstrap replicates. The best-fit model was chosen 
as ’GTR + F + R2’ according to the Bayesian Information 
Criterion (BIC) generated from IQ-tree. The phyloge-
netic tree was visualized using iTOL software [83].

Collinear analysis with other species 
in the Rosaceae
To explore the mitogenome collinearity relationship 
between seven Rosaceae species, the nucleotides of the 
C. pinnatifida, pear, Malus sieversii, Chinese quince, 
loquat, apricot and Iturup strawberry were aligned using 

BLASTN with E-value ≤ 1e−10, matching rate ≥ 80%, and 
length ≥ 500 bp. According to the sequence similarity, the 
Multiple Synteny Plot of C. speciosa with the six Rosaceae 
species was constructed using MCscanX [84].
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