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Abstract
Background Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced 
yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because 
high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic 
losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-
temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses.

Results To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose 
leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and 
malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and 
metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially 
abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs 
were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal 
transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The 
combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as 
chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional 
dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK 
signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/
ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 
(ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. 
Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat 
stress in Arabidopsis thaliana.

Conclusion The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and 
plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may 
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Background
Heat stress due to global warming poses a significant 
threat to food security and agricultural sustainability 
[1]. Elevated temperatures associated with heat stress 
can decrease water content, disrupt cellular homeosta-
sis, and compromise vital biological processes [2]. These 
physiological disturbances can have devastating effects, 
leading to reduced crop yields and, in extreme cases, 
plant death [1]. Rosa hybrida is an important ornamental 
plant that grows and blooms at an optimum temperature 
of 22–26  °C. Roses are sensitive to high temperatures, 
which often decrease the number or size of flowers and 
cause them to enter dormancy and not blossom [3, 4].

Plants have evolved complex and diverse systems to 
cope with environmental heat stress [1, 2, 5]. At the 
molecular level, plants rely on transcriptional regula-
tory networks to orchestrate their stress responses. Heat 
shock proteins (HSPs) and reactive oxygen species (ROS) 
are major biomarkers of plant responses to heat stress 
[6–9]. The transcriptional regulatory network activated 
by heat stress is a highly dynamic and coordinated sys-
tem. For instance, tomato and Arabidopsis heat shock 
transcription factor A1 (HsfA1) plays a critical role in the 
heat shock response by decreasing the induction of heat 
stress-responsive genes and heat stress-sensitive pheno-
types [10, 11]. Among them, some genes encode proteins 
that protect cellular components from damage caused by 
heat stress, whereas others encode proteins that repair 
damage or restore cellular homeostasis [12–15].

In addition to transcriptional regulation, post-transla-
tional modifications play pivotal roles in the heat stress 
response of plants. These modifications, including phos-
phorylation [16], ubiquitination [17], and SUMOylation 
[18–20], can alter the activity, localization, or stability of 
proteins involved in stress signaling and responses. For 
instance, Ca2+ and ROS may be involved in heat stress 
sensing via MAPK signaling [21–23]. Moreover, plant 
hormones such as jasmonic acid play key roles in abiotic 
stress responses [24], and early signaling enhances heat 
tolerance in Arabidopsis [25]. In roses, Li et al. identified 
Ca2+ signaling pathways and transcription factors associ-
ated with rapid sensing and signal transduction in heat 
stress responses [4].

Researchers have extensively studied genes linked to 
regulatory pathways involved in heat stress. Ubiquitin E3 
ligase (AtPUB48), HSP, heat-induced RING finger pro-
tein 1 (OsHIRP1), and drought, heat, and salt-induced 
RING finger protein 1 (OsDHSRP1) are involved in 

protein stability and refolding [26–29]. In particular, 
the relationship between HSP proteins and heat stress 
responses has been reported in several species [3, 11, 
27, 30]. In addition, cyclic nucleotide-gated ion channel 
protein (CNGC) and calcium-dependent protein kinase 
(CDPK) play crucial roles in the response to high tem-
peratures via Ca2+ signaling pathways [31–35]. Moreover, 
genes such as WRKY39 in Arabidopsis and jasmonic acid 
2 (SlJA2) in tomatoes respond to high temperatures by 
regulating salicylic acid (SA) signaling [36, 37]. In roses, 
eukaryotic translation initiation factor 5 A (RceIF5A) and 
APETALA2 were found to respond to high temperatures 
or temperature fluctuations [38, 39].

Despite these advances in the understanding of the 
molecular mechanisms underlying plant heat stress 
responses, the molecular mechanism underlying the 
response to heat stress in roses remains unknown. In 
this study, the “Francois Rabelais”  rose variety was used 
and subjected to RNA-seq and metabolomic analysis to 
identify candidate genes and metabolites. The results 
indicated that genes and metabolites related to flavonoid 
biosynthesis and the MAPK signaling pathway may be 
involved in heat stress response. The results provide valu-
able information for the molecular breeding of resistant 
rose varieties.

Materials and methods
Plant materials and heat stress treatment
Two-year-old Rosa hybrida cv. “Francois Rabelais” rose 
cuttings (rootstock,  Rosa multiflora  Thunb.) were used 
as experimental materials. The plants were purchased 
from a nursery and pre-cultured in an artificial climatic 
chamber for 10 days under the following conditions: 
temperature of 24 °C, humidity of 55%, light duration of 
12 h (day)/12 h (night), and light intensity of 100%. Sub-
sequently, the artificial climatic chamber was set to 42 °C 
(persistent high-temperature weather in recent years in 
Hefei, Anhui Province, China) for 0  h (Treatment 0  h, 
T0), 3 h (T3), 6 h (T6), 9 h (T9), and 12 h (T12), respec-
tively. After each treatment, functional leaves were col-
lected, immediately frozen in liquid nitrogen, and stored 
in a − 80  °C for subsequent transcriptome and metabo-
lome sequencing. Transcriptome and metabolome 
analyses included three and six biological replicates, 
respectively.

contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites 
induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular 
mechanisms underlying resistance to heat stress in roses.
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Photosynthetic and antioxidant enzyme analyses
Plant leaves were collected to determine concentrations 
of photosynthetic pigments and proline. Samples (0.5  g 
fresh weight per treatment) were extracted in 80% (v/v) 
methanol and thoroughly ground. The concentration in 
the supernatant of this mixture was determined spectro-
photometrically, as described by Wang and Huang [40]. 
Malondialdehyde (MDA), peroxidase (POD), and protein 
levels were analyzed using specific assay kits obtained 
from Nanjing Mo Fan Biotechnology Co., Ltd (Nanjing, 
China).

RNA extraction and sequencing
The total RNA of leaves was extracted according to the 
protocol for extraction of plant RNA (https://www.
yuque.com/yangyulan-ayaeq/oupzan). After measur-
ing the RNA levels and qualities, RNA was used to con-
struct libraries according to the protocol for mRNA 
library preparation (BGI, China). The libraries were then 
sequenced using DNBSEQ (BGI, China). The SOAPnuke 
(v1.5.6) software was used for quality control of the raw 
data [41, 42]. The reference rose genome and annota-
tion files were downloaded from the National Center 
for Biotechnology Information database (accession no. 
GCF_002994745.2) [43]. The clean data were mapped to 
the reference genome using HISAT (v2.1.0) [44]. Bowtie2 
was applied to align the clean reads to the gene set, which 
included both known and novel transcripts as well as 
coding and noncoding transcripts [45]. Gene expression 
levels were calculated by RSEM (v1.3.1) [46]. Differen-
tially expressed gene (DEG) analysis was performed using 
DESeq2 (v1.4.5) with a q-value ≤ 0.05 and |log2(Fold-
change)| ≥1 [47]. Time series analysis was performed 
using Mfuzz (v2.34.0) [48], and gene coexpression net-
work analysis was performed using WGCNA (v1.48).

Metabolite extraction and analysis
A total of 50  mg of tissues were extracted by directly 
adding 800 µL of precooled extraction reagent (MeOH: 
H2O) (70:30, v/v, precooled at − 20 °C); then, 20 µL of an 
internal standards mix was added for quality control of 
the sample preparation. Two small steel balls were added 
to the Eppendorf tube. After homogenization at 50  Hz 
for 5  min using TissueLyser (JXFSTPRP, China), sam-
ples were sonicated for 30 min at 4  °C and incubated at 
− 20 °C for 1 h. The samples were then further centrifuged 
for 15 min at 14,000 rpm and 4  °C. Next, 600 µL of the 
supernatants were filtered through 0.22-µm microfilters 
and transferred to autosampler vials for liquid chroma-
tography-mass spectrometry (LC-MS) analysis. To evalu-
ate the reproducibility and stability of the whole LC-MS 
analysis, a quality control (QC) sample was prepared by 
pooling 20 µL of the supernatant from each sample.

Sample analysis was performed on a Waters ACQUITY 
UPLC 2D (Waters, USA) coupled to a Q-Exactive mass 
spectrometer (Thermo Fisher Scientific, USA) equipped 
with a heated electrospray ionization source. Chromato-
graphic separation was performed on a Hypersil GOLD 
aQ column (2.1 × 100 mm, 1.9 μm, Thermo Fisher Scien-
tific, USA) with mobile phase A consisting of 0.1% for-
mic acid in water and mobile phase B consisting of 0.1% 
formic acid in acetonitrile. The column temperature was 
maintained at 40 °C. The gradient conditions were as fol-
lows: 5% B over 0.0–2.0 min, 5–95% B over 2.0–22.0 min, 
held constant at 95% B over 22.0–27.0 min, and washed 
with 95% B over 27.1–30 min. The flow rate was 0.3 mL/
min, and the injection volume was 5 µL.

The mass spectrometric settings for the positive/nega-
tive ionization modes were as follows: spray voltage, 
3.8/–3.2 kV; sheath gas flow rate, 40 arbitrary units (arb); 
aux gas flow rate, 10arb; aux gas heater temperature, 
350  °C; and capillary temperature, 320  °C. The full scan 
range was 100–1,500 m/z with a resolution of 70,000, and 
the automatic gain control (AGC) target for MS acqui-
sitions was set to 1e6, with a maximum ion injection 
time of 100 ms. The top three precursors were selected 
for subsequent mass spectrometry fragmentation with a 
maximum ion injection time of 50 ms and a resolution of 
30,000; the AGC was 2e5. The stepped normalized colli-
sion energies were set to 20, 40, and 60 eV.

Metabolome data preprocessing
The raw data collected by LC-MS/MS were imported 
into Compound Discoverer 3.1 (Thermo Fisher Scientific, 
USA) for data processing. The molecular weight, reten-
tion time, peak area, and identification were derived from 
this analysis. Metabolites were identified using the BGI 
self-built standard library and the mzCloud database. 
Data preprocessing was performed using metaX [49]. 
The DAMs between groups were screened by multivari-
ate statistical analysis using principal component analy-
sis (PCA) and discriminant analysis, partial least squares 
method-discriminant analysis (PLS-DA) [50, 51], and 
univariate analysis using fold-change analysis and Stu-
dent’s t-test. DAM screening thresholds were as follows: 
variable importance in projection (VIP) values of the 
first two principal components of the PLS-DA model ≥ 1, 
Fold-Change ≥ 1.2 or ≤ 0.83, and q-value < 0.05.

Function enrichment analysis
Gene ontology (GO) (http://www.geneontology.org/) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(https://www.kegg.jp/) enrichment analyses were per-
formed using Phyper based on a hypergeometric test. 
Significant levels of terms and pathways were corrected 
using a q-value with a rigorous threshold (q-value ≤ 0.05).

https://www.yuque.com/yangyulan-ayaeq/oupzan
https://www.yuque.com/yangyulan-ayaeq/oupzan
http://www.geneontology.org/
https://www.kegg.jp/
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Correlation analysis of RNA‑seq and metabolomic data
The correlation between DEGs and DAMs was ana-
lyzed using regularized canonical correlation analysis 
(rCCA). Sparse partial least squares discriminant analysis 
(SPLSDA) was performed using the mixOmics package 
in R [52].

Quantitative real‑time PCR
Total RNA was extracted and reverse transcribed into 
cDNA using the aforementioned method. Real-time 
qRT–PCR was performed using 20 µL of cDNA using 
the TB Green™ Premix Ex Taq™ II reagent (Takara; 
Tli RNaseH Plus); Rc16S RNA and AtEF1a were used 
as internal reference genes. The primers used for all 
detected genes are listed in Supplementary Table 1. Three 
biological replicates (each with three technical repli-
cates) were subjected to the QuantStudio™ 6 Flex System 
(Applied Biosystems, USA) with the following amplifi-
cation parameters: activation at 50  °C for 2 min, prede-
naturation at 95  °C for 2 min, denaturation at 95  °C for 
15 s, and annealing at 60 °C for 1 min for 40 cycles. The 
relative gene expression levels were calculated using the 
2−ΔΔCt method.

RcHSP70 overexpression in arabidopsis and heat stress 
treatment
The 35  S::RcHSP70 vector was constructed and trans-
formed into A. tumefaciens GV3101. Transformation of 
Arabidopsis ecotype Columbia-0 plants was performed 
using the floral dip method. For selection, seeds were 
planted under aseptic conditions on MS agar contain-
ing 25 mg L− 1 hygromycin (primers see Supplementary 
Table 1). T3 lines displaying 100% hygromycin resis-
tance were considered homozygous and used for further 
experiments [53]. Young seedlings were subjected to 
high-temperature conditions at 42 °C for 0 h, 0.5 h, 1 h, 
2 h, and 3 h. Arabidopsis leaves overexpressing RcHSP70 
were collected to evaluate RcHSP70 expression and heat 

response gene expression by qRT–PCR. The primers 
used are listed in Supplementary Table 1.

Results
Heat stress affects photosynthetic and antioxidant enzyme 
activities of Rosa hybrdia
The leaves  R. hybrida  did not exhibit significant wilting 
for a short period because of the presence of more wax 
but became softer because of water loss (Supplemen-
tary Fig.  1). The physiological function of R. hybrida  is 
affected by heat stress. Analysis of physiological and bio-
chemical indices at various periods after heat stress indi-
cated chlorophyll and total protein content decreased 
significantly over time, reaching a minimum at 9 h before 
increasing/recovering (Fig.  1A-B). Similarly, the proline 
content increased significantly after heat stress, reach-
ing a maximum at 9 h, and slightly decreased thereafter 
(Fig. 1C). Moreover, the POD activity level increased sig-
nificantly and reached a maximum value at 6 h, followed 
by a rapid decrease (Fig.  1D). MDA content showed a 
similar trend to that of POD, but the increase was rela-
tively weak (Fig. 1E).

RNA‑sequencing and DEG screening
After the five groups of samples were sequenced and 
processed, clean reads were mapped to the rose genome, 
and the fragment per kilobase of transcript per million 
mapped value of each gene was calculated. PCA showed 
that the control group (T0) was significantly distinct from 
the treatment groups (T3, T6, T9, and T12), with some 
treatment groups being relatively close to each other, 
such as T3 and T9. The samples within each group could 
also be effectively clustered into multiple replicates, indi-
cating high reproducibility (Fig. 2A). Since multiple treat-
ment groups were not clustered with the control group, 
indicating that significant changes occurred in multiple 
treatment groups, comparing multiple treatment group 
time points with the control group showed 11,233 DEGs 
(5,855 upregulated and 5,378 downregulated genes) at 

Fig. 1 Photosynthetic and antioxidant enzyme activities of Rosa hybrida after heat stress. (A) Total chlorophyll content. (B) Total protein content. (C) Pro-
line content. (D)POD activities. (E) MDA content. Values are means ± SD (n = 3 biological replicates); Asterisks indicate statistically significant differences as 
determined by Student’s t-test: ns, no significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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Fig. 2 Analysis of DEGs and the main KEGG pathways enriched by DEGs in Rosa hybrida response to heat stress. (A) PCA analysis of gene expression 
datasets. (B) Number of DEGs among compared groups. (C) KEGG analysis of DEGs between T0 and T3. (D) KEGG analysis of DEGs between T0 and T6. (E) 
KEGG analysis of DEGs between T0 and T9. (F) KEGG analysis of DEGs between T0 and T12. The color and size of the bubbles indicate significant enrich-
ment and gene number, respectively
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T3-vs-T0 and 13,403 DEGs at T6-vs-T0 (6,738 upregu-
lated and 6,665down-regulated genes), T9-vs-T0 had 
13,050 DEGs (6,448 upregulated and 6,602 downregu-
lated genes), and T12-vs-T0 had 11,676 DEGs (5,693 
upregulated and 5,983 downregulated genes; Fig. 2B).

Functional enrichment analysis of DEGs in the four 
compared groups showed that the common enriched 
pathways included alpha-linolenic acid metabolism, 
sulfur metabolism, pentose phosphate pathway, glyc-
erophospholipid metabolism, porphyrin metabolism, 
and chlorophyll metabolism, etc. (Fig.  2C–F). In addi-
tion, some pathways were enriched only in the T3-vs-T0 
comparison group, such as homologous recombination, 
nucleotide excision repair, terpenoid backbone biosyn-
thesis, RNA degradation, spliceosomes, plant hormone 
signal transduction, and ether lipid metabolism (Fig. 2C); 
and the glyoxylate and dicarboxylate metabolism, gly-
cosphingolipid biosynthesis, propanoate metabolism, 
nicotinate and nicotinamide metabolism, citrate cycle, 
and SNARE interactions in vesicular transport path-
ways were enriched only in the T6-vs-T0 comparison 
group (Fig.  2D). Further, limonene and pinene degra-
dation was only enriched in the T9-vs-T0 comparison 
group (Fig.  2E), and fructose and mannose metabolism, 
phosphonate and phosphinate metabolism, beta-amylase 
metabolism, alanine metabolism, beta-amylase metabo-
lism, and pyrimidine metabolism were only enriched in 
the T12-vs-T0 group (Fig. 2F).

Function enrichment of DEGs in response to heat stress
Further analysis of the four comparison group identi-
fied 4,652 common DEGs (Fig.  3A); the corresponding 
enriched metabolic pathways were plant–pathogen inter-
action, MAPK signaling pathway, spliceosome, mismatch 
repair, pentose phosphate pathway, homologous recom-
bination, DNA replication, etc. (Fig.  3B). According to 
the pattern of gene expression changes during heat stress, 
the expression of genes in cluster 6 gradually increased 
after heat stress treatment, reaching a peak at 6–9  h. 
The expression of genes in cluster 8 gradually decreased 
after heat stress treatment, reaching the lowest point 
at 6–12 h (Fig. 3C, Supplementary Tables 2 and 3). The 
genes in clusters 6 and 8 were mostly consistent with 
trends in changes detected in physiological indices and 
antioxidant activities. Functional analysis of the genes in 
cluster 6 showed that they were mainly related to spliceo-
some (such as classic heat-responsive proteins, HSP70 
homology genes: LOC112182696, LOC112173817, and 
BGI_novel_G003858), mismatch repair, DNA replica-
tion, sulfur metabolism, etc. (Fig.  3D, Supplementary 
Table 2). Significantly enriched cluster 8 genes included 
plant–pathogen interaction, phenylpropanoid biosynthe-
sis, flavonoid biosynthesis, MAPK signaling pathway, etc. 
(Fig. 3E).

Metabolomic changes in R. hybrida in response to heat 
stress
Further metabolomic examination of the heat-treated 
samples showed high reproducibility of both positive-
ion mode (pos) metabolites and negative-ion mode 
(neg) metabolites in samples from multiple time points 
(Fig.  4A-B, Supplementary Table 4). A total of 723 
pos metabolites and 432 neg metabolites were identi-
fied (Fig.  4C), mainly containing flavonoids (60 positive 
metabolites and 52 negative metabolites), terpenoids 
(39 positive metabolites and 33 negative metabolites), 
phenylpropanol (33 positive metabolites and 23 nega-
tive metabolites), phenols (15 positive metabolites and 
15 negative metabolites), phenolic acids (16 positive 
metabolites and 11 negative metabolites), and others 
(Fig. 4D). Comparison of DAMs between the four treat-
ment groups and the control group showed 243 DAMs 
(including 144 positive and 89 negative metabolites) in 
the T3-vs-T0 comparison group, 254 DAMs (includ-
ing 157 positive and 97 negative) in the T6-vs-T0 com-
parison group, 246 DAMs in the T9-vs-T0 comparison 
group (including 165 positives and 81 negatives), and 265 
DAMs in the T12-vs-T0 comparison group (including 
174 positives and 91 negatives; Fig. 4E).

Enrichment analysis of the DAMs in the four com-
parison groups showed that the enriched pos DAMs in 
KEGG metabolic pathways included alpha-linolenic acid 
metabolism and arginine biosynthesis, whereas the neg 
DAMs were enriched in pathways such as plant hor-
mone signal transduction, cyano amino acid metabolism, 
tropane, piperidine and pyridine alkaloid biosynthesis, 
aminoacyl-tRNA biosynthesis, phenylpropanoid bio-
synthesis, and glucosinolate biosynthesis (Fig.  4F–I). In 
addition, pos DAMs were significantly enriched in ABC 
transporters in the T6/9/12-vs-T0 comparison group, 
except at the early stage of heat stress treatment (T3-vs-
T0), which is related to the transmembrane transport of 
metabolites at the later stage of the treatment (Fig. 4F–I).

DAMs in response to heat stress
Further analysis identified 57 common DAMs in the four 
comparison groups (Fig. 5A). These 57 DAMs were sig-
nificantly enriched in the pathway of aminoacyl-tRNA 
biosynthesis, glucosinolate biosynthesis, and cyano 
amino acid metabolism and were associated with two 
major metabolites, L-isoleucine and L-phenylalanine 
(Fig. 5B). Analysis of the changes in the content of these 
DAMs revealed three clusters, cluster I showed the low-
est content at T0, which increased significantly from T3 
to T12; the changes in these metabolites were consistent 
with the trend in the changes in POD activity, proline, 
and MDA content. In cluster III, the trend was almost 
the opposite, with the highest content at T0, decreas-
ing significantly thereafter; the trend was also consistent 
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with the trend of changes in chlorophyll and total protein 
content. In addition, the content of cluster I; metabolites 
decreased at T3, followed by a rapid increase at T6 and a 
subsequent rapid decrease (Fig. 5C).

Combined RNA‑seq and metabolomic analysis
The Spearman correlation coefficient was calculated 
for DEGs and DAMs. Network diagrams were plotted 
for DEGs and DAMs with absolute correlation coeffi-
cient values > 0.9 and p-value < 0.05 (Fig.  6A). The sig-
nificant nodes in the four comparison groups were 

L-phenylalanine, jasmonic acid, 5-fluoro, and biocy-
tin, which may play key roles in the plant’s response to 
heat stress (Fig. 6B–E). The patterns of content changes 
divided the metabolites into three subgroups: cluster 1, 
upregulated after heat shock (T3–T12); cluster 2, down-
regulated after heat shock (T3–T12); cluster 3, increased 
at T6 and later decreased (Fig. 6F). This trend was con-
sistent with the results shown in Fig. 5C. In addition, the 
DAMs and DEGs in the four comparison groups were 
mainly enriched in alpha-linolenic acid metabolism, 

Fig. 3 Venn diagram of the comparison groups and function enrichment analysis. (A) Venn diagram of the four comparison groups. (B) KEGG analysis of 
common DEGs in four comparison groups. (C) The trend pattern analysis of all genes expression level. (D) KEGG analysis of cluster 6 genes in Fig. 3C. (E) 
KEGG analysis of cluster 8 genes in Fig. 3C. The color and size of the bubbles indicate significant enrichment and gene number, respectively
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Fig. 4 DAMs of Rosa hybrida in response to heat stress. (A) Principal component analysis of pos metabolites. (B) Principal component analysis of neg me-
tabolites. (C) Number of identify metabolites. (D) Classified of metabolites. (E) Number of DAMs among compared groups. (F) KEGG analysis of DAMs be-
tween T3-vs-T0. (G) KEGG analysis of DAMs between T6-vs-T0. (H) KEGG analysis of DAMs between T9-vs-T0. (I) KEGG analysis of DAMs between T12-vs-T0
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plant hormone signal transduction, and phenylpropanoid 
biosynthesis (Fig. 6G).

Heat stress response pathways
After heat stress, phenylpropanoid and downstream 
flavonoid biosynthesis were enriched in roses. Multi-
ple hormones are involved in the regulation of the heat 
stress process. In the flavonoid biosynthesis pathway, 
the expression levels of CHI, HCT (excluding 112197593 
and 112165685), FLS, and DFR were downregulated after 
heat stress. Four metabolites in this pathway showed sig-
nificant changes, pinocembrin and dihydroquercetin lev-
els decreased after heat treatment, and eriodictyol and 

dihydromyricetin levels increased trend after heat stress 
(Fig. 7A).

The significant enrichment of plant hormone signal 
transduction and MAPK signaling indicates a close rela-
tionship between these two pathways. We analyzed jas-
monic acid and ethylene-related pathways in the MAPK 
signaling pathway. The expression levels of MKK3 and 
MPK6 were significantly downregulated after heat stress, 
which acts as an inhibitor of MYC2 and causes upregula-
tion of MYC2 homology (except 112200522). In addition, 
ERF1 repression (whose expression levels increased after 
heat stress) plays a role in the regulation of VSP2 expres-
sion (Fig. 7B). In the ethylene signaling pathway, RAN1, 

Fig. 5 Venn diagram of DAMs in the comparison groups and function enrichment analysis. (A) Venn diagram of DAMs in the four comparison groups. 
(B) KEGG analysis of common DAMs in four comparison groups. (C) The heatmap of common DAMs in the four comparison groups. Three subgroups 
marked with cluster I, II, III
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Fig. 6 The connection network between DEGs and DAMs. (A)The schematic of network between DEGs and DAMs. The rhomboid and dots represent 
genes and metabolites, respectively. (B) The top10 core nodes DAMs in compared group T3-vs-T0. (C) The top10 core nodes DAMs in compared group 
T6-vs-T0. (D) The top10 core nodes DAMs in compared group T9-vs-T0. (E) The top10 core nodes DAMs in compared group T12-vs-T0. (F) The heatmap of 
core DAMs in four compared groups. Log2-scaled metabolites content are shown, ranging from low (blue) to high (red). Three subgroups marked with 
cluster I, II, III. (G) Sankey diagram showing the relationship between pathways and DAMs/DEGs, the DEGs number were more than 4000, the gene names 
were not showed
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Fig. 7 The pathways of flavonoid biosynthesis and MAPK signaling pathway response to heat stress. (A) The flavonoid biosynthesis pathways. HCT: 
shikimate O-hydroxycinnamoyltransferase; FLS: flavonol synthase; DFR: bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase; ANS: anthocy-
anidin synthase; CHI: chalcone isomerase. (B) The MAPK signaling pathway. MKK3: mitogen-activated protein kinase kinase 3; MPK6: mitogen-activated 
protein kinase 6; MYC2: transcription factor MYC2; VSP2: vegetative storage protein 2; RAN1/copA, P-type Cu + transporter; ETR/ERS: ethylene receptor; 
CTR1: serine/threonine-protein kinase; MPK3: mitogen-activated protein kinase 3; MPK6: mitogen-activated protein kinase 6; EIN2/3: ethylene-insensitive 
protein 2/3; ERF1: ethylene-responsive transcription factor 1; ChiB: basic endochitinase B. Log2-scaled FPKM or metabolites content are shown in different 
time points of leaf (here T0-T12, from left to right in each heatmap panel) are presented in the heatmap alongside the gene id. Low to high expression is 
indicated by a change in color from blue to red
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ETR, and CTR1 (excluding 112178901) significantly 
increased their expression levels while MPK3/6 expres-
sion was inhibited. In addition, MYC2, which is involved 
in the ethylene pathway and coordinates the regulation of 
ChiB expression levels, upregulated the expression of a 
homologous ChiB protein after heat stress (Fig. 7B).

RNA‑seq expression validation by qRT–PCR
qRT–PCR was used to confirm the reliability of our 
RNA-seq data. The results revealed that the expression 
patterns of 16 selected DEGs were consistent with the 
RNA-seq data sets (Fig. 8). Among these genes, HSP70, a 
typical maker gene in response to heat stress, was signifi-
cantly upregulated after heat stress. RBOP, PR1, and four 
WRKY transcript factors, crucial genes in the MAPK 
signaling pathway, were downregulated after heat stress, 
suggesting that heat stress regulates resistance to high 
temperatures (Fig. 8).

RcHSP70 overexpression decreases Arabidopsis’s timely 
responses to high temperatures
To determine whether RcHSP70 confers resistance to heat 
stress, RcHSP70 was introduced into Arabidopsis wild-
type (WT). After high-temperature treatment, RcHSP7 
OE plants showed higher resistance to high tempera-
ture, but WT plants showed an earlier wilting phenotype 
(Fig.  9A). High RcHSP70 expression was also detected 
in Arabidopsis OE plants using qRT–PCR (Fig. 9B). The 
expression levels of four known heat-responsive genes 
in Arabidopsis were examined, and the results revealed 
that the expression of Hsp70-interacting protein genes 
(HIP) was significantly increased in OE2 plants compared 
with WT plants at 1 h after high-temperature treatment. 
At 0.5 h after high temperature, expression of the 9-cis-
epoxy carotenoid dioxygenase gene (NCED) was signifi-
cantly decreased compared with that in WT plants. The 
trends of phytochrome interacting factor 4 (PIF) and 
ascorbate peroxidase 6 (APX) expression were essentially 
the same in WT and OE2 (Fig. 9C).

Fig. 8 Expression pattern of the selected 16 genes
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Discussion
As an important ornamental plant, roses hold a high 
market share in the flower industry and have significant 
economic value. Breeding varieties that are resistant to 
high temperatures is crucial for increasing the produc-
tion of rose flowers. Although key genes involved in heat 
stress responses have been reported in other species, 
whether the regulatory and responsive mechanisms of 
roses are consistent with those of these species remains 
unclear. Li et al. conducted a preliminary exploration of 
heat stress-responsive genes in roses via transcriptome 
analysis, but there is still a lack of systematic research on 
the relationship between gene and metabolite changes 
after heat stress [4]. This study further explored the 
characteristics of gene and metabolite changes in roses 
induced by high temperatures using transcriptomic and 
metabolomic methods.

In this study, we found a higher number of DEGs at T6 
and T9 than at T3 and T12, indicating the impact of heat 
stress on the rose peaks at T6 and T9. This finding was 
generally consistent with multiple physiological indica-
tors, such as the lowest chlorophyll and protein content at 
T9 and the highest proline content at T9. POD and MDA 
activities reached peaked at T6. Typically, plant activity 
is inhibited under high-temperature stress, leading to 
suppressed protein and chlorophyll synthesis. Both sub-
stances reached their lowest levels around 9 h after heat 

stress, suggesting that the impact of heat stress on roses 
may be less severe during the early stages or within 9 h of 
continuous heat stress. The accumulation of proline helps 
plants tolerate high-temperature stress [54–56]. In roses, 
the proline content peaked after 9 h of high-temperature 
stress. POD and MDA activity is usually associated with 
a plant’s ability to cope with stress, indicating that roses 
gradually accumulate substances to resist high tempera-
tures during stress responses.

In this study, the enrichment of DEGs and DAMs 
exhibited high similarity. Significant enrichments were 
observed in pathways such as alpha-linolenic acid metab-
olism, flavonoid biosynthesis, phenylpropanoid bio-
synthesis, plant hormone signal transduction, and the 
MAPK signaling pathway, suggesting a strong correla-
tion between DEGs and DAMs. As reported, flavonoids 
have a short-term effect on heat stress in Anoectochilus 
roxburghii [57], and flavonoid accumulation regulation 
through hormones reduces heat stress in rice [58]. In this 
study, the expression of multiple genes during flavonoid 
biosynthesis exhibited a decreasing trend. Similarly, the 
contents of several metabolites (eriodictyol, dihydro-
quercetin, and pinocembrin) in this pathway decreased 
during the early stages of heat stress, consistent with 
gene expression trends. Flavonoids have strong antioxi-
dant activity and can reduce the damage caused by heat 
stress [59–61], which may be beneficial for enhancing 

Fig. 9 The RcHSP70 gene enhance the resistance of Arabidopsis to heat stress. (A) Representative images showed the resistance of Arabidopsis to heat 
stress. (B) qRT-PCR analysis of RcHSP70 expression in WT, OE2, OE3, and OE5 lines. 16 S was used as the reference gene. (C) qRT-PCR analysis of five heat 
response genes in WT and OE2. PIF, phytochrome interacting factor 4; HIP, Hsp70-interacting protein; NCED, 9-cis-epoxycarotenoid dioxygenase; APX, 
ascorbate peroxidase 6. Values are means ± SD of three technical replicates. *, P < 0.05; **, P < 0.01
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heat tolerance in roses by increasing the expression of 
genes in the flavonoid biosynthesis pathway and thus the 
metabolite content of the pathway.

In addition, plant hormones and MAPK signaling are 
involved in various stress responses [62–66]. The MAPK 
pathway responds to pathogen infection and plays a cru-
cial role in the regulation of plant hormones, cold, salt, 
drought, and wounding [65, 66]. In this study, plant hor-
mones and MAPK signaling were significantly enriched 
after high-temperature stress, indicating that heat stress 
may share common pathways with multiple abiotic 
stresses. In particular, regulatory pathways involving jas-
monic acid and ethylene exhibited different expression 
patterns. Multiple genes in the jasmonic acid pathway 
tended to decrease in expression after high-temperature 
stress, whereas genes in the ethylene pathway did the 
opposite. Although both pathways are involved in defense 
responses, further research is needed to determine 
whether gene expression changes are due to heat stress 
induction or resistance responses. Jasmonic acid accumu-
lation improves heat tolerance in plants, and increased 
ethylene content tends to promote plant senescence [67–
69]. The results of this study revealed that increasing the 
expression of genes in the jasmonic acid pathway, such as 
MKK3, MPK6, and VSP2, and decreasing the expression 
of RAN1, ETR, and ChiB in the ethylene pathway may be 
beneficial for improving heat tolerance in roses. In addi-
tion, pos DAMs were significantly enriched in ABC trans-
porters, which are mainly involved in the transport of 
some metabolites. Although the ABC transporter Pdr18 
was found to be required for thermotolerance in yeast 
[70], whether ABC transporters are involved in thermo-
tolerance in plant need further research.

HSP70s are crucial response proteins and markers for 
detecting heat stress in plants [6, 71, 72]. HSP70s are 
diverse and possess the important function of restoring 
proteins denatured due to heat stress to their undena-
tured states [7]. Therefore, the high expression and con-
stitutive presence of HSP70s in plants imparts potential 
for the timely restoration of denatured proteins. HSP70s 
participate in heat stress response processes in a variety 
of plant species, such as Arabidopsis, rice, and jujube 
[73–77]. An RcHSP70 homolog has been cloned into 
heat-tolerant Chinese rose varieties [78]. In R.  hybrida, 
HSP70s are a large family that may cause differences in 
the responses to heat tolerance in different varieties. In 
this study, we heterologously overexpressed a selected 
HSP70 protein from the “Francois Rabelais” rose variety 
of Arabidopsis thaliana, and the results confirmed that 
overexpression of RcHSP70 confers a significant advan-
tage to Arabidopsis plants in terms of resisting high-tem-
perature stress. In addition, HIP cooperates with HSP70 
to facilitate protein folding and prevent aggregation [79]. 
The expression level of HIP was significantly increased 

in OE2 Arabidopsis plants, suggesting that HIP interact 
with RcHSP70. NCED was positively regulated in rice 
and Arabidopsis under heat and drought stress [80, 81]. 
However, NCED expression was significantly lower in 
OE2 Arabidopsis than in WT plants after 0.5  h of heat 
stress treatment. The expression levels of PIF and APX 
were upregulated after heat stress treatment, but there 
was no significant difference between WT and OE2 
Arabidopsis plants [82, 83]. These results suggest that 
RcHSP70 contributes to the response to high-temper-
ature stress and participates in high-temperature toler-
ance in Arabidopsis.

Conclusions
This study examined genetic and biochemical changes 
in rose plants at five time points after heat stress. Based 
on transcriptomic and metabolomic analyses in four 
comparison groups, we identified 4,652 potential DEGs 
and 57 DAMs. These DEGs and DAMs were found to be 
enriched in several pathways, including phenylpropanoid 
biosynthesis, MAPK signaling, and alpha-linolenic acid 
metabolism. Flavonoids and plant hormones play cru-
cial roles in enhancing the resistance of rose plants to 
heat stress. In addition, RcHSP70 decreased the timely 
response to high temperatures in Arabidopsis. Our find-
ings provide insights into the response of rose plants 
to high temperatures and can serve as a foundation to 
improve their resistance to heat stress.
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