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Abstract
Background  In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties 
influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs 
and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across 
eukaryotes remains limited.

Results  In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and 
characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated 
data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a 
range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of 
RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis 
and translation across these species. However, the cohort of modified transcripts changed based on environmental 
context and developmental program, a pattern that was also conserved across flowering plants. We determined that 
RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes 
receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are 
significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, 
we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein 
abundance, and thus likely associated with facilitating translation.

Conclusions  Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant 
lineage.
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Background
There are over 100 RNA covalent modifications (RCMs) 
that are deposited on all classes of RNAs at various 
stages of their lifecycle [1]. RCMs, collectively referred 
to as the “epitranscriptome” [2, 3] are known to influence 
RNA stability, splicing, structure, intra- and intermo-
lecular interactions, and translation [4–9]. While most 
RCMs have been observed on ribosomal and transfer 
RNAs, they have also been observed on messenger RNAs 
(mRNAs) and long non-coding RNAs (lncRNAs), albeit 
at lower levels [4, 8, 10]. Although pseudouridine is the 
most abundant modification among all classes of RNA 
[10], N6-methyladenosine (m6A) is the most abundant 
internal mRNA RCM targeting approximately 30% of all 
mRNAs and is present at ∼ 0.4% of all adenosine nucleo-
tides in cellular RNAs [11, 12]. Additional internal RCMs, 
such as pseudouridine, N1-methyladenosine (m1A), and 
5-methylcytidine (m5C), have been observed on mRNAs 
in a number of eukaryotic systems, although their func-
tional significance on these RNA molecules is not always 
clear [13–15].

Much of what we do know about the epitranscriptome 
is drawn from studies on m6A in mammalian and plant 
systems, but can likely be applied to many of the other 
modification classes. With the notable exception of pseu-
douridine, which results from the isomerization of uri-
dine [16–19], RCMs are deposited through the enzymatic 
activity of highly conserved proteins called writers (e.g., 
methyltransferases), “interpreted”, or bound, by RNA 
binding proteins called readers, and removed by eraser 
enzymes (e.g., demethylases) [5, 20–22]. Arabidopsis and 
mammals have a similar m6A frequency across the tran-
scriptome (∼ 1 m6A per 2000 nucleotides), which is tar-
geted to a similar consensus motif RRACH (R = G or A; 
H = U, A, or C), and has a similar 3’ mRNA bias around 
the stop codon [11, 23]. In plants and mammals, pseu-
douridine has been found to localize primarily to the 
CDS and 5’ UTR of mRNAs, is deposited on a wide array 
of mRNAs, and prefers the first U of a triplet codon (e.g., 
UUC/UCU/UUU) [17]. Motif preferences for m5C can 
vary depending on the methyltransferase involved, but 
in humans are generally found on C/G rich regions of 
mRNAs [24]. While less is known about binding prefer-
ences of the other predominant RCMs, such as m1A and 
m3C, aberrant addition (or removal) has been observed 
as a hallmark for tumorigenesis [25, 26]. Importantly, 
loss of many of the writers, readers, and erasers for these 
RCMs is lethal or causes severe developmental defects in 
all tested systems [14, 27–30].

RCMs function through a variety of molecular mecha-
nisms to regulate mRNA stability, structure, and splic-
ing. RCMs induce changes in base-pairing properties and 
higher order structure, ostensibly allowing for increased 
flexibility in interactors, translational capacity, and 

structure-associated stabilization [31]. There is a close 
association between splicing and m6A deposition [23, 
32], with recent studies revealing that m6A is specifically 
excluded from splice junctions due to physical occlusion 
by the exon junction complex, a process that ultimately 
impacts cytoplasmic mRNA decay [33, 34]. Pseudouri-
dine has also been implicated in mRNA splicing, stability, 
and translational efficiency [17, 35, 36], as well as the sta-
bility and maturation of lncRNAs such as the telomerase 
RNA [37, 38]. Other modifications, such as m1A, m3C, 
and m5C are also believed to be important for mRNA sta-
bility, mostly due to phenotypes associated with loss of 
function mutants in their associated writer proteins [25, 
35, 39, 40]. Thus, RCMs are both a ubiquitous and criti-
cal aspect of an RNA’s lifecycle, but specific mechanistic 
details for many of them are still lacking.

Given the high frequency with which essential RNAs 
such as rRNAs, tRNAs and snoRNAs are modified, it has 
historically been difficult to use genetic approaches to 
monitor the RCM status of mRNAs and lncRNAs. As a 
result, most studies have relied either on transcriptome-
wide antibody-based (m6A), or modification-specific 
chemical-genomic approaches (e.g., bisulfite sequencing 
for m5C; [7, 10, 41, 42]). An alternative sequencing-based 
approach relies on the propensity for RCMs that occur 
at the interface between the canonical base-pairing edge 
(i.e., the Watson-Crick-Franklin, or WCF base-pairing 
edge) to be misidentified by reverse transcriptases during 
the cDNA synthesis step [43–47]. This misidentification 
results in non-random misincorporations or deletions at 
modified residues. Multiple algorithms, including HAMR 
and ModTect [15, 44], have been developed to infer 
modification status, and class, based on these “sequenc-
ing errors”. While this approach cannot detect RCMs 
outside of the WCF base-pairing edge, over 30 modifica-
tion types can be identified, including m1A, pseudouri-
dine, m3C, and m5C [15, 44, 48, 49]. Importantly, where 
there is overlap (such as for m5C, m3C, and m1A), the 
antibody, chemical-genomic, and sequencing error-based 
approaches are largely in agreement [14, 15]. Inferring 
modification status via HAMR or ModTect allows both 
for the repurposing of existing RNA-seq data, of which 
there are petabases available in NCBI’s SRA [50], and the 
side-by-side calculation of modification and transcript 
abundance.

Here we utilized both HAMR and ModTect to ana-
lyze new and publicly available RNA-seq in Arabidopsis 
and three agronomically important and closely related 
grasses: Sorghum bicolor, Zea mays, and Setaria italica. 
We used these diverse stress, tissue-atlas, and develop-
mental datasets in an attempt to better understand what 
some of these less characterized RCMs might be doing 
in plants and how they might be conserved, both func-
tionally and in terms of their target genes. We present 
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an in-depth comparative assessment of RCM dynam-
ics across these plant species and uncover new insights 
into RNA splicing, RNA stability, and plant responses 
to stress. We demonstrate a level of conservation of tar-
get genes previously unseen for RCMs, and reveal that 
RCMs may participate in population-level variation 
in stress responses. Mechanistically, we identify a link 
between splicing and RCMs that is present in all exam-
ined systems. Finally, through the analysis of RNA decay 
pathways in Arabidopsis, we establish that RCMs are 
associated with unusually stable mRNAs, an aspect that 
may facilitate their continued translation, as we observe 
a link between modification state and protein abundance.

Results
Identification of post-transcriptional RNA modifications in 
three poaceae
To determine the degree to which the epitranscriptome is 
conserved at a gene level, we performed poly-A enriched 
RNA-sequencing on soil grown seedlings of Zea mays, 
Sorghum bicolor, and Setaria italica (Maize, Sorghum, 
and Setaria, respectively, going forward) two weeks after 
germination. Paired-end, 150 base-pair RNA-sequencing 
was performed on aboveground tissue for two biologi-
cal replicates (∼ 20  million reads per replicate; Fig.  1A). 
Following read mapping, modified sites were inferred 
using HAMR and ModTect (see Methods). Both of these 
algorithms take advantage of the propensity for certain 
reverse transcriptases to misinterpret ribonucleotides 
that are modified along the canonical base-pairing edge, 
and as a result, arrest, skip over the RCM, or incorporate 
non-reference nucleotides (i.e., SNPs) in the synthesized 
cDNA [51]. This misincorporation is non-random, and 
both HAMR and ModTect use the resulting population 
of SNPs to infer modification class. Importantly, both 
HAMR and ModTect disregard biallelic SNPs that could 
arise from natural variation, and instead focus on high 
coverage sites with all three non-reference nucleotides 
observed (HAMR) or incorporate information about 
both mismatches and deletions at the modified residue 
(ModTect). RNA-seq data were fed into both algorithms 
and sites that were predicted by both algorithms and 
both replicates were retained for subsequent analyses as 
high confidence RCMs. From this approach, 5,434-7,020 
unique RCMs were identified in 1,944-2,542 transcripts 
in the three species (Fig. 1B, C, Additional File 1). These 
modifications represent the seven major classes detected 
by HAMR, with the m1A|m1I|ms2i6A class being the 
most common in all three species (approximately 33% 
of all identified RCMs; Fig. S1A). An examination of 
sequencing data across modified transcripts reveals a 
drop in coverage at the modification site, coinciding 
with a previously observed RT-arrest (Fig. S1B; [52]). 
Additionally, we find that mRNAs marked by RCMs are 

present at a substantially higher abundance relative to 
non-modified mRNAs (modified median TPM = 78.5, 
n = 2521 mRNAs, not modified median TPM = 10.2, 
n = 16,537, p < 2.2e-16, Fig. S1 E). Enriched gene ontology 
terms of modified RNAs in each Poaceae demonstrates 
significant over-representation in photosynthesis and 
cytoplasmic translation pathways (Fig.  1D). These data 
suggest that RCMs are targeted to conserved cohorts of 
photosynthesis and translation-associated RNAs in these 
grass seedlings.

To determine if the conservation of RCM deposition 
goes beyond functional pathway and extends to the genes 
themselves, we next examined if RCMs are found on 
transcripts derived from orthologous genes using both 
sequence homology and synteny. Of the 1,912 possible 
modified orthologs (the smallest observed number of 
modified genes in Setaria), we observed 1,074 modified 
orthologs in one or both of the other species, and 474 
orthologs that were modified in all three. This is signifi-
cantly more orthologs than expected by chance, account-
ing for the number of annotated and expressed orthologs 
(p < 2.2e-16 multi-set hypergeometric test, Fig. S1C). We 
then assessed whether orthologous mRNAs are marked 
by a similar number of RCMs across species, allowing 
us to understand whether the RCM density of the tar-
geted RNA is a conserved feature. Indeed, for all three 
combinations of comparisons between two sampled spe-
cies, there is a significant positive relationship between 
the number of RCMs deposited on orthologous mRNAs 
(Sorghum: Maize r = .39, Sorghum: Setaria r = .43, Setaria: 
Maize: r = .32, p < 2.2e-16, Fig. S1D). These findings fur-
ther demonstrate that the targeting and density of RCM 
deposition are conserved features in the sampled Grasses.

RCMs are dynamically deposited on mRNAs based on 
tissue and abiotic stress
Our previous analyses were limited to a single develop-
mental time point across three species. Previous reports 
[14, 30, 53] suggest that RCMs may play important roles 
in post-transcriptional RNA regulation and thus would 
be dynamically deposited across development or environ-
mental changes. Therefore, we chose to examine RCMs 
across diverse tissues and environmental contexts using 
RNA-seq from publicly available datasets [54–56]. We 
focused our efforts on Sorghum, first identifying RCMs 
in a large-scale tissue expression atlas by McCormick 
and co-authors [55] containing 137 sequencing samples 
across 48 tissues/stages/conditions (see Methods). From 
these data we identified 266,710 modifications on 6,805 
unique transcripts, representing 19.3% of the expressed 
(TPM > = 1) Sorghum transcriptome. To determine 
whether the same repertoire of transcripts are being tar-
geted with RCMs as our seedling data from Fig. 1, or if 
our data were biased towards identifying a distinct subset 
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Fig. 1  RCM identification in three model Grasses. (A) Schematic of experimental design. Left and middle: Two biological replicates of grass seedlings 
from each species at a similar developmental timepoint were used to generate paired-end RNA-seq libraries. Right: Depiction of RCMs causing errors in 
reverse transcriptase nucleotide incorporation. Different modifications will result in a non-random pattern of SNPs or deletions at the modified site in the 
resulting cDNA. Machine Learning algorithms such as HAMR and ModTect can infer the modification class based on these errors. (B) Venn diagram show-
ing the overlap of modified sites in the Sorghum transcriptome between biological replicates and two RCM detection algorithms. The union of all four 
categories (n = 7020) was kept for downstream analyses. (C) Summarizing the number of modified sites and number of modified transcripts in all three 
sampled Grasses. (D) Enriched GO terms of the modified RNAs in (C)
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of RNAs, we compared the modified RNAs in each data-
set. We found 1,813 of the 2,542 modified Sorghum seed-
ling mRNAs are also modified in the McCormick et al., 
tissue expression atlas. This overlap is substantially more 

than expected by chance (p < 2.2e-16, Fig. S2 A) and likely 
reflects similarity in molecular processes within tissues 
examined.

Fig. 2 (See legend on next page.)
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We next aimed to characterize the tissue specificity 
of RCMs in the McCormick Sorghum tissue expression 
atlas. Using a modified calculation for Tau, a value typi-
cally used to calculate tissue specificity based on RNA 
abundance [57], we observed that most transcripts were 
modified in a very context-specific manner (Fig. S2B). 
The transcripts with the lowest Tau value, and therefore 
modified under the broadest context, were mostly asso-
ciated with core cellular processes such as translation, 
whereas those transcripts modified in the most specific 
context were associated with mRNA maturation and 
abiotic stress responses (Fig. S2C, D). We also clustered 
transcripts based on the tissue type in which they were 
modified, the number of modifications identified, and the 
average number of modifications per transcript (Fig. 2A). 
In our analysis we observed a strong clustering based on 
tissue similarity, with seed and roots being notable excep-
tions. We find a strong bias for RCMs in this dataset 
towards root samples where both the number of RCMs 
and number of mRNA targets is substantially higher than 
other tissues (Fig.  2A and Fig. S2E). In contrast, seeds 
displayed the fewest number of modified transcripts, but 
the average number of modifications per transcript was 
very similar to that seen in leaf and root tissues where 
the number of modified sites and transcripts were much 
higher (Fig.  2A). We observed a large number of tran-
scripts that are modified in all tissues (n = 851; Fig. 2B and 
Fig. S3 A), highlighting the existence of a core repertoire 
of RCM-targeted mRNAs. As expected, based on their 
presence across a broad tissue and developmental con-
text, these mRNAs are enriched for terms associated with 
cytoplasmic mRNA translation (Fig.  S3 B). However, the 
majority of transcripts were more restricted in terms of 
the tissue or developmental context under which they 
were modified and were enriched for more specialized 
GO terms. For instance, root-specific modified mRNAs 
were enriched for rhizosphere-associated terms [58] such 
as oxidation management, generic methylation, and aro-
matic compound biosynthesis (Fig.  S3 C). Leaf-specific 
modified mRNAs were enriched for photosynthetic 
terms, whereas seed-specific mRNAs were enriched for 
lipid storage, ABA response, and cold acclimation terms 

(Fig.  S3 D, E). Importantly, the observed increase in 
context-specific modifications was not simply due to dif-
ferences in the most abundant transcripts in each tissue. 
Indeed, we observed a low (although positive, r = .34) cor-
relation between RNA abundance and modification levels 
(Fig. 2C; top) in the Sorghum tissue atlas. Thus, although 
there is a core set of modified Sorghum transcripts, most 
are targeted for RCMs in a context- or developmentally-
specific manner.

The conservation of RCMs on orthologous genes in our 
grass seedling data suggest that the developmental and 
tissue contexts under which these marks are deposited 
might also be conserved. To address this contextual con-
servation, we examined RCMs in two publicly available 
Arabidopsis thaliana tissue atlases [54, 56]. Both atlases 
examined similar developmental stages, but did so under 
slightly different conditions (e.g., constant light and ster-
ile MS media for Mergner et al. [54] vs. cycling light 
and soil for Klepikova et al. [56]). Importantly, while the 
Klepikova tissue atlas is primarily used by the commu-
nity to examine transcript abundance in the Arabidopsis 
EFP browser [59], the work by Mergner et al. performed 
a paired assessment of transcript and protein abundance, 
which we used to examine the relationship between 
modifications and translation (see below). Due to differ-
ences in experimental design, we analyzed each of these 
atlases separately. A full breakdown of examined tissues, 
as well as total number of modifications identified, can 
be found in Additional File 2. Like Sorghum, clustering 
of Arabidopsis tissues by RCM density placed similar tis-
sues together (Mergner et al.: Fig. S4A,B, Klepikova et 
al.: Fig. S5A, B). While Arabidopsis root tissues did not 
display a significantly elevated level of RCMs as in Sor-
ghum, Arabidopsis seed transcripts had a reduced pool 
of very highly modified transcripts in both atlases. Simi-
lar to our observations in Sorghum, the seed-specific 
modified transcripts were enriched for lipid, nutrient, 
and ABA-response terms (Fig. S6A, B, C, D). Thus, as in 
Sorghum, the Arabidopsis epitranscriptome is diverse, 
highly context-specific, and appears to be associated with 
transcripts critical for cellular function.

(See figure on previous page.)
Fig. 2  RCM dynamics across development and during stress. (A) Summary of RCM findings from re-analysis of Sorghum tissue expression atlas [55]. 
Hierarchical clustering using the number of RCMs per transcripts as input. For ease of viewing, branches were collapsed based on tissue and modification 
similarity. See Fig. S2E for un-collapsed tree. Tree tip labels denote the broad tissue category with the number after the tissue representing the number of 
SRAs used to summarize that broad tissue. Modified sites: Boxplots showing the total number of RCMs per SRA in each broad tissue category. Modified 
RNAs: The total number of modified RNAs (genes) per SRA in each tissue category. Modifications per RNA: The RCM density per RNA per SRA in each 
broad tissue category. (B) Upset plot quantifying the shared modified RNAs across the broad tissue categories in (A). (C) RCM-RNA abundance correlation 
distribution of all modified RNAs across the McCormick et al. tissue expression atlas [55] and the Varoquaux et al. [66] Sorghum drought experiment. The 
dashed red line shows the mean Pearson Correlation Coefficient of each experiment (r = .34 Tissue, r = .18 Drought). (D) Heatmap of RNA abundance and 
RCM changes in Varoquaux et al. re-analysis. Each row is a modified RNA that has been filtered for RNA abundance variability (see methods). Rows were 
clustered based on their abundance and RCM density values. The heatmap was grouped into four distinct clusters (C1-C4, n – values for each cluster 
shown) using k-means. SC = drought susceptible control, SD = drought susceptible treatment, TC = drought tolerant control, TD = drought tolerant treat-
ment. At the time point analyzed, the drought susceptible genotype is RTx430 and the tolerant genotype is BTx642. (E) Enriched GO terms of the modified 
RNAs in each of the four clusters in (D)
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Given the similar patterns of RCM abundance in Sor-
ghum and Arabidopsis, we next examined whether 
orthologous mRNAs between Sorghum and Arabidopsis, 
which last shared a common ancestor ∼ 150–250  mil-
lion years ago [60], are targeted by RCMs. While we 
identified fewer mRNA targets of RCMs in both Arabi-
dopsis expression atlases relative to the Sorghum expres-
sion atlas (Mergner: 1,324, Klepikova: 2,495 vs. 6,845 in 
McCormick Sorghum), the number of modified orthol-
ogous mRNAs (658 Mergner vs. McCormick; 1,180 
Klepikova vs. McCormick) was significantly more than 
expected by chance for all possible mRNA combinations 
(Fig. S6E, F, p  = .001 Hypergeometric test). We conclude 
that this class of RCMs target an ancient conserved rep-
ertoire of translation and photosynthetic related mRNAs.

Given the developmental differences in RCM depo-
sition in both Sorghum and Arabidopsis, as well as 
reports associating RNA modifications with plant stress 
responses [9, 14, 61–65], we next determined if RCMs are 
associated with drought stress in Sorghum. We utilized 
a publicly available field-grown Sorghum transcriptome 
dataset that sampled well-watered and water-limited 
(i.e., drought treatment) Sorghum leaves and roots from 
drought tolerant and susceptible genotypes across weekly 
timepoints [66]. We focused on a post-flowering time 
point (week 10) where one genotype (BTx642) is consid-
ered drought tolerant and the other genotype (RTx430) 
is drought susceptible. Counterintuitively, we observed a 
shift towards a more negative correlation between RNA 
and RCM abundance during drought stress relative to 
the Sorghum tissue atlas (Fig.  2C, bottom). A heatmap 
comparing transcript and RCM abundance of the top 
50% most variably expressed and modified root tran-
scripts (n = 878) between the two genotypes and treat-
ments clustered into four groups (Fig. 2D). One of these 
clusters (Cluster 3) showed similar increases in transcript 
abundance levels between the two genotypes under water 
limiting conditions but showed an increase in RCMs spe-
cifically in the drought tolerant genotype (Fig.  2D). An 
examination of enriched GO terms revealed that Clus-
ter 3 contained both heat shock proteins as well as water 
transport proteins (Fig.  2E), suggesting that RCMs may 
be associated with the drought response in the tolerant 
genotype.

RCMs accumulate near exon-exon junctions and are 
associated with splicing events
Thus far we have observed an association between RCMs 
and plant developmental and environmental transcrip-
tional responses. To gain functional insight into RCMs, 
we analyzed their accumulation and distribution across 
mRNA topologies using our seedling RNA-seq data for 
all three species. RCMs were enriched across the CDS, 
with a bias towards the 3’ CDS, and in the 3’ UTR of 

mRNAs (Fig. 3A). Like m6A [23], we also observed that 
RCMs are biased towards being deposited on abnormally 
long exons (median length of modified exons = 361 nts, 
median unmodified = 147 nts, median all exons = 148 nts, 
Fig. 3B, p < 2.2e-16). Additionally, we observed a signifi-
cantly higher proportion of expressed transcripts that 
are multi-exonic being targeted by RCMs, relative to 
mono-exonic transcripts (∼ 11–14% vs ∼ 5–8%, Fig.  3C, 
p < 7.1e-15). This was also the case for long non-coding 
RNAs (lncRNAs) where 4.8% of mono-exonic lncRNAs 
are marked by RCMs (17/355) and 8.4% of multi-exonic 
lncRNAs are targeted by RCMs (59/704, p = .044; Fig. 
S7A). A closer examination of distinguishing CDS fea-
tures uncovered a dramatic buildup of RCMs on both 5’ 
and 3’ edges of exon-exon junctions (EJs) relative to start 
and stop codons (Fig. 3D). Thus, these data suggest that 
RCMs likely play a role in the regulation of RNA splicing 
on diverse transcript types.

This observation of RCMs preferentially occurring at 
EJs was initially made by Vandivier et al [14] on degrad-
ing mRNAs, whereas degrading mRNAs likely make up 
a small proportion of our dataset. Thus, these findings 
suggest a steady-state RCM enrichment at mRNA EJs. 
A transcriptome-wide 3’ bias was observed for these EJ-
enriched RCMs (Fig.  3E). This terminal EJ enrichment 
was not due to 3’ sequencing bias that is often observed 
in poly-A enriched transcriptome datasets (Fig. S7B, C, 
D). Interestingly, genes that express multiple isoforms are 
more likely to be modified than single isoform transcripts 
with similar numbers of exons (Fig. 3F, p < 2.2e-16). How-
ever, we observe no significant difference in the buildup 
of modified sites at alternatively spliced junctions vs 
canonical splice sites (Fig. S8, see Methods). These data 
suggest that the increase in modification frequency at 
genes with more isoforms is likely due to the presence of 
more exon junctions. Thus, RCMs appear to be positively 
associated with splicing in plants.

RCMs are positively associated with stable and translating 
mRNAs
Because Mergner et al. [54] measured RNA and protein 
abundances from matched Arabidopsis samples they 
were able to correlate RNA: protein abundances across 
their samples. Therefore, we examined whether mRNAs 
marked with RCMs displayed a higher or lower RNA: 
protein correlation. A difference in RNA: protein correla-
tion could suggest a RCM function in RNA stability and/
or translation efficiency. mRNAs that are not marked 
with RCMs across the Mergner et al. atlas showed 
a lower median RNA: protein correlation (n = 3,361, 
r = .68) compared to RCM marked mRNAs which showed 
a significantly higher RNA: protein correlation (n = 332, 
r > = 0.758, p < .05, Fig. S9A). Due to this positive correla-
tion between transcripts harboring base-pair disrupting 
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modifications and their translation products, it is pos-
sible that these RCMs are positively influencing trans-
lation, either by reducing structural complexity or by 
stabilizing these transcripts.

To test for a relationship between RCMs and mRNA 
decay, we first examined publicly available transcriptomic 
data from Arabidopsis lines deficient in cytoplasmic 
mRNA decay pathways [67] by Sorenson and co-authors. 
Cytoplasmic mRNAs usually decay through three path-
ways: decapping (5’ -> 3’), the RNA exosome (3’ -> 5’), or 
an exosome independent 3’ -> 5’ decay pathway. Decap-
ping occurs through a multi-subunit complex that is scaf-
folded by VARICOSE in plants and metazoans (VCS, 
[68]). Meanwhile, the exosome independent 3’ -> 5’ decay 
pathways occurs through SUPPRESSOR OF VARICOSE 
(SOV), which contributes to the decay of decapped RNAs 
and is also known as DIS3L2 in other Eukaryotes [69–71]. 
Sorenson et al took an RNA-seq approach to examine 
mRNA decay dynamics following transcriptional arrest 
(via cordycepin) in four Arabidopsis genotypes that vary 
in their cytoplasmic mRNA decay factors (wild-type, sov 
knockout, vcs knockout, and sov/vcs double knockout). If 
RCMs are primarily marking mRNAs for degradation (as 

initially suggested by Vandivier et al [14]), then a buildup 
should be observed after transcriptional arrest in genetic 
backgrounds deficient for mRNA decay.

The majority of modified transcripts at the begin-
ning and end of the time series were mRNAs (Fig.  4A). 
As expected from arresting transcription, each geno-
type, with the exception of the sov/vcs double mutant, 
displayed a ∼ 25–50% decrease in the total number 
of observable protein-coding transcripts eight hours 
post-treatment (see Methods; Fig. S9B). The number of 
observed RCMs increased in all genotypes after arresting 
transcription, as did the proportion of modified mRNAs 
(Fig.  4B and Fig. S9C), suggesting two possibilities: 1) 
that modification abundance increases with transcript 
age, or 2) that non-modified transcripts are degraded 
more quickly leading to a higher proportion of tran-
scripts detectable over time containing RCMs.

To more directly test the association of RCMs with 
RNA degradation, we analyzed whether the pool of 
transcripts that are modified at time point 0 were still 
detectable and modified at subsequent time points. 
Surprisingly, mRNAs modified at time point 0 were 
nearly all detectable 8  h after transcription arrest while 

Fig. 3  RCMs accumulate at exon-exon junctions and are associated with splicing. (A) Metagene plot showing the genic distribution of grass RCMs iden-
tified in Fig. 1. Ten nucleotide windows are plotted where the signal is the sum of RCMs in that window and plotted as density. (B) Density distribution 
of exon lengths for RCM marked exons vs exons not marked by RCMs. (Student’s t-test, p < 2.2e-16). (C) Proportion of expressed transcripts that receive 
RCMs in grass seedlings between mono-exonic and multi-exonic transcripts. Multi-exonic transcripts are significantly more likely to be modified than 
mono-exonic (Chi-squared test, all p-values < 7.1e-15). (D) Density of Sorghum seedling RCMs at start codons, stop codons, and 5’/3 exon-exon junctions. 
Density curves are plotted over a density histogram, both using a two-nucleotide window. The dotted line represents the first nucleotide of the start 
and stop codon, and the first nucleotide of the intron for 5’/3’ exon junction panels. (E) Histogram quantifying the number of Sorghum seedling RCMs 
accumulating at terminal exon-exon junctions vs the first exon-exon junction. (F) Box Plot and dot plot overlaid quantifying the proportion of RNAs that 
are marked by RCMs or not in each SRAs in the McCormick et al Sorghum tissue expression atlas. The x-axis splits the data by the number of isoforms a 
gene is expressing. RCM proportion increases as the number of isoforms expressed increases (p < 2.2e-16 one-way ANOVA)

 



Page 9 of 14Palos et al. BMC Plant Biology          (2024) 24:768 

Fig. 4  RCMs mark mRNAs that degrade slowly. (A) Reanalysis of Sorenson et al. 2018 Arabidopsis dataset [67]. Distribution of Arabidopsis gene types that 
receive RCMs at time point 0 and 8 h after arresting transcription. tRNA = transfer RNA, sn/snoRNA = small nuclear/small nucleolar RNA, rRNA = ribosomal 
RNA, mRNA = messenger RNA, lncRNA = long noncoding RNA. (B) Number of Arabidopsis RCMs predicted at each time point after arresting transcription 
and in each RNA degradation genotype. (C) Change in number of detectable RNAs over time after arresting transcription. Solid lines represent mRNAs 
that have a RCM at time point 0 while dashed lines represent mRNAs that have no RCMs at any time point. Expressed genes are those that have a nor-
malized expression value > = 1 (see methods). (D) Comparing RNA abundance change after transcription arrest at each time point. Red boxplots (left 
grouping) are mRNAs with an RCM at time point 0, blue boxplots (right group) are mRNAs that have no RCMs at any time point. Comparisons at time 
points 7, 15, and 30, p > .05, all time points starting at 60 min and afterwards, p < .001 by one-way ANOVA. (E) Boxplot showing the distribution of ɑ-decay 
rates between RCM marked mRNAs at time point 0 and mRNAs that have no RCMs at any time point. (F) Modified figure from Sorenson et al. 2018 Fig. 1C 
showing the number of mRNAs that belong to different decay categories. Categories 1–14 are inconsequential for our conclusions. Group 15 represents 
genotype independent decay, (decay rates are not affected by the genotypes in the Sorenson et al. study). This category may represent targets of the 
exosome. * P-value between modified/never modified for Group 15 calculated by Chi-squared test
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mRNAs that were not modified at time point 0 declined 
by more than 40% (Fig.  4C). These results indicate that 
RCMs mark mRNAs which degrade slower than the 
entire mRNA pool. Indeed, mRNAs that are not tar-
geted by RCMs show a significantly larger magnitude of 
TPM decrease relative to mRNAs marked with RCMs at 
time point 0 (Fig. 4D). These results strongly suggest that 
RCM marked mRNAs degrade at a slower rate relative to 
mRNAs that are not marked by RCMs.

Sorenson et al. also modeled the initial decay rate of all 
mRNAs (alpha decay rate) based on read abundance after 
transcription arrest. Based on these values, mRNAs that 
are modified at time point 0 in wild-type show a signifi-
cantly lower (slower) alpha decay rate relative to all other 
mRNAs (Fig.  4E). Sorenson et al. used the decay rates 
across genotypes to assign mRNAs to genotype-depen-
dent RNA degradation pathways (Fig.  4F x-axis groups 
1–14, see Fig. 1C from Sorenson et al.). For mRNAs that 
could not be assigned to the VARICOSE or SOV degra-
dation pathways, Sorenson et al. hypothesized that they 
were likely targets of the RNA exosome (x-axis group 15; 
Fig. 4F). Interestingly, modified mRNAs are significantly 
biased towards being assigned to this group and thus 
are likely targets of the RNA exosome (Fig.  4F p < 2.2e-
16, Pearson’s Chi-squared test). While the importance 
of RCMs on rRNAs and tRNA stability and function has 
been known for decades, based on these data, we would 
argue that the HAMR/ModTect class of RCMs appear to 
be marks of Pol-II transcript stability, rather than marks 
of degradation.

RCMs are not associated with nonsense-mediated mRNA 
decay
To further investigate whether RCM marked mRNAs 
have an association with RNA degradation pathways, we 
next turned our focus to the Nonsense Mediated mRNA 
Decay (NMD) pathway. NMD is responsible for degrad-
ing aberrant mRNAs that have a premature termination 
codon. This is often recognized as a termination codon 
upstream of the exon junction complex (EJC, [72]). Given 
the accumulation of RCMs at exon-exon junctions and 
the recent report of RNA degradation intermediates 
accumulating near exon-exon junctions [73], we tested 
whether modified mRNAs were likely targets of NMD. 
SUPPRESSOR OF MORPHOLOGICAL DEFECTS ON 
GENITALIA7 (SMG7) is a critical component of early 
NMD signaling in most Eukaryotes [74]. Gloggnitzer and 
co-authors [75] performed RNA-seq in Arabidopsis with 
a loss-of-function smg7 mutant in a genetic background 
avoiding the strong autoimmune response of knock-
ing out NMD (pad4; [75]). We re-processed the RNA-
seq data generated by Gloggnitzer et al. and identified 
RCMs from their data. The up-regulated mRNAs in the 
smg7 genotype represent both direct and indirect targets 

of NMD silencing. We observed strong statistical evi-
dence that NMD targets are actually under-represented 
(that is, depleted) from mRNAs containing RCMs (5,275 
mRNAs containing RCMs, 656 up-regulated mRNAs in 
smg7, overlap = 103, p < 2.2e-16, Fig. S10). Furthermore, 
we identify no significant differences in RCM distribution 
at exon-exon junctions between pad4 and smg7-pad4 
RCMs (Fig. S10B, p = .986), or between smg7 RCMs in 
mRNAs up-regulated in smg7 vs. those not differentially 
abundant in smg7 (Fig. S10C, p = .144). In agreement with 
the smg7 results which examined a single tissue, there is 
no significant overlap between predicted NMD targets 
and the RCMs identified in the Mergner et al. tissue atlas 
(Fig. S10D, p = .304). Collectively, these results suggest 
RCMs are not associated with the NMD pathway.

Discussion
In this study we used a bioinformatic workflow consist-
ing of HAMR and ModTect [14, 15, 44] to predict RCMs 
in diverse species across the flowering plant lineage in 
order to clarify RCM distribution and putative function 
on mRNAs. Of note, because these algorithms rely on a 
certain minimum depth of expression in order to statisti-
cally call a transcript as being modified, and we tended 
towards a conservative definition of when to call an RCM 
(present at the same site in bio-replicates based on both 
algorithms), making conclusions about low abundance 
transcripts can be problematic. Despite these caveats, 
we observed a substantial number of transcripts whose 
modification status changes along developmental or 
environmental gradients. In perhaps the most exten-
sive comparative analysis to date, we demonstrated that 
the RCMs detected by HAMR and ModTect (e.g., those 
that fall along the WCF base-pairing edge) are found on 
a large, yet contextually discrete set of transcripts. From 
these diverse analyses we believe that a number of con-
clusions can be made that provide lessons as to the func-
tion of RCMs in eukaryotes.

RCMs are not found on all expressed transcripts, nor 
are they always on the most abundant transcripts, sug-
gesting a contextual specificity. Indeed, there appear to 
be two classes of transcripts that receive RCMs in plants. 
There are a core set of transcripts associated with pho-
tosynthesis and cellular metabolism that are modified 
in each tested tissue or developmental context. These 
transcripts tend to be abundantly modified and are the 
targets of all of the major base-pair disrupting modifica-
tions. Due to their critical functions, these genes are con-
served, as is their modification status, across the plant 
lineage. The other class of modified transcripts receive 
RCMs in a more context-specific manner. These tran-
scripts may be expressed in multiple tissues but are gen-
erally targeted by modifications in a more limited subset 
of conditions. Functional enrichment suggests that these 
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transcripts are modified in response to environmental or 
developmental cues.

We observed similar patterns of RCM deposition on all 
transcripts, with a bias towards longer exons and tran-
scripts containing multiple exons. In contrast to m6A, 
these RCMs are enriched at exon splice junctions. Inter-
estingly, while we see an increase in RCM abundance on 
transcripts with multiple isoforms, we see no association 
between RCM status and alternative splicing or intron 
retention, suggesting that modifications are more of 
a general marker of splicing rather than a driver of iso-
form selection. We would propose that these modifica-
tions are deposited on the base-pairing edge of the newly 
transcribed mRNA to reduce structure at exon junctions 
in order to facilitate splicing, whereas m6A is occluded 
from these sites due to its interference with binding of 
the splicing machinery [33, 34]. This model would fur-
ther suggest that, like m6A, these other RCMs are depos-
ited co-transcriptionally and thus their writers should 
appear in complexes with transcriptional and epigenetic 
machinery. In support of this hypothesis, the m5C meth-
yltransferases NSUN3 and DNMT2 are known to inter-
act with hnRNPK for Pol-II recruitment and modulating 
chromatin state in response to stress [76].

Previous work in Arabidopsis comparing RCM abun-
dance in degrading and total mRNA populations found 
evidence for RCMs as a marker for mRNA degradation 
[14] whereas others have suggested that loss of RCMs 
leads to unstable mRNAs [10]. In an attempt to resolve 
these conflicting models, we turned to an elegant time-
series RNA-seq experiment in Arabidopsis examining 
the impacts of mutants in the mRNA decay pathway on 
RNA turnover [67]. We used these data to assess the rela-
tionship between degradation and RCM status. To our 
surprise, we found that RCMs are more likely to mark 
extremely stable mRNAs, rather than those that are rap-
idly degrading. Our finding that most of the RCMs fall 
on transcripts associated with core cellular processes fits 
with the notion that these transcripts would also be more 
stable, a finding reported by Sorenson et al. and others 
[77]. Interestingly, we also observe a positive relationship 
between RCM abundance and protein abundance in the 
Arabidopsis tissue atlas, further suggesting that RCMs, 
as a whole, have a positive influence on mRNA stabil-
ity. Importantly, we cannot definitively say that degrad-
ing RNAs are not marked, just that the RCMs we can 
monitor are enriched on mRNAs with long half-lives. A 
key difference between our work and that of Vandivier et 
al. [14] is in the depth of sequencing, both for the grass 
seedling experiments that we performed and for the 
additional datasets we reprocessed, and so further exami-
nation of the connection between these base-pair dis-
rupting RCMs and RNA degradation is warranted.

Conclusions
In this work, we used a comparative transcriptomic 
approach to better understand the conservation and 
function of a poorly studied class of RNA modifications. 
Grass seedlings contained similar cohorts of modified 
transcripts, a finding that spurred us to look in other 
datasets that incorporated additional stress or develop-
mental timepoints in both Sorghum and Arabidopsis. 
Again, we observed a conserved, core set of modified 
transcripts, but these expanded datapoints allowed us 
to uncover context specificity to the epitranscriptome, 
suggesting that some, but not all, transcripts are modi-
fied at key steps in their functional lifecycle. Attempts to 
better understand function of these base pair disrupting 
modifications revealed that they are likely important for 
splicing, translation, and intriguingly, for RNA stability. 
Similarities across the Angiosperm lineage, along with 
supporting literature in metazoans, suggests that these 
modifications, like m6A, are a deeply conserved aspect of 
RNA biology for which we still know very little.

Methods
Plant growth
Seed from Zea mays (acc. B73), Sorghum bicolor (acc. 
BTx642), and Setaria italica (acc. Yugu1) were sown 
onto damp soil approximately 2  cm below the surface, 
and stratified for one week in the dark at 4 °C. Seeds were 
then transferred to a growth cabinet with lights config-
ured to a long-day cycle (16 h light, 8 h dark). All species’ 
seeds germinated within a day of each other and were 
allowed to grow for two weeks once germinated. Seedling 
shoot tissue was collected and instantly frozen with liq-
uid nitrogen.

RNA-sequencing library preparation
RNA from two biological replicates in each species was 
isolated using TriZol per the manufacturer’s instructions 
(ThermoFisher #15596026). Paired-end and strand spe-
cific sequencing libraries were generated for each species 
using the YourSeq FT Strand-Specific mRNA library prep 
kit (Active Motif #23001). Libraries were sequenced on a 
Novogene Novaseq platform.

Read processing and modification identification
Raw sequencing reads were trimmed for adapters and 
low-quality bases using fastp (v 0.23.4, [78]) with default 
settings for paired end reads. Trimmed reads were then 
used to call HAMR modifications using the PAMLINC 
workflow (https://github.com/chosenobih/pamlinc). 
Briefly, this workflow maps reads to each species’ refer-
ence genome (obtained from Ensembl Plants in January 
2022) using BowTie2 (v 2.2.5, [79]) and retains unique 
alignments that don’t overlap exon-junctions or deletions. 

https://github.com/chosenobih/pamlinc
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The HAMR statistical model is then run on these filtered 
alignment files (BAM files) to predict RCMs.

In addition, a similar algorithm, ModTect (v 1.7.5, 
[15]), was used to call RCMs. For ModTect prediction, 
trimmed reads were mapped to the same Ensembl Plants 
genomes and associated annotation files as above using 
STAR (v 2.7.10b, [80]). The following non-default STAR 
arguments were used for mapping: --outFilterIntron-
Motifs RemoveNoncanonical, --alignIntronMax 10000, 
--outSAMstrandField intronMotif. Raw BAM outputs 
were then used as input for ModTect with the follow-
ing arguments: –minBaseQual 30, --readlength 150, and 
--regionFile genes.bed which is a four-column file of all 
gene regions in the annotation file.

For sequencing data generated in this study, RCM sites 
were retained that overlapped both ModTect and HAMR 
predictions among both sequencing replicates (Fig.  1B). 
For public sequencing data, RCMs were identified using 
only ModTect and RCMs were retained that were com-
mon among three or more experiments (i.e., three or 
more distinct SRAs).

RNA abundance measurement
Trimmed fastq files were used to measure RNA abundance 
using Salmon (v 1.10.0, [81]) in “quant” mode against a 
decoy aware transcriptome index. The tximport (v 1.28, 
[82]) R package was then used to import Salmon quant 
files and generate gene or transcript level transcript per 
million values, specifying the following tximport option: 
countsFromAbundance = “lengthScaledTPM”. RNAs 
used for downstream RCM and expression analyses were 
those with at least one transcript per million in one experi-
ment. For the reanalysis of the Varoquaux et al., dataset in 
Fig. 2D, root tissue was chosen for comparison. Transcripts 
whose RNA abundance did not vary in the root control vs. 
drought treatments were removed by filtering out the bot-
tom 50% of transcripts based on their abundance variabil-
ity measured by median absolute deviation. The frequency 
of RCM density for every transcript (number of RCMs in 
a condition / total number of RCMs across all root sam-
ples) was computed and then transcripts without RCMs in 
any dataset was removed. For the reanalysis of Sorenson 
et al. 2018, we used RPKM (reads per kilobase per million 
mapped) values that the authors provide in their supple-
mental data which accounts for stable transcripts contain-
ing an increasing proportion of sequencing reads.

Alternative splicing
Two approaches were used to infer alternative splic-
ing. First, genes that express multiple isoforms can be 
inferred from Salmon [81] using the tximport [82] R 
package as described above. Specifying the tximport 
“txOut” argument gives isoform level quantifications. Iso-
forms expressed above one TPM were retained. Genes 

expressing more than one isoform were inferred to be 
undergoing alternative splicing. Second, we examined sta-
tistically significant changes in splicing patterns between 
experimental conditions using EventPointer [83].

GO term enrichment
GO terms were downloaded for each species from 
Ensembl Plants. GO term enrichment was performed 
using the clusterProfiler (v 4.8.2, [84]) R package, spe-
cifically the “enricher” function was used, specifying: 
(1) the input gene set, (2) a p-value cutoff of 0.05, (3) 
Benjamini and Hochberg multiple testing correction, 
(4) a background gene set (usually, all expressed genes 
(TPM > = 1)), (5) a minimum and maximum gene-set size 
of 10 and 500, respectively, and (6) a q-value cutoff of 
0.05. Fold enrichment was calculated using the following 
functions: parse_ratio(GeneRatio) / parse_ratio(BgRatio).

Data analyses
All analyses and statistical testing was performed using 
the R programming language (v 4.2.0, [85]). Tests for over 
or underrepresentation were performed using the phyper 
function (i.e., a hypergeometric test) in R. Correlations 
between RNA abundance and RCMs were performed 
by collecting the RNA abundance values and RCM den-
sity values (number of RCMs per transcript) from each 
sequencing experiment of interest. Pearson Correlation 
Coefficients were then calculated from the RNA abun-
dance and RCM density using the “cor” function in R. 
To measure statistical significance of mean-separation 
between groups, the Student’s t-test was used for two 
group comparisons, while one-way Anova was used for 
more-than-two group comparisons.

All visualizations were generated in R from various 
packages including: ggplot2 (v 3.4.4, [86]), ggvenn (v 
0.1.10, [87]), enrichPlot (v 1.20.0, [88]), complexUpset 
(v 1.3.3, [89]), complexHeatmap (v 2.16., [90]), and the 
ggtree package (v 3.8.2, [91])
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