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Abstract
Background Improving the quality and shelf life of groundnut oil is one of the foremost objectives of groundnut 
breeding programmes. This can be achieved by marker-assisted introgression, a technique that efficiently and 
precisely enables breeders to develop plants with enhanced qualities. This study focused on improving the oleic acid 
content of an elite groundnut variety, TMV 7, by introgressing a recessive mutation responsible for the increase in 
oleic acid from ICG 15419. Hybridization was performed between the donor and recurrent parents to develop the F1, 
BC1F1, BC2F1 and BC2F2 populations. Introgressed lines with increased oleic acid in the genetic background of TMV 7 
were identified using allele-specific marker, F435-F, F435SUB-R and a set of SSR markers were employed to recover the 
genome of the recurrent parent. 

Results With two backcrosses, a total of ten homozygous plants in the BC2F2 population were identified with oleic 
acid content ranging from 54.23 to 57.72% causing an increase of 36% over the recurrent parent. Among the ten 
lines, the line IL-23  exhibited the highest level of recurrent parent genome recovery of 91.12%.

Conclusions The phenotypic evaluation of 10 homozygous introgressed lines indicated fewer differences for all 
other traits under study compared to the recurrent parent, except for oleic acid and linoleic acid content confirming 
the genetic background of the recurrent parent. The identified lines will be subjected to multilocation trials before 
their commercial release.
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Background
Arachis hypogaea L., an annual herbaceous plant com-
monly known as groundnut or peanut belongs to the 
family of Fabaceae. It is considered a cash crop and plays 
a key role in global agriculture, food and economic devel-
opment in many countries, making it an interesting and 
significant crop in different aspects of human life [1]. 
Groundnuts flourish in a warmer climate; therefore, the 
countries in the tropical and subtropical zones are the 
largest producers of this crop, with Brazil being the cen-
ter of origin [2].

Groundnuts are excellent sources of quality and inex-
pensive protein with healthy fats minerals and bioactive 
compounds. They add to the utility in several ways, such 
as for oil production and its byproducts as animal feed; 
for confectionery and, additionally, as a legume crop, 
they contribute to sustainable agriculture by fixing nitro-
gen in the soil [3]. As one of the predominant sources 
of cooking oil, it is essential and mandatory to meet the 
requirements of agricultural research and development. 
In addition to quantity, the quality of the oil plays a piv-
otal role. Groundnut oil largely comprises unsaturated 
fatty acids (UFAs), which include oleic acid (C18:1), lin-
oleic acid (18:2) and approximately 20% saturated fatty 
acids that include palmitic acid and stearic acid. Among 
the UFAs, polyunsaturated fatty acids are slightly more 
abundant than mono-unsaturated fatty acids (MUFAs) 
in elite cultivars [4]. Although the proportion of unsatu-
rated fatty acids is greater in groundnut oil, it is largely 
prone to oxidation due to a lower oleic acid/linoleic acid 
(O/L) ratio [5], and the current varieties under cultivation 
have an O/L ratio of 1, and improving them even slightly 
would increase the storage life and health benefits of the 
oil. Furthermore, an increasing trend has been observed 
in the consumption of seed oils rich in omega-6 fatty 
acids, leading to an unbalanced consumption of omega-3 
and omega-6 fatty acids, which might be harmful in the 
long run [6].

The genes responsible for the quality of groundnut 
oil are present on the ninth chromosome of both the A 
and B genomes. Two homologous genes, ahFAD2A and 
ahFAD2B, regulate the expression of the enzyme phos-
phatidyl-choline oleyl desaturase, which aids in the con-
version of oleic acid to linoleic acid in normal groundnut 
genotypes. A natural groundnut mutant, F435 was dis-
covered which contained 80% oleic acid and less than 
10% linoleic acid because of the mutation of both genes, 
subsequently preventing the conversion of oleic acid to 
linoleic acid, leading to a greater quantity of the former 
[7]. The mutation in the A genome was due to the substi-
tution of adenosine for guanosine at 448 bp, giving rise to 
a different amino acid, and the mutation in the B genome 
was an addition of adenosine at 442 bp, leading to a stop 
codon due to frame-shift mutation [8]. This identified 

line was further used in the development of a few high-
oleic acid lines, such as SunOleic95R and SunOleic97R, 
which have since been involved in quality breeding [9]. 
An oleic acid content of up to 73% can be obtained with 
substitution, and such genotypes could also be used in 
groundnut breeding programmes [10].

Therefore, to fortify and extend the shelf life of ground-
nut oil, it is necessary to develop new varieties with 
improved oleic acid content, which can be achieved by 
backcross breeding programmes. In contrast to the con-
ventional backcross breeding method, marker-assisted 
backcross (MABC) breeding is more precise because it 
involves the use of molecular markers. Markers closely 
linked to target genes can be obtained from genetic link-
age maps and can be used to select introgressed lines at 
a very early stage and at a relatively high efficiency. Since 
the invention of markers, breeding new varieties pertain-
ing to resistance, quality and other biotic and abiotic fac-
tors has the advantage of selecting only the desired gene 
from the donor parent by easily eliminating the rest of 
the donor genome. Additionally, as markers are not influ-
enced by external factors, effective selection is possible. 
In recent decades, the MABC technique has been used to 
improve the oleic acid content in low-oleic superior vari-
eties by crossing with an oleic-rich donor. [11–14].

In addition to being used in the food industry, oils with 
increased oleic acid content are used in the production 
of cosmetics, lubricants and biofuels due to their stable 
nature. The present study involved introgressing a reces-
sive substitution mutation in the ahFAD2A allele from 
an oleic-rich donor into the background of an elite vari-
ety, TMV 7, via a marker-assisted backcross breeding 
program. The generations were advanced to BC2F2, and 
elite lines were selected by confirming their homozygous 
nature, oleic and linoleic acid estimations and recurrent 
parent genome recovery percentage.

Materials and methods
Experimental plant materials and work plan
An oleic-rich germplasm, ICG 15419, obtained from 
the International Crop Research Institute for Semi-Arid 
Tropics with oleic acid greater than 60% was used as the 
donor parent, and TMV 7, obtained from the Oilseed 
Research Station, Tindivanam, a selection from Tennes-
see with an oleic acid content of 40–44%, was used as the 
recurrent parent. Hybridization was carried out between 
the donor and recurrent parent to obtain F1 plants. The 
F1 plants positive for ahFAD2A mutation (Ol1ol1) were 
used as the pollen parent and were backcrossed with the 
recurrent parent to develop the BC1F1 population. The 
true hybrids in the BC1F1 population were again back-
crossed with the recurrent parent to generate a second 
backcross population. The positive BC2F1 plants were 
selfed to produce the BC2F2 population (Fig. 1).
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Foreground selection
Genomic DNA was subsequently isolated from leaf sam-
ples of 14-day-old plants of the donor parent, recurrent 
parent, F1, BC1F1, BC2F1 and BC2F2 populations [15]. 
DNA quantification was performed by using a Nano drop 
spectrophotometer (Thermoscientific, USA) and qual-
ity was checked by 0.8% agarose gel electrophoresis. The 
quantity of DNA was normalized to 40 ng/µl by diluting it 
with sterile distilled water. Allele-specific primers which 
included a forward primer F435-F and a reverse primer 
F435SUB-R along with an internal control, F435IC-R, 
were used to detect the substitution mutation in the A 
genome to ensure the success of the polymerase chain 
reaction [16]. The PCR cocktail mixture contained 2 µl of 
genomic DNA, 1 µl each of forward and reverse primers, 
3 µl of master mix (smART Prime 2X) and 3 µl of nucle-
ase-free water. The PCR program started with an initial 
denaturation of 4 min at 94 °C, followed by 35 cycles of 
denaturation for 30 s at 94 °C, annealing at 55 °C for 45 s 
and extension for one minute at 72 °C, with a final exten-
sion of 20 min at 72 °C. The PCR products were resolved 
on 3% agarose gels and visualized under UV light.

Confirmation of homozygosity by the cleaved amplified 
polymorphic sequence (CAPS) marker
A notable feature of the CAPS marker is the use of 
restriction digestion, where the enzyme cleaves the poly-
morphic region at specific recognition sites. The prim-
ers aF19 (forward) and 1056 (reverse) and the enzyme 
Hpy99I were used for the identification of homozygotes 
in the A genome [17]. To carry out the process of diges-
tion, 3 µL of the amplified PCR product, 0.2 µL of the 
restriction enzyme, 1 µL of the restriction buffer and 6 
µL of the nuclease-free sterile water were transferred to 
fresh PCR tubes and incubated at 37  °C for four hours. 
After digestion, 3 µL of the digested product was mixed 
with 2 µL of the loading dye, separated via agarose gel 
electrophoresis and visualized via UV.

Background selection
Simple sequence repeat (SSR) primers were used to 
detect polymorphisms between the donor and the 
recurrent parent. A total of 126 SSR primers extend-
ing across the 20 chromosomes were used in this study 
[18]. The percentage of parental polymorphism was 
estimated as suggested by [19].

Fig. 1 Flowchart depicting the plan of the marker-assisted backcross breeding programme
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Percentage of parental polymorphism = (number of 
polymorphic markers/total number of markers used) * 
100.

Recurrent parental genome recovery (RPGR)
The molecular scoring data were used to calculate the 
recovery percentage of the recurrent parent genome 
and were analyzed using the software Graphical Gen-
oType version 2.0. Visualizations from the software 
depicted the percentage of donor and recurrent parent 
in the selected progenies, and the recovery percentage 
was calculated using the following formula:

 RPGR % = (R + 0.5H/P) ∗ 100

where R is the number of homozygous markers for the 
recurrent parent allele, H is the number of markers 
that were heterozygous and P is the total number of 
markers that showed polymorphism [19].

Phenotyping
Quality traits
The oil, oleic acid and linoleic acid contents were esti-
mated using an NIR spectrophotometer (ZEUTEC, 
Germany). Approximately 8–10 groundnut kernels 
were powdered and loaded into a small cup, and the 
spectra were observed at wavelengths ranging from 
1800 to 2400 nm. Each sample was scanned five times, 
and the average value was recorded. The quality traits 
such as oleic acid, linoleic acid and oil content were 
analysed using NIR spectrophotometer by taking three 
biological replicates. Statistical significance for the dif-
ference of above biochemical parameters were calcu-
lated through student’s t test at 5% level of significance.

Biometrical traits
Observations were recorded for plant height, number 
of primary and secondary branches, pod length, pod 
width, hundred pod weight, hundred seed weight and 
pod yield per plant on individual plants of the BC2F2 

population. Three random sets of 10 pods / seeds were 
taken and multiplied by 10 and their mean was consid-
ered as hundred pod weight and seed weight, respec-
tively. Pod yield per plant was recorded by weighing 
the total number of pods of each plant and expressed 
it in gram/plants.

Results
Development and confirmation of the F1, BC1F1 and BC2F1 
generations
The parents were genotyped with the allele-specific 
primers, F435SUB-R and F435-F. The primer pair 
amplified the mutant allele in the donor parent at 
203  bp indicating the presence of ahFAD2A allele, 
whereas in the recurrent parent it was not amplified 
(Fig.  2). Hybridization was performed, and a total of 
49 pods were obtained in Rabi 2021. Due to several 
external factors, only sixteen plants germinated in the 
next season (Summer, 2022). These sixteen plants were 
subjected to foreground selection, and a total of five 
plants were found to be heterozygous for the target 
ahFAD2A gene (Fig.  2). The details of the number of 
plants chosen in each generation are given in Table 1.

The confirmed F1 plants were tagged and used as 
the pollen source to generate the BC1F1 generation by 
crossing with the recurrent parent TMV7. A total of 
38 pods were obtained, of which only 15 plants were 
established in the next season (Kharif, 2022). Fore-
ground selection was carried out using the same allele-
specific primers, and the plants were confirmed for the 
presence of the ahFAD2A gene. Of the 15 plants, three 
were found to be heterozygous (Fig. 3) and were tagged 
for the next round of crossing to generate BC2F1. The 
confirmed plants were backcrossed with the recurrent 
parent, a total of 52 pods were obtained, and approxi-
mately 31 plants germinated in the next season (Rabi, 
2023). These plants were subjected to foreground con-
ditions, and a total of eight plants were confirmed. 
These plants were tagged and selfed to develop the 
BC2F2 population.

Fig. 2 Foreground selection in the F1 population for ahFAD2A allele: L – 100 bp ladder, D – ICG 15419 (donor), R – TMV 7 (recurrent), 1–16 F1s
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Foreground selection and detection of homozygosity in 
the BC2F2 population
A total of 171 BC2F2 selfed seeds were obtained from 
the BC2F1 plants. Of 171 plants, only 123 germinated 
in the next season (Kharif, 2023). These 123 plants 
were genotyped using allele-specific primers, and a 
total of 45 wild-type plants and 78 plants positive for 
the ahFAD2A gene were obtained. As the allele-spe-
cific primers could detect only the presence or absence 
of the gene and could not differentiate between the 
homozygous and heterozygous conditions, a codomi-
nant marker such as CAPS marker was used to confirm 
the homozygosity of the ahFAD2A gene. The whole 
population was subjected to CAPS marker analysis, 

which included polymerase chain reaction with the 
primers a19F and 1056R with an expected band size 
of 826  bp (Fig.  4), followed by restriction digestion 
(Fig.  5; Additional File 1). Among the 78 positive 
plants, ten plants harbored the ahFAD2A gene under 
homozygous conditions. These 10 confirmed homo-
zygous (for ahFAD2A mutation) plants were subjected 
to background selection to estimate the recovery per-
centage of the recurrent parent.

Recovery of the recurrent parent genome
Identification of polymorphic markers between the recurrent 
and donor parents
A total of 126 SSR markers spanning the complete 
genome were employed in this study to estimate poly-
morphisms between the recurrent and donor parents. 
Among the 126 markers, 50 were found to be poly-
morphic, ranging between 2 and 5 per linkage group, 
and the details of the polymorphic markers in the ten 
linkage groups of the A genome and the B genome 
are listed in Table  2. The polymorphism percentage 
between the parents was 39.7%.

Table 1 Confirmation of plants based on Foreground Selection 
using allele-specific primers
S.No. Generation Number 

of pods 
obtained

No. of plants 
germinated

No. of 
plants 
positive 
for ah-
FAD2A

1 F1 49 16 5
2 BC1F1 38 15 3
3 BC2F1 52 31 8
4 BC2F2 171 123 78

Fig. 4 Genotyping of the BC2F2 population with CAPS primer before digestion

 

Fig. 3 Foreground selection in the BC1F1 population for ahFAD2A allele: L – 100 bp ladder, D – ICG 15419 (donor), R – TMV 7 (recurrent), 1–15 BC1F1s
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Screening of the polymorphic primers and estimation of 
the percentage of recurrent parent genome recovery in the 
selected lines of BC2F2
The recovery percentage was calculated by genotyping 
the ten homozygous (for ahFAD2A mutation) selected 
lines of BC2F2 with polymorphic primers, and the score 
was given as ‘AA’ for the presence of a recurrent parent 
and ‘BB’ for the presence of a donor parent. The genome 
recovery was computed using GGT, and the GGT image 
of chromosome number 9 of the A genome with the 
introgressed donor segments is given in Fig. 6. The prog-
enies showed an average of 88.14% recovery of the recur-
rent parent genome, and the recurrent parent genome 
recovery percentage ranged from 86.22% in line no. 77 to 
91.12% in line no. 23 (Table  3) representing the highest 
recovery of the recurrent parent genome (Fig.  7; Addi-
tional file 2).

Performance of the selected lines
The traits, plant height, number of primary branches, 
number of secondary branches, pod length, pod width, 
hundred pod weight, hundred seed weight, oil content, 
oleic acid content, linoleic acid content and pod yield 
per plant of the homozygous lines of the cross between 
TMV 7 and ICG 15419  were evaluated along with those 
of their parents (Table  4). The oleic acid content exhib-
ited significant differences, ranging from 54.23 to 57.72%, 
whereas it was only 42.31% in the recurrent parent, TMV 
7. Additionally, the linoleic acid content was found to 
be lower, with a range of 23.12–25.28%, which was less 
than the linoleic acid content of the parent TMV 7, 
which was 38.19%, thereby improving the O/L ratio to a 
value greater than 2, which was higher than that of the 
recurrent parent, which possessed an O/L ratio of just 1. 
Phenotypic evaluation of the selected lines in the BC2F2 
population revealed that the line IL-68 had increased 
oleic acid content, decreased linoleic acid content and 
O/L ratios of 57.72%, 23.12% and 2.5, respectively, 
whereas the line IL-23 had the highest recurrent parent 

genome recovery of 91.12% with an oleic acid content of 
55.66%.

Discussion
Groundnuts are an important source of plant-based pro-
tein, making them valuable for vegetarians and those fol-
lowing vegan diets. Additionally, groundnut oil is popular 
because of its mild flavor, high smoke availability, and 
versatility in various cooking methods. In India, which is 
a significant producer and consumer of groundnut oil, it 
is essential to periodically improve the quality of ground-
nut oil according to consumer preferences, growing 
health awareness and export-import trends.

The oilseed crop groundnut is rich in both monoun-
saturated fatty acids and polyunsaturated fatty acids, 
mainly oleic acid and linoleic acid, respectively. Com-
pared with saturated fatty acids, unsaturated fatty acids 
are much better, but excessive and regular consumption 
of cooking oils rich in linoleic acid has a negative impact. 
The greater the degree of unsaturation is, the greater the 
susceptibility to oxidation, which eventually leads to the 
production of oxidized metabolites and contributes to a 
variety of chronic illnesses, such as cardiovascular dis-
eases and Alzheimer’s disease, and excessive deposition 
of oxidized compounds by low-density lipoprotein (LDL) 
can cause plaque formation in arterial walls [20]. Addi-
tionally, the half-life of this fatty acid is more than two 
years, so its effects can persist in the human system for a 
longer time [21].

Therefore, an attempt was made to reduce the pro-
portion of polyunsaturated fatty acids, particularly lin-
oleic acid in an agronomically superior variety TMV 7 
by introgressing a gene from ICG 15419, a medium oleic 
donor by marker assisted backcross breeding. Despite the 
availability of several alternatives for oils with high oleic 
acid, the demand for groundnut oil remains high due 
to its affordability, making it accessible to a large group 
of people. A study was reported which attempted to 
introgress disease resistance in a rice genotype by both 
marker-assisted backcrossing and transgenics resulting 

Fig. 5 Restriction digestion of ahFAD2A allele in the BC2F2 population
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Table 2 List of polymorphic primers for the 20 linkage groups of groundnut
S.No. Chromosome Primer Forward primer Reverse primer
1 A01 Ah3TC20E08  A G G C G G G A C A A A G A T T A C A T T A  A A A C T G G T G G C C A A A G C T A T A A
2 A01 TC2D06  A G G G G G A G T C A A A G G A A A G A  T C A C G A T C C C T T C T C C T T C A
3 B01 GM1971  T T T T C T C C G A A C C T T C C T T T C  A A G A A A A G A A G A G C A G C C A C A
4 B01 Ah3TC20D05  C A G C A C C A C A T G A T T G T C T T T A  G A T C A A A C C C T C C A T A A T C G T A
5 A02 Ah3TC28B01  A T T T A T T G C C A A A T C T G T C G C T  C A T T G C C A A C T G T T A C T A C C C A
6 A02 PM32  A G T G T T G G G T G T G A A A G T G G  G G G A C T C G A A A C A G T G T T A T C
7 A02 TC4F12  G A T C T T T C C G C C A T T T T C T C  G G T G A A T G A C A G A T G C T C C A
8 B02 seq18E07  A A C G T G C G T G G A A A G A G T T C  T G A G A G T G G T T T T T G T T G G T G
9 B02 seq2F05  T G A C C A A A G T G A T G A A G G G A  A A G T T G T T T G T A C A T C T G T C A T C G
10 A03 Ah1TC4G02  G A T C C A A C T G T G A A T T G G G C  C A C A C C A G C A A C A A G G A A T C
11 A03 GM1954  G A G G A G T G T G A G G T T C T G A C G  T G G T T C A T T G C A T T T G C A T A C
12 A03 IPAHM103  G C A T T C A C C A C C A T A G T C C A  T C C T C T G A C T T T C C T C C A T C A
13 A03 PM434  T T C G G C T G A C A G C T C T A A G  G A A A G A A A T T A T A C A C T C C A A T T A T G C
14 B03 GM2079  G G C C A A G G A G A A G A A G A A A G A  G A A G G A G T A G T G G T G C T G C T G
15 B03 GM1536  A A A G C C C T G A A A A G A A A G C A G  C A A C C A G C T C C T T C T C T A C C C
16 B03 GM2301  G T A A C C A C A G C T G G C A T G A A C  T C T T C A A G A A C C C A C C A A C A C
17 B03 GM2009  C A A A C G C A T A C A C C C C A T A A C  T T T G G T T C T C G T T T G T G T T T T
18 A04 PM375  C G G C A A C A G T T T T G A T G G T T  G A A A A A T A T G C C G C C G T T G
19 A04 GM2638  A T G C T C T C A G T T C T T G C C T G A  C A G A C A T A A C A G T C A G T T T C A C C
20 B04 seq17F06  C G T C G G A T T T A T C T G C C A G T  A G T A G G G G C A A G G G T T G A T G
21 B04 TC11H06  C C A T G T G A G G T A T C A G T A A A G A A A G G  C C A C C A A C A A C A T T G G A T G A A T
22 B04 GM1089  T T G G A A C A A G G A T G G A A A G A A  G T T T A C G G T T G G C T T G T C A A A
23 A05 Ah3TC28A12  T T G A A A G C G A G A G T T T T G A G A A  T C T C A G T T T C T T T G T C G C T C A T
24 A05 GM2078  T C A T G A T G C A A T G A T A A T A G G C  C T G G T C C A T T G G G G A C T C T
25 B05 GM1641  A C A C G T G T C C C T C A A A C A C A  G T T G C A G A G C T C A T C A A G C A
26 B05 PM50  C A A T T C A T G A T A G T A T T T T A T T G G A C A  C T T T C T C C T C C C C A A T T T G A
27 A06 TC1A01  T C A A C G C G A C A C A A G A A G T C  G T C G G T A A A T C C G A C G A A A A
28 A06 TC7C06  G G C A G G G G A A T A A A A C T A C T A A C T  T T T T C C T T C C T T C T C C T T T G T C
29 B06 Ah3TC24B05  A T T G A T A C C T C T T T G C T C T C G C  T G A A A C C C T A A C T A G C T C G G A A
30 B06 GM1991  G A A A A T G A T G C C G A G A A A T G T  G G G G A G A G A T G C A G A A A G A G A
31 B06 PM137  A A C C A A T T C A A C A A A C C C A G T  G A A G A T G G A T G A A A A C G G A T G
32 A07 Seq5D5  A A A A G A A A G A C C T T C C C C G A  G C A G G T A A T C T G C C G T G A T T
33 A07 GM1937  T T C A T C C T C T G C T T C C T T T G A  T G A C C A A A C C C A T C A T C A T C T
34 B07 GM2605  A C T G C T G C C A T G G T T G A G T T A  T T T C G C A C T T T C T C A G T T T C C
35 B07 TC3B05  G G A G A A A A C G C A T T G G A A C T  T T T G T C C C G T T G G G A A T A G T
36 A08 GM1760  T G A A G A G C C A T G T C A G A T C G  A G G G C C C C A A C A A G A T A A G T
37 A08 GM1863  C A C A C C C A G T C A C T C T C T C T G  T C T G A T G T T C T G T G T G T G G A G A
38 B08 GM2504  A C A T C A A T C C C T G C C T A C C T C  T C G G A T T C T G T T A C C A C C T C A
39 B08 Ah3TC20B05  G C A T G T A A A C T A T G C A A T C G C T  C A A C A A C T T A T T C C A C C A A A T A T C A
40 B08 IPAHM406  T G A A A G G G A T T G G A C C A A A A  T G T T G G A C A G G A T T T C A C A C A
41 A09 Ah3TC25B04  T G C T T G T G T A T T G A G C T G T C C T  C A T C T G C C A A G G T C C T A A A A T C
42 A09 GM1911  C A G C T T T C T T T C A A T T C A T C C A  C A C T T C G T G T T C T T C C T G C T C
43 A09 F435-SUB  A T C C A A G G C T G C A T T C T C A C  T G G G A C A A A C A C T T C G T T
44 A09 seq8D9  T G A G T T T C C C C A A A A G G A G A  C A A C A A C A A T A C G G C C A A C A
45 B09 Lec1  C A A G C A T C A A C A A C A A C G A  G T C C G A C C A C A T A C A A G A G T T
46 B09 seq14H6  G C A A C T A G G G T G T A T G C C G T  C A A C C C T A T A C A C C G A G G G A
47 A10 GM2605  A C T G C T G C C A T G G T T G A G T T A  T T T C G C A C T T T C T C A G T T T C C
48 A10 ARS773  G G G A A C G A A T G A A G T A G G C A  G C A T G G G T T T C A A G G T C T G T
49 B10 TC7H11  A G G T T G G A A C T A T G G C T G A T T G  C C A G T T T A G C A T G T G T G G T T C A
50 B10 Ah3T23H10  T C C C T T T G A G T C A T T C A T T G T G  C A T C A G A G C T C C T T T T C C C T A A
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Table 3 Recovery percentage of the recurrent parent genome in 
the elite BC2F2 lines of the cross between TMV 7 and ICG 15419 
S.No. Line No. Recovery %
1 IL – 6 90.14
2 Il – 7 88.18
3 IL – 10 86.72
4 IL – 11 85.24
5 IL – 23 91.12
6 IL – 49 89.16
7 IL – 68 87.20
8 IL – 71 90.14
9 IL – 77 86.22
10 IL – 96 87.31
Mean 88.14
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Fig. 6 GGT image of the chromosome number 9 of the A genome with 
the introgressed gene
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in similar outcomes [22]. Hence, by considering the effi-
ciency and precision of marker-assisted backcross breed-
ing, present investigation was carried out to introgress 
high oleic content in elite variety through MABC.

In this study, allele specific markers were employed 
in screening progenies for the presence of substitution 
mutations in the A genome and the identified five posi-
tive plants in the F1 generation were backcrossed with the 
recurrent parent to give rise to BC1F1. Similar studies to 
confirm the presence of mutation in the crosses GPBD 4 
and G 2–52 with SunOleic 95R employed the same fore-
ground marker [23]. Another report by [13] performed 
the transfer of ahFAD2A allele in to the background of 
GJG 9, GG 20 and GJGHPS 1 to improvise the oleic con-
tent of the widely accepted cultivars. Further experiments 
by [11, 24, 25] led to the development of high oleic lines 
in the genetic background of different popular cultivars 
in India.

The three positive plants in the BC1F1 generation were 
backcrossed with the recurrent parent to develop BC2F1. 
The recurrent parent genotype can be easily recovered 
with 2 to 3 backcrosses by marker assisted backcross 
breeding than the traditional method [26]. In BC2F2, the 
utilization of CAPS markers differentiated the homozy-
gous and heterozygous lines based on the banding pat-
tern obtained after digesting the PCR products with 
the restriction enzyme Hpy99I. The introgressed lines 
showed that the mutant allele of ahFAD2A was intact, 
while the wild type had a recognition site for digestion 
by the enzyme, resulting in two fragments of 598 bp and 
228 bp [17]. A similar study was reported incorporating 
CAPS marker to identify homozygous lines of the cross 
ICGV 05141 and Sun Oleic 95R [8]. CAPS marker were 
also employed in the marker assisted introgression of two 
popular groundnut varieties, GG-7 and TKG-19  A by 
crossing it with a high oleic donor [27].

Background selection is typically carried out with one 
to three markers in each chromosome to estimate the 
recovery of the recurrent parent genome [28]. In this 
study, despite the use of numerous prescreened mark-
ers to identify polymorphisms between the two parents, 

the parental polymorphism was just 39.7% which was 
very low due to polyploidization, as reported by [29] and 
[30]. A maximum of 91.12% of recurrent parent genome 
recovery in the BC2F2 generation explains that the 
recurrent parent contributes more to the genetic back-
ground of the homozygous lines except for the desired 
segment acquired from the donor. Though additional 
introgression of donor segments was observed in A01, 
A02, B03, B05 and A08 in IL-23 but fortunately the bio-
metrical evaluation of the introgressed lines displayed 
an agronomic performance similar to the recurrent par-
ent assuming that the linkage drag has not disturbed 
the performance of these introgressed lines. It was also 
inferred that no significant differences were observed in 
traits other than oleic acid content, linoleic acid content 
or the O/L ratio between the introgressed homozygous 
lines and the recurrent parent. Furthermore, the pres-
ence of the ahFAD2A gene from the donor on the ninth 
chromosome of all ten homozygous lines coupled with an 
increase in the oleic acid content confirmed the success-
ful marker assisted introgression.

Consistent seed size and oil content are the distinct 
characteristics of the variety, TMV 7 which is specific to 
Tamil Nadu, India. The improved version of the variety 
posessing an increased storage life would be an added 
advantage amidst other commercial varieties under cul-
tivation. Additionally, improving vegetable oils with 
increased oleic acid can also be used to produce bio-
diesel due to its unique chemical properties and com-
position [31]. Such oils tend to have more polarity than 
mineral oil, thereby forming an even film on the surface 
of the metal, causing good lubrication and less friction 
[32]. On the other hand, it is a renewable alternative and 
reduces the dependency on natural resources, which are 
on the verge of depletion and minimize the impact on the 
environment.

Conclusion
The BC2F2 population developed from the cross between 
TMV 7 and ICG 15419 was subjected to foreground 
selection, CAPS marker analysis and background 

Fig. 7 GGT image of the line with highest recurrent parent genome recovery

 



Page 10 of 11Vargheese et al. BMC Plant Biology          (2024) 24:733 

selection. A total of ten homozygous individuals con-
firmed by molecular genotyping were evaluated for 
biometric traits, especially oleic acid and linoleic acid 
content. The line IL-68  was found to contain 57.72% 
oleic acid, with a recurrent parent genome recovery of 
87.20%. The highest recurrent parent genome recovery 
was observed for IL-23 (91.12%), which contained 55.66% 
oleic acid. As the goal of this investigation was to improve 
the oleic acid content of the variety TMV 7, the line IL-23 
was developed as the improved version of TMV 7.
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