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Abstract 

Background WRKY proteins are important transcription factors (TFs) in plants, involved in growth and development 
and responses to environmental changes. Although WRKY TFs have been studied at the genome level in Arachis 
genus, including oil crop and turfgrass, their regulatory networks in controlling flowering time remain unclear. The 
aim of this study was to predict the molecular mechanisms of WRKY TFs regulation flowering time in Arachis genus 
at the genome level using bioinformatics approaches.

Results The flowering-time genes of Arachis genus were retrieved from the flowering-time gene database. The 
regulatory networks between WRKY TFs and downstream genes in Arachis genus were predicted using bioinformatics 
tools. The results showed that WRKY TFs were involved in aging, autonomous, circadian clock, hormone, photoperiod, 
sugar, temperature, and vernalization pathways to modulate flowering time in Arachis duranensis, Arachis ipaensis, 
Arachis monticola, and Arachis hypogaea cv. Tifrunner. The WRKY TF binding sites in homologous flowering-time genes 
exhibited asymmetric evolutionary pattern, indicating that the WRKY TFs interact with other transcription factors 
to modulate flowering time in the four Arachis species. Protein interaction network analysis showed that WRKY TFs 
interacted with FRUITFULL and APETALA2 to modulate flowering time in the four Arachis species. WRKY TFs implicated 
in regulating flowering time had low expression levels, whereas their interaction proteins had varying expression pat-
terns in 22 tissues of A. hypogaea cv. Tifrunner. These results indicate that WRKY TFs exhibit antagonistic or synergistic 
interactions with the associated proteins.

Conclusions This study reveals complex regulatory networks through which WRKY TFs modulate flowering time 
in the four Arachis species using bioinformatics approaches.

Keywords Arachis genus, Flowering time, Protein interaction, WRKY transcription factor

Background
WRKY transcription factors (TFs) modulate plant 
growth and development and response to abiotic and 
biotic stress by regulating downstream genes and forming 
protein complexes [1–5]. WRKY TFs modulate the plant 
flowering process through various pathways, including 
photoperiod, autonomous, vernalization, gibberellin, and 
aging pathways [4, 6]. AtWRKY71 from Arabidopsis thal-
iana activates FLOWERING LOCUS T (FT) and LEAFY 
(LFY) to promote flowering [7]. AtWRKY75 interacts 
with DELLA to activate FT, accelerating flowering [8]. 
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Moreover, WRKY184 from Brassica napus upregulates 
FRUITFULL (FUL) expression to promote flowering [9]. 
WRKY TFs are also implicated in phytohormone path-
ways, such as abscisic acid (ABA) and auxin, to modulate 
flowering time. OsWRKY72 from Oryza sativa indi-
rectly activates genes associated with the auxin path-
way, such as AUXIN1, AUXIN RESISTANT1, and BUD1, 
and genes related to the ABA pathway, such as ABA2 
and ABA INSENSITIVE 4 (ABI4), to promote flower-
ing [10]. WRKY TFs regulate salt and cadmium stress to 
modulate flowering time. For instance, RtWRKY23 from 
Reaumuria trigyna upregulates HISTONE ACETYL-
TRANSFERASE 1, ANT, and MADS AFFECTING 
FLOWERING 5 expression to alleviate salt stress, result-
ing in earlier flowering [11]. AtWRKY12 and AtWRKY13 
potentially co-regulate flowering time and cadmium 
stress due to their similar regulatory patterns in modulat-
ing flowering time and cadmium stress [4].

Environmental changes, such as nutrient availability, 
drought stress, and temperature stress, can alter flower-
ing time [4]. However, the role of WRKY TFs in regulat-
ing these pathways ultimately modulating flowering time 
is unclear. This indicates that WRKY TFs may regulate 
flowering time through additional flowering pathways. 
Therefore, it is imperative to conduct research to iden-
tify flowering-time genes at the genome level and verify 
whether WRKY TFs regulate these genes. A plant flow-
ering-time gene database, PFGD, was established in the 
recent past [12]. The database provides a platform to 
identify WRKY TFs that regulate downstream genes and 
the proteins associated with these TFs.

Plants in the Arachis genus serve as oil, forage and tur-
fgrass crops [13]. Cultivated peanut (Arachis hypogaea) 
and Arachis monticola are allotetraploids obtained by 
crossing by two wild diploids, Arachis duranensis and 
Arachis ipaensis [14, 15]. Comparative genomic analyses 
between diploid and tetraploid peanuts reveal asymmet-
ric evolution in the subgenomes of cultivated peanuts 
[16–18]. Asymmetric evolution of subgenomes leads to 
functional bias of genes in a specific subgenome [16, 17, 
19]. A homoeologous WRKY pair, AhTWRKY24 from 
subgenome B and AhtWRKY106 from subgenome A, 
were identified in Arachis hypogaea cv. Tifrunner [20]. 
DNA affinity purification sequencing data revealed that 
AhTWRKY24 and AhtWRKY106 regulate approximately 
an equal number of downstream genes in A. hypogaea 
cv. Tifrunner genome, but they also exhibit specific reg-
ulation of distinct downstream genes [20]. These results 
indicate that asymmetric evolution influences genes reg-
ulated by WRKY in A. hypogaea cv. Tifrunner.

Although WRKY TFs have been identified at the 
genome level in members of Arachis genus [5, 21], 
their role in regulating flowering time is yet to be fully 

elucidated. In this study, flowering-time genes for A. 
duranensis, A. ipaensis, A. monticola, and A. hypogaea cv. 
Tifrunner were retrieved from PFGD database. This study 
revealed the regulatory networks of WRKY TFs in the 
four Arachis species through bioinformatics approaches.

Methods
Sequence retrieval
The PFGD database (http:// pfgd. bio2db. com/ index. html) 
is a valuable repository for genes that regulate flowering 
time in plants [12]. The flowering-time genes of the Ara-
chis species were retrieved from the PFGD database. The 
species of the Arachis genus included A. duranensis, A. 
ipaensis, A. monticola, and A. hypogaea cv. Tifrunner.

WRKY TFs have been identified in various Arachis spe-
cies [5, 21]. A. duranensis, A. ipaensis, A. monticola, and 
A. hypogaea cv. Tifrunner have 16 WRKY TFs, which are 
AtWRKY12 and AtWRKY75 homologs and are involved 
in regulating flowering time [5, 21, 22]. The 16 WRKY 
TFs in the four Arachis species were retrieved from Pea-
nutBase database based on previous studies [5, 21, 22].

The orthologs of the genes in A. duranensis, A. ipaen-
sis, A. monticola, and A. hypogaea cv. Tifrunner were 
identified using the MCScan X program with an e-value 
of 1E-10 [23]. Similarly, paralogs and homoeologs were 
identified using the MCScan X program. The homoe-
ologs were identified in A. monticola and A. hypogaea cv. 
Tifrunner.

Identification of WRKY TFs regulation flowering‑time genes 
in Arachis genus
The 2 kb cis-acting regions of flowering-time genes were 
isolated from the four Arachis species and uploaded 
to the Nesite database to predict the WRKY TF bind-
ing sites  (TFBSs) [24]. The search parameters were an 
expected mean number of 0.01, a statistical significance 
level of 0.95, an 80% homology between known TFBS and 
motif, and a 20% variation in the distance between TFBS 
blocks. The protein interaction relationships between the 
16 WRKY TFs and flowering-time proteins in the four 
Arachis species were predicted using the STRING data-
base. A. thaliana was used as a reference and the pro-
tein–protein interaction network analysis was conducted 
with the default parameters in the STRING database.

Tissue expression profile of WRKY and flowering‑time 
genes in A. hypogaea cv. Tifrunner
The RNA-seq datasets of 22 tissues of A. hypogaea cv. 
Tifrunner were retrieved from PeanutBase [25, 26]. The 
raw read counts were aligned to the A. hypogaea cv. Tif-
runner genome using Bowtie 2 in the TBtools program 
[23], and expression levels were quantified as fragments 
per kilobase of transcript per million mapped reads 
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(FPKM) using RSEM [27]. The expression levels were 
standardized by  log2 transformation (FPKM + 1). The 
expression patterns were visualized using TBtools pro-
gram [23].

Phylogenetic analysis
MAFFT was used to conduct multiple sequence align-
ments with default parameters [28]. ProtTest was used to 
estimate the best-fit model for the construction of a phy-
logenetic tree based on the maximum likelihood method 
[29]. The IQ-tree program was used to construct the 
maximum likelihood trees using the best-fit model from 
the ProtTest program, 10,000 ultrafast bootstraps, and 
1000 the SH-like approximate likelihood ratio test. The 
phylogenetic trees were visualized using the Figtree tool 
[30].

Results
Multiple flowering‑time pathways are identified in Arachis 
genus
The PFGD database comprises 552, 622, 514, and 576 
flowering-time genes from A. duranensis, A. ipaensis, 
A. monticola, and A. hypogaea cv. Tifrunner (Accessed 
on January 23, 2024). Notably, analysis of the cis-acting 
elements showed that 41, 53, 81, and 91 flowering-time 
genes are potentially regulated by WRKY TFs in A. 
duranensis, A. ipaensis, A. monticola, and A. hypogaea cv. 
Tifrunner (Fig. 1 and Additional File 1). These four spe-
cies of Arachis genus had similar flowering pathways reg-
ulated by WRKY TFs. The flowering pathways included 
aging, autonomous, circadian clock, hormone, photo-
period, sugar, temperature, and vernalization. How-
ever, no  previous evidence confirms the involvement of 
WRKY TFs in sugar and temperature pathways to modu-
late flowering time.

Homologous flowering‑time genes have asymmetric WRKY 
transcription factor binding sites
The four species in Arachis genus have different num-
bers of flowering-time paralogs. In A. duranensis, four 
pairs of paralogous flowering-time genes contained 
WRKYTFBSs, whereas 15 flowering-time genes from 
15 paralogous pairs contained WRKY TFBSs (Fig. 2 and 
Additional File 2). Similarly, A. ipaensis and A. hypogaea 
cv. Tifrunner had two and six pairs of paralogous flow-
ering-time genes containing WRKY TFBSs, respec-
tively (Fig. 2 and Additional File 2). Moreover, one copy 
of 12, 13, and 19 paralogous flowering-time gene pairs 
in A. ipaensis, A. monticola, and A. hypogaea cv. Tif-
runner exhibited WRKY TFBSs (Fig.  2 and Additional 
File 2). These results indicate that evolutionary patterns 
of WRKY TFBSs in flowering-time genes vary across 
species.

The findings showed that A. monticola and A. hypogaea 
cv. Tifrunner have varying number of homoeologs asso-
ciated with flowering time. A. monticola and A. hypogaea 
cv. Tifrunner exhibited two and 14 homoeologous flow-
ering-time gene pairs containing WRKY TFBSs, respec-
tively. Conversely, A. monticola and A. hypogaea cv. 
Tifrunner had one copy of 15 and 74 homoeologous flow-
ering-time gene pairs exhibiting WRKY TFBSs (Fig.  2 
and Additional File 2). These results indicate the WRKY 
TFBSs in flowering-time genes exhibit an asymmetric 
evolutionary pattern between the two species.

Previous studies demonstrated that 16 Arachis WRKY 
TFs are orthologs with AtWRKY12 and AtWRKY75, 
which regulate flowering time by binding W-box ele-
ments of FUL and FT genes [8, 31]. Conserved orthologs 
of flowering time were identified across four Arachis spe-
cies through synteny analyses. These genes are mainly 
implicated in aging, autonomous, and sugar pathways 
(Table 1). These results indicate that WRKY TFs modu-
late specific regulatory networks of flowering time in the 
four Arachis species.

WRKY TFs interact with FUL and AP2 to modulate flowering 
time in Arachis genus
The WRKY TF interaction relationships among the 
four Arachis species were predicted using the STRING 
database. The WRKY TFs, which were orthologs to 
AtWRKY12, interacted with FUL in the four Arachis 
species (Fig.  3). Similarly, the WRKY TFs, which were 
orthologs to AtWRKY75, interacted with APETALA2 
(AP2) in the four Arachis species (Fig.  3). Phylogenetic 

Fig. 1 The flowering-time genes regulated by WRKY transcription 
factors in the four Arachis species
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analyses showed that WRKY TFs and the associated 
proteins exhibited different evolutionary relationships 
in the four Arachis species. FUL showed a high likeli-
hood of loss in A. hypogaea cv. Tifrunner genome com-
pared to the WRKY12 TFs (Fig. 3). Conversely, AP2 was 
prone to expansion relative to WRKY75 in A. monticola 

and A. hypogaea cv. Tifrunner genomes (Fig. 3). Notably, 
there was no evidence confirming that AtWRKY12 and 
AtWRKY75 proteins interact with FUL and AP2 to mod-
ulate flowering time. The results indicate that WRKY TFs 
exhibit specific protein interaction relationships to mod-
ulate flowering time in the four Arachis species.

Fig. 2 Homologs potentially regulated by WRKY transcription factors. a A schematic representation of symmetric and asymmetric WRKY 
transcription factor binding site (TFBS) in a homologous pair. b The homologs of flowering-time genes exhibiting WRKY TFBSs in the four Arachis 
species

Table 1 WRKY transcription factors potentially regulate conserved orthologs in the four Arachis species

duranensis ipaensis monticola Tifrunner Genome Arabidopsis Annotion Pathway

Aradu.EI58K No component EVM0038983 T5C9EA A AT5G44160 INDETERMINATE DOMAIN 8, NUTC 
RAC KER

Sugar

No component Araip.6UE4Z Not determined V8NH83 B

Aradu.F7PQZ No component Not determined Not determined A AT1G78580 TREHALOSE-6-PHOSPHATE SYNTHASE 
1

Aging

No component Araip.FER8B EVM0016112 PK6QLT B

Aradu.FY71B No component Not determined 8JQ024 A AT3G11910 UBIQUITIN-SPECIFIC PROTEASE 13 Autonomous

No component Araip.QTU2G EVM0050491 Not determined B

Aradu.NJJ5I No component Not determined Q6VMSA A AT3G63010 GA INSENSITIVE DWARF 1B Aging

No component Araip.6D3E7 EVM0030129 Not determined B

Aradu.SE6Q0 No component EVM0035381 00XS3D A AT5G67180 TARGET OF EARLY ACTIVATION 
TAGGED 3

Aging

No component Araip.MAL00 Not determined Not determined B
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Varying expression patterns of flowering‑time genes in 22 
tissues of A. hypogaea cv. Tifrunner
WRKY TFs regulating flowering time clustered in 
group I based on their expression levels in 22 tissues of 
A. hypogaea cv. Tifrunner (Fig. 4). The genes in group I 
exhibited low expression levels compared to other groups 
(Fig. 4). Group I had two homoeologous gene pairs, AhT-
WRKY35 and AhTWRKY116, and AhTWRKY69 and 
AhTWRKY149. Each homoeologous gene pair exhibited 
similar expression pattern in 22 tissues (Fig.  4). These 
results indicate that WRKY homoeologous gene pair 
share similar regulatory networks. In addition, 18 flow-
ering-time genes were grouped in a subclade based two 
the WRKY homoeologous gene pairs (Fig. 4), indicating 
that these genes are potentially regulated by these WRKY 
homoeologs.

In addition, AhTWRKY49 and AhTWRKY99 (ortholog 
with WRKY75) indicated potential synergistic interac-
tions with 38RLY4 (AP2), and AhTWRKY35 and AhT-
WRKY116, and AhTWRKY69 and AhTWRKY149 

(ortholog with WRKY12) exhibited potential syner-
gistic interactions with WIWA1B and IQR3N2 (FUL), 
because they had similar expression patterns (Figs. 3 and 
4). Conversely, AhTWRKY49 and AhTWRKY99 exhib-
ited potential antagonistic interactions with 00XS3D, 
095TGF, and H1PWIN (AP2) due to the differences in 
expression patterns (Figs. 3 and 4).

Discussion
Arachis plants are essential sources of oil, proteins, and 
forage [13]. The genomes of cultivated peanut and its 
progenitors have been sequenced [15, 17, 32–34]. WRKY 
TFs have been identified at the genome level in mem-
bers of Arachis genus [5, 21]. However, the functions of 
WRKY TFs in flowering time have not been elucidated. 
In this study, WRKY TFs that regulate flowering-time 
genes and their interaction proteins in A. duranensis, A. 
ipaensis, A. monticola, and A. hypogaea cv. Tifrunner 
were identified using bioinformatics approaches. The 
main findings are summarized as follows: Firstly, WRKY 

Fig. 3 WRKY transcription factors interact with FUL and AP2 to modulate flowering time in the four Arachis species
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TFs are involved in aging, autonomous, circadian clock, 
hormone, photoperiod, sugar, temperature, and vernali-
zation pathways to modulate flowering time in the four 
Arachis species. Secondly, asymmetric WRKY TFBSs 
were identified in homologs of the flowering-time genes 
across the four Arachis species. Thirdly, two conserved 

protein complexes involving WRKY TFs interaction with 
FUL and AP2 modulated flowering time in the four Ara-
chis species.

WRKY TFs are primarily involved in flowering path-
ways and phytohormone pathways to modulate flow-
ering time [4, 35]. The flowering pathways include 

Fig. 4 The expression patterns of WRKY and flowering-time genes in 22 tissues of Arachis hypogaea cv. Tifrunner. Blue font indicates interacting 
proteins with WRKY transcription factors
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photoperiod, autonomous, vernalization, gibberellin, 
and aging pathways [4, 6]. WRKY TFs regulate flower-
ing time through ABA, auxin, and ET pathways [4, 10, 
36]. However, the role and the underlying mechanisms 
of WRKY TFs in regulating flowering time through sugar 
and temperature pathways have not been fully elucidated. 
Previous studies demonstrated that low sugar and high 
temperature promote flowering, whereas high sugar and 
low temperature conditions delay flowering in plants [4, 
37–39]. These findings imply that WRKY TFs potentially 
modulate flowering time through sugar and temperature 
pathways in the four Arachis species.

Specific interactions between WRKY TFs and other 
proteins modulated flowering time in the four Arachis 
species. Arachis WRKY TFs interacted with FUL and 
AP2 proteins to modulate flowering time. FUL, a mem-
ber of the MADS-box gene family, modulates flowering 
time and floral meristem development [40, 41]. AP2, a 
member of the AP2/ERF gene family, regulates the inter-
action between floral meristem and APETALA1 (AP1), 
LEAFY (LFY), and CAULIFLOWER (CAL) to modulate 
flower and floral meristem development [42, 43]. Nota-
bly, a regulatory network exists between FUL and AP2. 
FUL directly and negatively regulates AP2 to downregu-
late wuschel-related homeobox expression in shoot apical 
meristem, reducing flowering in monocarpic plants [44]. 
Furthermore, AP2 downregulates genes implicated in 
axillary bud dormancy and cytokinin signaling, resulting 
in global proliferative arrest to affect flowering in mono-
carpic plants [45]. These findings indicate that WRKY 
TFs are implicated in the global proliferative arrest path-
way in Arachis genus.

Arachis WRKY TFs, which regulate flowering time, 
are orthologs with AtWRKY12 and AtWRKY75 [5]. 
AtWRKY12 and AtWRKY75 interact with DELLA pro-
teins to modulate flowering time [8, 31]. Moreover, 
AtWRKY12 activates FUL, and AtWRKY75 activates FT 
to promote flowering [8, 31]. Based on these results, we 
hypothesized that Arachis WRKY TFs, orthologous to 
AtWRKY12, interact with FUL protein and regulate FUL 
expression.

However, our study had some limitations. Firstly, it is 
challenging to establish one-to-one regulatory relation-
ships between WRKY TF and downstream genes using 
bioinformatics approaches. This is because WRKY TFs 
regulate a conserved W-box element shared across 
several downstream genes. Additionally, our results 
showed that the number of downstream genes was 
higher than the number of WRKY TFs in the four Ara-
chis species. These findings indicate that one WRKY TF 
may regulate several downstream genes to modulate 
flowering time. AtWRKY63 activates COOLAIR and 

COLDAIR, leading to the downregulation of FLOW-
ERING LOCUS C (FLC) expression and consequently 
accelerating flowering [46]. AtWRKY71 activates FT 
and LFY to promote flowering [7]. Our results demon-
strated that WRKY TFBSs of homologous downstream 
genes exhibit asymmetric evolution, suggesting that 
WRKY TFs interact with other transcription factors 
to modulate the flowering process in the four Arachis 
species.

Conclusion
In summary, bioinformatics approaches were used in 
this study to predict the WRKY TFs regulating down-
stream genes and interaction proteins in the four 
Arachis species. WRKY TFs are involved in multiple 
pathways to modulate flowering time in the four Ara-
chis species. WRKY TFs can interact with FUL and AP2 
modulated flowering time in the four Arachis species. 
Although several novel regulatory networks were elu-
cidated in this study, further experimental testing is 
required to verify these relationships.
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