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Abstract
Background  Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases 
that adversely affect its quality and yield. To elucidate S. miltiorrhiza’s metabolic adaptations to replant disease, we 
analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time.

Results  We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 
217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant 
up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and 
flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants 
afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high 
expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, 
changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under 
replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, 
consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the 
transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors 
co-expressed with differentially accumulated metabolites.

Conclusions  Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing 
a robust foundation for future inquiries into the molecular responses to combat replant stress.
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Background
Salvia miltiorrhiza Bunge, a member of the Lamiaceae 
family, has been celebrated for its roots, playing a piv-
otal role in traditional Chinese medicine for over two 
millennia. Renowned for its capacity to enhance blood 
circulation and alleviate blood stasis, growing evidence 
suggests that S. miltiorrhiza may protect against vascu-
lar diseases, notably atherosclerosis and heart disease 
[1]. In clinical settings, the sodium sulphate derivative of 
tanshinone IIA, the primary compound within S. milt-
iorrhiza, has been extensively utilised to treat patients 
with coronary artery disease and angina pectoris [2]. The 
molecular biology of S. miltiorrhiza has been extensively 
studied, with the publication of multiple versions of its 
genome [3, 4]. In recent years, a large number of studies 
have conducted comprehensive analyzes of the metabo-
lome and transcriptome of S. miltiorrhiza. For example, 
using metabolomics and transcriptomics, it was revealed 
that the SmMYB36-SmERF6/SmERF115 module regu-
lates the biosynthesis of tanshinone and phenolic acids 
[5], SmDXS5 plays a key regulatory role in the primary 
and secondary metabolism of tanshinone [6], and nitro-
gen starvation promotes the expression of genes involved 
in the MVA and MEP pathways involved in tanshinone 
and terpene backbone biosynthesis [7]. The combination 
of metabolome and transcriptome has become an effec-
tive means to identify stress-responsive and metabolism-
related functional genes.

Replant disease is a pervasive agricultural challenge 
arising from the repeated cultivation of the same spe-
cies in a particular location, leading to notable morpho-
logical and physiological alterations in affected plants 
[8]. This condition frequently culminates in diminished 
stress resistance, reduced crop yield and quality, ham-
pered normal growth, and, in severe cases, potential 
widespread plant mortality [9, 10]. The cultivation of S. 
miltiorrhiza is particularly susceptible to replant dis-
ease, causing abnormal root growth and significantly 
impacting the yield and quality of medicinal materials. 
Researchers commonly attribute replant diseases to three 
primary mechanisms: soil nutrient imbalance, increased 
populations of harmful microbes, and the auto toxic 
effects of allelopathy [11–13]. For instance, under replant 
conditions, root secretions from Rehmannia glutinosa 
can promote the growth of the pathogen Fusarium oxy-
sporum, exacerbating replant diseases [14]. This prolif-
eration hinders salicylic acid signalling and fosters the 
onset of replant diseases [15]. Allelochemical exposure 
can profoundly affect plant respiration, disrupt oxidative 
phosphorylation, mitochondrial functionality, and ATP 
synthase activities, stimulate the accumulation of reactive 
oxygen species, and inhibit the antioxidant system of the 
plant. This cascade of events leads to lipid peroxidation 
and structural damage to the cell membrane [16–18]. 

Despite these findings, the molecular mechanisms by 
which plants sense and transducer these external con-
ditions, resulting in the symptoms of replant disease, 
remain unclear.

The alteration of metabolites in plants under adverse 
stress primarily reflects the plant response and defence 
mechanisms. This adaptation results from the interplay 
between genes and surrounding environmental factors. 
Technological advancements and innovations have sig-
nificantly enhanced our capacity to comprehend changes 
in genes and metabolites [19, 20]. Transcriptomic and 
metabolomic analyses have recently emerged as power-
ful tools for unveiling stress-response mechanisms and 
signal transduction pathways. For example, a combina-
tion of transcriptomic, metabolomic, and physiological 
analyses has illuminated the physiological and molecular 
mechanisms by which potassium regulates cotton root 
salt tolerance and the role of flavonoids in poplar resis-
tance to poplar anthracnose [21, 22]. Metabolic altera-
tions in response to various stresses differ significantly 
among different plants, and the regulatory mechanisms 
involved in multiple metabolic pathways are intricate 
[23, 24]. Research indicates that phytohormone signal 
transduction pathways, MAPK signal transduction path-
ways, and phenylpropanoid metabolism pathways are of 
great importance in plant responses to abiotic and biotic 
stresses [25–28]. Despite this progress, the primary met-
abolic pathways and key regulatory factors of S. miltior-
rhiza under continuous cropping stress are still unclear.

In this study, we conducted, for the first time, a com-
prehensive analysis integrating a widely targeted metab-
olome and strand-specific transcriptome to investigate 
replant diseases. Our aim was to elucidate metabolite 
variations in response to replant disease in S. miltior-
rhiza, identify the key metabolic pathways involved, and 
reveal the relationship between changes in metabolic and 
transcriptional levels. This study will broaden the under-
standing of the molecular mechanisms by which S. milt-
iorrhiza responds to replant diseases and offer insights 
that could inform the future breeding of resistant S. milt-
iorrhiza varieties.

Materials and methods
Plant materials
S. miltiorrhiza plants, genetically consistent and uniform 
in size, were cultivated in two different soils, both sub-
jected to standardised management. The first soil, previ-
ously unused for S. miltiorrhiza cultivation, yielded plants 
labelled as normal or “N”. The second soil, employed for 
S. miltiorrhiza cultivation for one year, produced plants 
labelled as replant disease or “R”. For each group, 20 S. 
miltiorrhiza plants were planted. During the root expan-
sion stage, roots from three independent plants from 
each soil were randomly sampled and designated as “N1”, 
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“N2”, “N3”, “R1”, “R2”, and “R3”. These samples were imme-
diately frozen in liquid nitrogen and stored at -80 °C. The 
plant sample was identified by Wei Liu. These specimens 
have been deposited in our lab (School of Pharmaceutical 
Sciences, Qilu University of Technology) with the acces-
sion numbers JM202301-JM202306).

Metabolite extraction and UPLC-ESI-MS/MS analyses
Roots of S. miltiorrhiza underwent vacuum freeze-drying 
followed by grinding into a powder. The 50  mg sample 
powder was mixed with 1200 µL of a 70% methanol solu-
tion containing 2-chlorophenylalanineas an internal stan-
dard (CAS: 14091-11-3; purity: 98%; manufacturer: J&K 
Scientific, Beijing, China; concentration: 1PPM (mg/L)). 
The internal standard is added to the extract for quality 
control and to monitor the stability of the assay. After 
centrifugation, the resulting supernatant was filtered 
through a 0.22 μm microporous film for UPLC-ESI-MS/
MS analyses (UPLC, ExionLC AD series; MS, AB Sciex 
4500 Q TRAP). Chromatographic separation employed 
an Agilent SB-C18 column (2.1 mm × 100 mm, 1.8 μm). 
The mobile phase comprised two parts: A (water with 
0.1% formic acid) and B (acetonitrile with 0.1% acetic 
acid), starting at 95% A and 5% B, transitioning to 5% 
A and 95% B over 9  min, maintaining this gradient for 
1  min before reverting to initial conditions for 1.1  min 
and equilibrating for 2.9  min. The flow rate was set at 
0.35 mL/min, and the sample chamber temperature was 
maintained at 40  °C. Each injection introduced 4 µL of 
the sample. ESI-QTRAP-MS operated under the follow-
ing conditions: ion source temperature at 550  °C, ion 
spray voltage of -4500 V and 5500 V in negative and posi-
tive modes, with gas flows for curtain, I, and II at 25, 50, 
and 60 psi, utilising enhanced collision-induced dissocia-
tion settings.

For the qualitative analysis of metabolites, the primary 
and secondary MS data were used to annotate metabo-
lites based on the selfbuilt metware database (MWDB) 
(Wuhan Metware Biotechnology, Wuhan, China) and 
the public metabolite database [29]. To ensure the accu-
racy of the metabolite annotations, the interference sig-
nals, including the repeated signals of K+, Na+, and NH4

+ 
ions, the isotope signal, and the repetitive signals of frag-
ment ions, were first excluded during the analysis. The 
metabolite structures were analyzed by reference to the 
public databases (MassBank, KNApSAcK, HMDB, MoTo 
DB, and METLIN). Quantitative metabolite determina-
tion occurred in multiple reaction-monitoring modes. 
Characteristic ions of each metabolite selectively passed 
through the triple quadrupole, and their signal intensi-
ties were measured using a detector. MultiQuant version 
(v 3.0.2) handled the integration and correction of chro-
matographic peaks. Finally, peak area integration repre-
sented relative metabolite amounts.

Extraction of RNA and sequencing for transcriptomics
Total RNA extraction was performed using the Tiangen 
Biotech RNA isolation kit. We tested the concentration 
and purity of RNA using NanoDrop One spectrophotom-
eter (NanoDrop Technologies, DE, USA) and Qubit 3.0 
Fluorometer (Life Technologies, CA, USA). The integ-
rity of the RNA was checked by agarose gel electropho-
resis. Total RNA was further fragmented and ribosomal 
RNA degraded into purified RNA. Sequencing librar-
ies were generated from purified RNA using NEBNext® 
UltraTM RNA Library Prep Kit for Illumina® (New Eng-
land Biolabs, Ipswich, USA). The steps for library con-
struction were as follows: first-strand cDNA synthesis 
with random primers, second-strand cDNA synthesis, 
and substitution of dTTP with dUTP. Following purifica-
tion, A-tailing, adapter ligation, and PCR amplification, 
the first cDNA strand was selected for next-generation 
sequencing, leveraging the enzyme specificity of the Illu-
mina platform during amplification. The constructed 
library was quantified using Qubit 3.0 Fluorometer (Life 
Technologies, CA, USA), and then detected using Agi-
lent 2100 bioanalyzer (Agilent, CA, USA). Sequencing 
was conducted on a NovaSeq 6000 (Illumina, CA, USA). 
Library construction and sequencing were performed by 
Benagen company (Benagen, Wuhan, China).

The sequencing data underwent quality control using 
FastQC (v 0.11.9) [30]. Low-quality reads were trimmed 
using Fastp (v 0.21.0) [31] with default parameters. Fil-
tered transcriptome reads were aligned to the S. miltior-
rhiza 99 − 3 reference genome [3] through Star (v 2.7.9a) 
[32]. The mapped reads were assembled into transcripts 
with StringTie (v 2.1.4) [33] using default parameters. 
Gene expression levels were quantified using the RNA-
Seq by Expectation Maximization (RSEM) method [34] 
and reported as FPKM values. Differentially expressed 
genes (DEGs) were identified through DESeq2 (v 1.26.0) 
[35] with a significance threshold of p < 0.05 and |log-
2FoldChange| ≥ 1. Subsequently, DEGs were annotated 
with Gene Ontology (GO) terms and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways using cluster-
Profiler (v. 3.14.3) [36].

Integrated metabolomic and transcriptomic analysis
To identify statistical map of differential metabolites 
(DAMs) in S. miltiorrhiza samples under normal and 
replant stress conditions, we employed orthogonal par-
tial least squares-discriminant analysis (OPLS-DA) 
on metabolite concentrations using MetaboAnalystR 
(v1.0.1). To avoid over-fitting, 200 permutation tests were 
conducted. Variable importance in the projection (VIP) 
values were extracted from the OPLS-DA results. Metab-
olites with VIP > 1 and |Log2FC| ≥ 1 were considered 
DAMs and annotated using KEGG pathways.
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The correlation between metabolite concentration and 
gene expression in the six samples was calculated using 
the ‘rcorr’ function in R. A nine-quadrant diagram was 
drawn in R to visualise the fold difference between genes 
and metabolites with a Pearson correlation coefficient |r| 
≥ 0.85 and p ≤ 0.05 for each group. The metabolites co-
expressed with the genes were annotated using KEGG 
pathways.

Quantitative real-time PCR (qRT-PCR) confirmation
To validate through QRT-PCR, we employed the Hifair® 
II 1st Strand cDNA Synthesis SuperMix kit (Yeasen Bio-
technology, Shanghai, China) to transcribe total RNA 
into cDNA. We used the Hieff® qPCR SYBR Green Mas-
ter Mix kit (Yeasen Biotechnology, Shanghai, China) 
with the following reaction system: 2  µl of Hieff® qPCR 
SYBR Green Master Mix (Low Rox Plus), 1 µl of Forward 
Primer (10 µM), 1 µl of Reverse Primer (10 µM), 1 µl of 
cDNA, and 15 µl of ddH2O. Then, QRT-PCR assays were 
performed on a QuanStudio5 system (Thermo Fisher Sci-
entific, Massachusetts, USA) with the following condi-
tions: 95 °C for 5 min; 40 cycles of 95 °C for 10 s, 60 °C 
for 20 s and 72  °C for 20 s; and the melting curve stage 
uses the instrument’s default parameters. Primers for 
these genes were manually designed with Primer 5.0 soft-
ware. We use the SmActin as the endogenous reference 
as documented previously [37]. To calculate the relative 
expression of genes, we calculated the efficiencies vary-
ing between experimental and SmActin’s primers. If effi-
ciencies varying by less than 10% the Livak method can 
be used [38]; if the experimentally established efficien-
cies vary by more than 10%, a correction should be made 
using the a Pfaffl mathematical model [39]. Correlation 
analysis between QRT-PCR results and RNA-Seq expres-
sion data was conducted using Python’s Pearson correla-
tion method (v 2.7.12).

Identification of transcription factors (TFs)
The PlantTFDB database [40] was employed for predict-
ing TFs. Subsequently, correlation assessments between 
TFs and metabolites, TFs, and structural genes, as well as 
structural genes and metabolites, were performed using 
the ‘rcorr’ function in R. Only those three combinations 
satisfying |r| ≥ 0.85 and p ≤ 0.05 were screened out. Cyto-
scape (v 3.10.1) [41] was used to visualise the correlation 
networks linking TFs with structural genes.

Results
Metabolome profiling of the normal and replant-diseased 
S. miltiorrhiza
S. miltiorrhiza plants were collected during root expan-
sion. In comparison with normal controls, the roots 
afflicted with replant disease exhibited noticeable 
growth stunting (Fig.  1A). A comprehensive targeted 

metabolomic analysis was conducted on both normal and 
replant-diseased roots using UPLC-MS/MS. A total of 
1,269 metabolites spanning 11 categories were success-
fully detected and quantitatively measured, as outlined in 
Table S1. The results revealed consistent metabolite dis-
tribution profiles between the two root types, with amino 
acids and their derivatives constituting the most abun-
dant category (17%), followed by phenolic acids (16%), 
lipids (13%), terpenoids (13%), flavonoids (8%), and alka-
loids (6%) (Fig. 1B). The OPLS-DA results demonstrated 
significant differences in metabolite concentrations 
between the normal and replant-diseased roots (Fig. S1).

A total of 257 differentially accumulated metabolites 
(DAMs) were identified using a threshold of |Log2FC| 
≥1 and VIP ≥ 1. Among these, 63 were highly expressed 
in normal roots, while 194 were highly expressed in 
replant-diseased roots (Fig. 1C). KEGG pathway analysis 
annotated these DAMs into various pathways, including 
tryptophan metabolism, glucosinolate biosynthesis, cya-
noamino acid metabolism, phenylalanine, tyrosine, tryp-
tophan biosynthesis, 2-oxocarboxylic acid metabolism, 
pantothenate and CoA biosynthesis, aminoacyl-tRNA 
biosynthesis, phenylpropanoid biosynthesis, beta-alanine 
metabolism, biosynthesis of amino acids, plant hormone 
signal transduction, stilbenoid, diarylheptanoid and gin-
gerol biosynthesis, and flavonoid biosynthesis. (Fig.  1D, 
Table S2).

Transcriptome profiling of the normal and replant-
diseased S. miltiorrhiza
To identify genes responsive to replant disease, we con-
ducted strand-specific transcriptome sequencing on both 
normal and replant-diseased S. miltiorrhiza roots. The 
raw data underwent filtration, resulting in approximately 
40 million reads per sample (Table S3). Subsequently, we 
assembled and quantified 22,224 genes based on these 
reads (Table S4). A comparison of the two root catego-
ries revealed expressional variance, identifying 217 DEGs 
(Fig.  2A). Among these, 135 exhibited high expression 
in normal roots, while 82 were highly expressed in dis-
eased roots (Fig. 2B). Further analysis of GO terms and 
KEGG pathways was performed on these DEGs. The 
results indicated that the most annotated GO term was 
“sequence-specific DNA binding”, involving five genes. 
This was followed by “Chloroplast”, “ATP hydrolysis activ-
ity”, and “defence response to fungi”, each associated with 
four genes (Fig.  2C). KEGG pathway analysis catego-
rised these differentially expressed genes into Porphy-
rin metabolism, arginine and proline metabolism, plant 
hormone signal transduction, Pantothenate and CoA 
biosynthesis, beta-alanine metabolism, MAPK signal-
ling pathway, and flavonoid biosynthesis (Fig.  2D, Table 
S5). Our analysis also highlighted 19 KEGG pathways 
shared between DAMs and DEGs (Fig. S2), suggesting 
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a potential collaborative role in the plant’s response to 
replant disease.

Integrated analysis of DAMs and DEGs
To investigate the interplay between metabolites and 
gene expression, we conducted a correlation analysis of 
their respective patterns and illustrated the outcomes 
using a nine-quadrant diagram (Fig. 3A). Most metabo-
lites and genes were situated in quadrants 2, 4, 6, and 8, 
indicating that while many genes and metabolites were 
relevant, they did not exhibit a response to replant dis-
ease. Notably, metabolites and genes in quadrants 3 and 7 
exhibited a positive correlation.

Quadrant 3 encompassed 225 metabolites (including 
194 DAMs) and 1,377 genes (including 82 DEGs) whose 
expression levels significantly increased in response to 
replant disease (Fig. 3B). In contrast, quadrant 7 included 
71 metabolites (63 DAMs) and 1,846 genes (135 DEGs) 
with significantly down-regulated expression levels 
in replant disease. Subsequently, KEGG enrichment 

analysis was conducted for both DAMs and DEGs specif-
ically located in quadrants 3 and 7 (Fig. 3C). In quadrant 
3, we identified up-regulation in plant hormone signal 
transduction (ko04075) and three flavonoid metabolite 
biosynthesis pathways: stilbenoid, diarylheptanoid, and 
gingerol biosynthesis (ko00945); flavonoid biosynthesis 
(ko00941); and phenylpropanoid biosynthesis (ko00940). 
For quadrant 7, we identified pathways related to flavone 
and flavanol biosynthesis (ko00944). These findings sug-
gest a significant up-regulation and co-expression of 
metabolites and genes associated with phytohormone 
signalling and flavonoid biosynthetic pathways in replant 
diseases.

DAMs and DEGs involved in the pathway of plant 
hormone’s biosynthesis and signal transduction
The metabolome analysis revealed a significant increase 
in hormone concentrations, particularly indole-3-acetic 
acid and abscisic acid, under replant stress. Transcrip-
tome KEGG analysis indicated substantial enrichment 

Fig. 1  Metabolome profiling of the normal and replant diseased S. miltiorrhiza. (A) Normal and replant diseased S. miltiorrhiza plants. (B) The distribution 
map of metabolite types. Different colors represent different types of metabolites. The size of the graph represents the number of metabolites. (C) The 
volcano plot of differentially accumulated metabolites (DAMs). The X-axis represents the log2 (fold change) value, and the Y-axis represents the VIP value. 
Each point represents a metabolite. Green represents the metabolite’s log2 (fold change) ≤ -1 and VIP ≥ 1. Red represents the metabolite’s log2 (fold 
change) ≥ 1 and VIP ≥ 1. (D) The KEGG pathway analysis of DAMs. Based on the p value, the top 20 KEGG pathways were displayed. Each point represents 
a type of KEGG pathway. The point size reflect the metabolite count within that pathway, while coloration reflect the p value
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of DEGs within the plant hormone signal transduction 
pathway (ko04075). The concentration of indole-3-ace-
tic acid in replant-diseased S. miltiorrhiza significantly 
increased with a fold change of 9.9, compared to the con-
trol group. Figure 4A illustrates this pathway, the expres-
sion of the auxin response factor (ARF) gene (SmARF) 
was up-regulated, while other genes in this pathway 
showed no notable changes. Further exploration of the 
indole-3-acetic acid biosynthesis pathway (ko00380) 
unveiled up-regulation of specific genes (SmAmidase1) 
encoding amidase and aldehyde dehydrogenase (ALDH) 
genes (SmALDH1 and SmALDH2) under replant stress 
(Fig. 4C). Both amidase and ALDH catalyse the synthe-
sis of Indole-3-acetate acid from Indole-3-acetamide and 
Indole-3-acetaldehyde, respectively.

The concentration of abscisic acid in replant-diseased S. 
miltiorrhiza significantly increased with a fold change of 
2.2 compared to the control group. Figure 4B illustrates 
the abscisic acid-mediated signal transduction pathway, 

indicating a significant up-regulation of two type 2  C 
protein phosphatases genes (SmPP2C1 and SmPP2C2) 
in replant-diseased S. miltiorrhiza. The expression levels 
of these genes showed a significant positive correlation 
with abscisic acid concentration (r = 0.94, p = 0.0060 and 
r = 0.81, p = 0.0483). Furthermore, the up-regulation of the 
ABA-responsive element binding factors gene (SmABF) 
correlated significantly with the abscisic acid concentra-
tion (r = 0.85, p = 0.0316). We also observed up-regulation 
of some genes in the abscisic acid biosynthetic pathway 
under replant disease, including two nine-cis-epoxyca-
rotenoid dioxygenase genes (SmNCED1 and SmNCED2) 
and one abscisic aldehyde oxidase 3 gene (SmAAOX3) 
(Fig.  4D). NCED catalyses the conversion of 9-cis-vio-
laxanthin to xanthoxin, which then generates abscisic 
aldehyde. AAOX3 catalyses the conversion of abscisic 
aldehydes to abscisate acids. Generally, under replant dis-
ease conditions, S. miltiorrhiza roots activate plant hor-
mone biosynthetic pathways, leading to the accumulation 

Fig. 2  Transcriptome profiling of the normal and replant diseased S. miltiorrhiza. (A) Clustering heat map of differentially expressed genes (DEGs). Each 
row represents a sample, and each column represents a gene. The color corresponds to the Z-score transformed from the FPKM values of gene. (B) The 
volcano plot of DEGs. Points with log2 (fold change) ≤ 1 and p < 0.05 represent significantly down-regulated genes, shown in green. Points withlog2 (fold 
change) ≥ 1 and p < 0.05 represent significantly up-regulated genes, shown in red. (C) Analysis of Go terms for DEGs. Based on the p value, the top 20 
GO terms were displayed. Each row represents a Go term. The circle, triangle and rectangle represent the biological process, cellular component, and 
molecular function, respectively. The point size represents the gene number, and the color represents the p value. (D) Analysis of KEGG for DEGs. Based on 
the p value, the top 20 KEGG pathways were displayed
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of plant hormones. Simultaneously, changes in hormone 
concentrations activate plant hormone signal transduc-
tion pathways, thereby regulating downstream biological 
processes.

DAMs and DEGs involved in the flavonoid biosynthetic 
pathway
The results of metabolomic and transcriptomic analyses 
indicate enrichment of the flavonoid biosynthesis path-
way (ko00941) among DAMs and DEGs. In S. miltior-
rhiza roots, metabolomics revealed seven compounds 
in the flavonoid biosynthetic pathway: chlorogenic acid 
(cpd_ID: C00852); 2’,3,4,4’,6’-pentahydroxychalcone 
(cpd_ID: C15525); p-coumaroyl shikimic acid (cpd_ID: 
C02947); hesperetin 7-O-glucoside (cpd_ID: C16422); 
quercetin (cpd_ID: C00389); pinobanksin 3-acetate 
(cpd_ID: C16418); and p-coumaroyl quinic acid (cpd_
ID: C12208) (Fig.  5). Notably, the concentrations of 
chlorogenic acid, 2’,3,4,4’,6’-pentahydroxychalcone, and 
p-coumaroyl shikimic acid significantly increased under 
continuous cropping conditions, with fold changes of 3.3, 
3.0, and 3.9, respectively. Transcriptomics identified two 
DEGs in the flavonoid biosynthetic pathway: the shiki-
mate O-hydroxycinnamoyltransferase genes (SmHTC1 

and SmHTC2) and the flavanol synthase gene (SmFLS). 
Their expression levels were significantly up-regulated 
in replant disease conditions. HCT catalyses consecu-
tive reactions in the flavonoid biosynthetic pathway, con-
verting p-coumaroyl-CoA to p-coumaroyl shikimic acid 
and p-coumaroyl quinic acid. These compounds further 
transform into Caffeoyl shikimic acid, chlorogenic acid, 
and eventually 2’,3,4,4’,6’-pentahydroxychalcone through 
a series of enzymatic steps. The expression of HCT genes 
aligned with the accumulation of downstream metabo-
lites, and both were significantly up-regulated under 
continuous cropping conditions. Flavonoids play a cru-
cial role in plant responses to various environmental 
stressors. Our findings demonstrate that replant diseases 
activate the local flavonoid biosynthetic pathway (p-cou-
maroyl-CoA → p-coumaroyl quinic acid (p-coumaroyl 
shikimic acid) → chlorogenic acid (caffeoyl shikimic acid) 
→ caffeoyl-CoA → 2’,3,4,4’,6’-pentahydroxychalcone), 
with significant up-regulation of two key enzyme genes 
in this pathway. This up-regulation promotes an increase 
in the concentration of metabolites within this pathway.

Fig. 3  Integrated analysis of DAMs and DEGs in S. miltiorrhiza. (A) The nine-quadrant map of metabolites and genes. Each point represents a pair of corre-
lated metabolites and genes with |r| ≥ 0.85 and p value ≤ 0.05. The X-axis represents the log2 (fold change) of the gene, and the Y-axis represents the log2 
(fold change) of the metabolite. (B) Number of DAMs and DEGs in each quadrant. Each row represents a quadrant, corresponding to Q1 to Q9 in (A) from 
bottom to top. Green represents DAMs and red represents DEGs. (C) The KEGG analysis of metabolites. Red represents metabolites in quadrant 3. Green 
represents metabolites in quadrant 7. The X-axis represents the proportion of metabolites in Q3 or Q7 to the total metabolites identified on the pathways
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Verification of gene expression by qRT-PCR
To validate gene expression levels based on RNA-Seq 
data, we conducted qRT-PCR experiments with three 
replicates for each sample. The primer sequences are pro-
vided in Supplementary Table S6. Twelve DEGs involved 
in plant hormone biosynthesis, signal transduction, and 
flavonoid biosynthesis pathways were chosen for valida-
tion. The results revealed up-regulation of genes asso-
ciated with the indole-3-acetic acid and abscisic acid 
biosynthetic pathways, including SmALDH1, SmALDH2, 
SmAmidase1, SmNCED1, SmNCED2, and SmAAO3. 
Additionally, genes participating in plant hormone sig-
nal transduction pathways, such as SmARF and SmABF, 
along with genes in the flavonoid biosynthetic pathway, 
such as SmHTC1, SmHTC2 and SmFLS, were up-regu-
lated under continuous cropping conditions. Generally, 
except for SmALDH2 and SmARF, the gene expression 
profiles obtained through qRT-PCR exhibited a high 
degree of similarity to those derived from the RNA-Seq 
analysis (Fig. 6).

The co-expression network analysis of TFs and DAMs
The transcription factors (TFs) play a pivotal role in the 
management of stress arising from adversity. In the S. 
miltiorrhiza genome, we identified 817 TFs, encompass-
ing 20 distinct types (Fig. S3). To investigate the relation-
ship between TFs and DAMs under normal and replant 
diseased conditions, we performed co-expression net-
work analysis of different families of DAMs and putative 
TFs (|r| ≥ 0.85 and p ≤ 0.05) (Fig. 7). The results showed 
that significantly up-regulated DMAs and significantly 
down-regulated ERF under replant disease had the most 
correlated DAMs. The other identified TFs were bHLH, 
Dof, WRKY, HB, GRAS, HSF, ARR-B, and GATA. These 
TFs were highly correlated with amino acids and deriva-
tives, lipids, phenolic acids, quinones, terpenoids, alka-
loids, flavonoids, organic acids, lignans and coumarins, 
and nucleotides and derivatives. For example, changes 
in the levels of flavonoids were highly correlated with 
changes in the levels of transcription factors bHLH, 
WRKY, HB, MADS, and Dof. In summary, these results 
suggest that the transcriptional regulatory network medi-
ated by TFs including MADS, ERF, bHLH, Dof, WRKY, 

Fig. 4  Expression of DAMs and DEGs in the pathway of plant hormone’s signal transduction and biosynthesis. The indole acetic acid (A) and abscisic acid 
(B) signal transduction pathways. The indole acetic acid (C) and abscisic acid (D) biosynthesis pathways. The DAMs and DEGs were tagged in the pathway. 
Metabolite expression level was represented by colored circles. Gene expression level was represented by colored squares. The color corresponds to the 
Z-score transformed from the values of metabolite or gene
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HB, GRAS, HSF, ARR-B, and GATA has a potential func-
tion in regulating the replant response of S. miltiorrhiza.

Discussion
The diseases associated with replantation hinder the nor-
mal growth and metabolic functions of S. miltiorrhiza, 
significantly impacting its yield and quality. Metabolites 
form the biochemical foundation of plant phenotypic 
variation, exhibiting a wide diversity in stress responses 
[42]. The reconstruction of the metabolome under stress 

is a crucial reflection of adaptive and defensive strate-
gies of a plant [43, 44]. In this study, we conducted a 
comprehensive, widely targeted metabolomic analysis of 
the roots of S. miltiorrhiza grown in both non-continu-
ous and continuous cropping soils, identifying a total of 
1,269 metabolites. The OPLS-DA plot illustrated a dis-
tinct separation between the sample groups, indicating 
significant differences in secondary metabolite composi-
tion attributed to varying soil conditions. In field experi-
ments, using plant pools (10 or 20 plants in one pool) to 

Fig. 5  Expression of DAMs and DEGs in the flavonoid biosynthetic pathway. The metabolites identified in the flavonoid biosynthetic pathway were 
tagged and those that were DAMs were tagged with a red star. Metabolite expression level was represented by colored circles. Gene expression level was 
represented by colored squares. The color corresponds to the Z-score transformed from the values of metabolite or gene
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Fig. 7  Correlation network of TFs and DAMs based on Pearson correlation. Correlation networks of TFs and DAMs up-regulated (A) and down-regulated 
(B) under replant disease condition. Pink circles represent DAMs and green diamonds represent TFs. Pairs of TFs and DAMs with significant positive cor-
relation (|r| ≥ 0.85 and p ≤ 0.05) were connected by a line. The size of the circles and diamonds represents the edge count

 

Fig. 6  Verification of gene expression by qRT-PCR in normal and replant diseased S. miltiorrhiza. The Y-axis represents the relative expression of the gene. 
The efficiency of qRT-PCR reaction for each pair of primers were showed in Table S7. The green column represents normal S. miltiorrhiza, and the red 
column represents replant disease S. miltiorrhiza. The r value on each graph represents the correlation of gene expression calculated by qRT-PCR analysis 
and RNA-Seq methods
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represent an experimental sample can more accurately 
reflect the effects of replanting diseases on plant growth 
and secondary metabolism. However, in this experiment, 
we need to conduct correlation analysis between metabo-
lome and transcriptome, so we chosen to use one plant to 
represent the experimental sample to reflect the one-to-
one correspondence between the metabolic content and 
gene expression in a single plant.

Previous studies on replanting diseases in various spe-
cies have primarily focused on specific metabolite types 
or rhizosphere soil metabolites. For example, changes in 
the concentrations of seven metabolites were compared 
in roses grown in different soils, and root exudates in 
response to ginsenoside stress were detected in Panax 
notoginseng [45, 46]. However, a comprehensive explora-
tion of widely targeted metabolomic alterations within 
plants in response to replantation diseases remains 
unexplored. Consequently, this study provides valuable 
insights into the potential of metabolome remodelling 
across different species when confronted with replanting 
diseases. Soil degradation caused by persistent soil-borne 
pathogens, including bacteria, fungi, and nematodes, 
often initiates plant diseases. Concurrently, the accu-
mulation of auto toxic chemicals around the roots sig-
nificantly contributes to these diseases [47–49]. Adverse 
conditions can induce changes in the concentrations 
and activities of plant hormones, subsequently affect-
ing physiological processes [50]. Our findings reveal a 
notable increase in the levels of indole acetic acid and 
abscisic acid in S. miltiorrhiza roots affected by replant 
disease compared to normal roots. Simultaneously, the 
expression of genes involved in the biosynthetic pathways 
of these two hormones significantly increased, including 
ALDH and Amidase genes for indole acetic acid synthe-
sis, and additional NCED and AAO3 genes for abscisic 
acid biosynthesis. Conversely, the expression of genes 
within the abscisic acid catabolism pathway decreased 
in S. miltiorrhiza with replant disease. This suggests that, 
under stress, S. miltiorrhiza roots respond by modulat-
ing gene expression to promote the accumulation of 
indole acetic acid and abscisic acid. In this experiment, 
the expression levels of identified genes differed among 
individuals of S. miltiorrhiza plants. We believe that this 
is normal and that differences in gene expression levels 
may be caused mainly by genomic differences between 
individuals. Although we showed the gene expression 
profiles of each individual in the figure, we used the aver-
age of three biological replicates in each treatment group 
for differential expression analysis.

Indole acetic acid (IAA) plays a crucial role as an auxin, 
influencing plant growth and development [51]. Key 
TFs involved in auxin signal transduction include ARFs 
and AUX/IAA inhibitors. The AUX/IAA family proteins 
inhibit the expression of auxin-responsive genes, while 

ARFs can either suppress or promote the expression 
of downstream genes. In the context of replant disease, 
expression of SmARF gene was up-regulated, highlight-
ing a complex mechanism for auxin regulation of root 
growth and development under replant stress [52]. 
Abscisic acid (ABA) is an essential hormone that governs 
plant responses to stress and influences various aspects 
of plant development, such as seed sprouting, root archi-
tecture, ageing, and seed maturation [53]. For example, 
ABA can promote auxin biosynthesis, thereby inhibit-
ing primary root elongation in rice [54]. We observed a 
significantly higher concentration of abscisic acid in S. 
miltiorrhiza affected by replant disease, accompanied by 
a substantial elevation in the expression of genes encod-
ing key enzymes in its downstream signal transduction 
pathway, namely SmPP2C and SmABF. The PP2C-PYR/
PYL/RCAR complex and AREB/ABF-SnRK2 are highly 
conserved abscisic acid signal transduction pathways 
that positively regulate abscisic acid/stress signalling 
[55]. Under unfavourable conditions, plants may pro-
duce more abscisic acid, facilitating bonding between 
PYR/PYL and PP2C, leading to the dissociation of the 
SnRK2-PP2C-SnRK1 complex, activation of SnRK1, inhi-
bition of target of rapamycin activity, and suppression 
of growth [56]. We hypothesise that in S. miltiorrhiza 
under replant disease stress, the increased expression of 
abscisic acid synthesis genes and the substantial accumu-
lation of abscisic acid may inhibit root growth and devel-
opment. Further research is necessary to fully elucidate 
these complex signalling mechanisms and their impact 
on plant health and resilience.

Flavonoids, a class of polyphenolic compounds, con-
stitute key secondary metabolites in plants [57, 58]. They 
serve various functions, including antioxidant activity, 
ultraviolet protection, and defence against both biotic 
and abiotic stresses [58]. In our current investigation, 
we identified 98 flavonoid compounds in S. miltiorrhiza. 
Existing research suggests that environmental stress 
can stimulate the synthesis and accumulation of specific 
flavonoids in plants. For example, under mild drought 
stress, Senna obtusifolia exhibits significant accumula-
tion of naringenin and emodin. Similarly, in response to 
salt stress, sorghum demonstrates increased concentra-
tions of flavonoids along with enhanced expression of 
their biosynthetic genes [23, 59]. We observed similar 
phenomena in replant-diseased S. miltiorrhiza. Not only 
did the concentration of flavonoids change significantly, 
but we also noted significant alterations in the upstream 
compounds and genes within the flavonoid biosynthetic 
pathway. Noteworthy compounds include 2’,3,4,4’,6’-pen-
tahydroxychalcone, its precursor chlorogenic acid, 
and p-Coumaroyl shikimic acid. These changes are 
significant in the context of replant diseases, which 
involve intricate interactions among plants, auto toxic 
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substances, and microorganisms. Both chlorogenic acid 
and 2’,3,4,4’,6’-pentahydroxychalcone are known for their 
antimicrobial activity [60, 61]. Chlorogenic acid exhibits 
antifungal properties against plant pathogenic fungi such 
as Fusarium nucleatum, Colletotrichum capsici, Alter-
naria dianthi, Botrytis cinerea, and Cercospora sojina, 
completely preventing spore germination or inhibit-
ing fungal growth [62–64]. In S. miltiorrhiza affected by 
replant disease, we observed a substantial accumulation 
of chlorogenic acid and pentahydroxyflavones. This accu-
mulation may play an inhibitory role against pathogenic 
microorganisms, and further experimental validation is 
warranted.

Conclusions
To the best of our knowledge, this study represents the 
first comprehensive analysis of the metabolome and tran-
scriptome of S. miltiorrhiza. We elucidated the intricate 
relationship between changes at the metabolite and tran-
script levels during the plant’s response to replant dis-
ease. Notably, our findings indicate the activation of two 
key pathways—plant hormone signal transduction and 
flavonoid metabolite biosynthesis—under replant dis-
ease stress. Metabolites and genes associated with these 
biosynthetic and signal transduction pathways exhibited 
significant up-regulation. This foundational research 
deepens our insights into the roles of hormones and fla-
vonoids in replant diseases and provides valuable infor-
mation for the selection of new, resistant varieties of S. 
miltiorrhiza.
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