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Abstract
Background Wild emmer wheat is a great candidate to revitalize domesticated wheat genetic diversity. Recent years 
have seen intensive investigation into the evolution and domestication of wild emmer wheat, including whole-
genome DNA and transcriptome sequencing. However, the impact of intraspecific hybridization on the transcriptome 
of wild emmer wheat has been poorly studied. In this study, we assessed changes in methylation patterns and 
transcriptomic variations in two accessions of wild emmer wheat collected from two marginal populations, Mt. 
Hermon and Mt. Amasa, and in their stable F4 hybrid.

Results Methylation-Sensitive Amplified Polymorphism (MSAP) detected significant cytosine demethylation in F4 
hybrids vs. parental lines, suggesting potential transcriptome variation. After a detailed analysis, we examined nine 
RNA-Seq samples, which included three biological replicates from the F4 hybrid and its parental lines. RNA-Seq 
databases contained approximately 200 million reads, with each library consisting of 15 to 25 million reads. There 
are a total of 62,490 well-annotated genes in these databases, with 6,602 genes showing differential expression 
between F4 hybrid and parental lines Mt. Hermon and Mt. Amasa. The differentially expressed genes were classified 
into four main categories based on their expression patterns. Gene ontology (GO) analysis revealed that differentially 
expressed genes are associated with DNA/RNA metabolism, photosynthesis, stress response, phosphorylation and 
developmental processes.

Conclusion This study highlights the significant transcriptomic changes resulting from intraspecific hybridization 
within natural plant populations, which might aid the nascent hybrid in adapting to various environmental 
conditions.
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Background
Wheat is one of the most important crops for human 
consumption, playing a significant role in global food 
production [1]. Ensuring a higher yield of wheat is cru-
cial to maintaining global food security [2]. Global wheat 
production in 2021 reached 777  million tons according 
to the Food and Agriculture Organization of the United 
Nations (http://www.fao.org/faostat/en/#home). Modern 
agriculture prioritizes pure breeding, leading to a narrow 
gene pool among wheat species despite high yield [3–5]. 
The loss of genetic diversity in wheat has increased vul-
nerability to diseases, pests, and climate change, posing 
a threat to communities and countries [4–7]. Without 
adaptation to climate change, crop production is pre-
dicted to decrease with a 2 °C temperature increase from 
late 20th-century levels, according to the IPCC [8]. Dur-
ing certain wheat growth stages, drought can cause up 
to a 92% loss in yield [9]. Moreover, certain diseases like 
Ug99 (a highly virulent race of stem rust fungus), a fun-
gal infection that caused severe damage to wheat culti-
vation in Africa and the Middle East, pose a significant 
danger to global food security, and adversely affect wheat 
growth, leading to a massive impact on food security and 
human health all around the world.

A potential source to revive genetic diversity in domes-
ticated wheat is wild emmer wheat (Triticum turgidum 
ssp. dicoccoides), one of the progenitors of modern wheat. 
The genetic diversity of wild emmer wheat has been pre-
served, allowing it to remain adaptive to various environ-
mental and biotic stressors [3, 10, 11]. The high genetic 
diversity of wild emmer wheat makes it a crucial subject 
for crop research, as it provides highly sought-after traits 
and mechanisms for environmental adaptation and stress 
resistance.

In Israel, the wild emmer’s habitat spans from Mt. 
Hermon to Mt. Amasa in the Judean Desert [12, 13]. 
Although it is geographically small, this region boasts a 
diverse range of habitats, each with its unique ecologi-
cal conditions. These habitats vary in elevation, rang-
ing from 200  m below sea level in the Jordan Valley to 
1600  m above sea level at Mt. Hermon. Additionally, 
they differ in soil types, temperatures, and other biotic 
and abiotic conditions [12, 14]. Previous studies have 
primarily focused on the genetic diversity of wild emmer 
wheat populations within Israel, at both macro and micro 
scales, with findings suggesting correlations between 
genetic diversity, ecological traits, and geographical loca-
tion [10, 11, 13, 15–17]. The distribution of wild emmer 
wheat populations in Israel was influenced by popula-
tion position (core or marginal) and size [13]. Addition-
ally, studies on Israeli emmer populations have revealed 
non-random genetic differentiation linked to soil, topog-
raphy, and climate at both single and multi-locus levels 
[10]. Finally, the study by Venetsky et al., (2015) detected 

population-specific methylation patterns in the whole 
genome and around transposable elements in five geo-
graphically isolated populations in Israel. Furthermore, 
these population-specific methylation patterns were heri-
table and passed down from the first to the second gen-
eration. Together with the phenotypic plasticity of wild 
emmer wheat and its population spread across a wide 
range of habitats in Israel, these findings suggest underly-
ing adaptive genetic and epigenetic mechanisms.

Whole-genome sequencing breakthroughs have greatly 
improved the sequencing of wheat genomes. The draft 
sequence of wild emmer wheat [18] provided an oppor-
tunity to investigate and assess transcriptomic changes 
within natural populations, revealing functional adapta-
tions to different environments. For example, Yin et al. 
[19]. , identified and isolated a single dominant powdery 
mildew resistance gene from the wild emmer wheat natu-
ral population found at Mt. Carmel in Israel, showing the 
possibilities and opportunities for domesticated wheat 
improvement can be found in the wild emmer wheat.

In this study, we aimed to explore changes in meth-
ylation patterns and transcriptomic variations in wild 
emmer wheat accessions and their hybrid. We selected 
parental lines from marginal Israeli wild emmer wheat 
populations - Mt. Hermon and Mt. Amasa - and their 
stabilized F4 hybrid. To determine the changes in epig-
enomic patterns, we utilized MSAP (Methylation-Sen-
sitive Amplified Polymorphism), which is a modified 
version of the typical AFLP, to estimate methylation 
patterns on a genome-wide scale. For analyzing tran-
scriptomic variations, we conducted RNA-Seq analysis. 
We then characterized the differentially expressed genes 
between the parental lines and their F4 hybrid at the 
molecular level. Additionally, we analyzed and discussed 
the functions and biological pathways of the differentially 
expressed genes.

Results
Phenotypic assessments in hybrids vs. parental lines
Plant height, seed yield, and spike number were analyzed 
in this study in the parental lines and the F4 hybrid. The 
F4 hybrid had intermediate seed yield and spike number 
but was significantly taller than the parental lines (Fig. S1, 
Additional file 2). The plant height was measured once a 
month for three months. Measurements started around 
Feekes 3.0–4.0 level when at least 3–5 tillers were visible. 
Height was measured from ground to edge of the high-
est tiller or edge of the canopy, excluding spikes. Hight 
measurements of F4 were significantly higher than all 
the parental lines. In addition, chlorophyll content was 
measured in fresh leaf tissues. This analysis used nine leaf 
samples from parental groups and an F4 hybrid (3 biolog-
ical replicates from each plant). Total chlorophyll content 
averaged at 0. 1 ± 0.006 in Mt. Amasa, 0.1 ± 0.01 in Mt. 
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Hermon, and 0.11 ± 0.01 in F4 hybrid (Fig. S2, Additional 
file 2). To this end, no significant differences were seen 
between parental lines and the F4 hybrid.

Cytosine methylation status in parental lines and their 
hybrid
Cytosine methylation patterns were examined to deter-
mine whether significant epigenetic alterations exist 
between hybrids and parental lines. We utilized MSAP 
to determine the cytosine methylation status at CCGG 
sites. Our study involved the analysis of twelve plants to 
compare the methylation differences between parental 
lines and F4 hybrid. For each group of the the parental 
lines, Mt. Hermon and Mt. Amasa, and the F4 hybrids, 
we conducted four biological replicates,. To this end, we 
conducted three MSAP reactions using different selective 
primer combinations of EcoRI/MspI and EcoRI/HpaII 
(primer sequences are listed in Table S1, Additional file 
1).

In each MSAP reaction, we analyzed 200–300 peaks 
comprising 740 CCGG sites (265 bands in primer pair 
E-ACA/HM-TCAA, 200 bands in primer pair E-ACT/
HM-TCAA, and 275 bands in primer pair E-ACC/HM-
TCAA). Methylation levels were calculated by dividing 
the number of polymorphic bands between treatments 
(HpaII and MspI) by the total band count. The presence 
of a monomorphic MSAP site in both MspI and HpaII 
patterns indicates an unmethylated CCGG site. Poly-
morphic bands are observed when a band appears in the 
MspI pattern, but not in the HpaII pattern. This indi-
cates that the internal cytosine in that particular CCGG 
site is methylated. Conversely, when a band appears in 
the HpaII pattern, but not in the MspI pattern, it indi-
cates that the external cytosine in the same CCGG site 
is methylated in one of the DNA strands. This is known 
as hemi-methylation status. Note that methylation of 
both cytosines at the CCGG site prevents PCR amplifica-
tion in both MspI and HpaII patterns. Using HpaII pat-
terns, we observed that global methylation patterns in 
hybrids were intermediate between both parental lines 
(see supplemental Fig. S3, Additional file 2 ) The Hermon 
parental line had an average cytosine methylation level 
of ∼ 85.6%, while the Amasa parental line had an aver-
age methylation level of ∼ 82.4% (see Table S2, Additional 
file 1). The methylation level in F4 hybrids was approxi-
mately ∼ 74.5%, suggesting demethylation of CCGG sites 
in hybrids compared to parents. This may be associated 
with higher genome expression.

Alterations in DNA methylation patterns at specific 
CCGG sites were identified by analyzing the difference 
in band composition between parental lines and hybrids. 
To illustrate, a polymorphic band that was present only 
in the parental lines and not in F4 hybrids was consid-
ered a demethylation event in the F4 hybrids. Conversely, 

a polymorphic band found only in F4 hybrids indicated a 
hypermethylation event (see supplemental Fig. S4, Addi-
tional file 2 for an example of such alteration). Detailed 
analysis showed demethylation of 50 CCGG sites and 
hypermethylation of 26 sites in the F4 hybrid, indicating 
a significant decrease in methylation.

Transcriptome analysis in the parental lines and their F4 
hybrid
To evaluate transcriptome changes in wild emmer wheat 
hybrids and their parental lines, we performed RNA-Seq 
analysis on an F4 hybrid and its parents.

Library quality
Leaf total RNA samples collected from the parental lines, 
Mt. Hermon (MH) and Mt. Amasa (MA), as well as their 
F4 hybrid, were fully sequenced. To obtain comprehen-
sive coverage and perform accurate statistical analysis, 
we sequenced three biological replicates of the leaves 
simultaneously. As part of this effort, we collected RNA-
Seq data from 9 libraries (3 from each of the two parents 
and 3 from the F4 hybrid), with each library containing 
between 15 and 25  million reads, resulting in a total of 
approximately 200 million reads. Alignment of the RNA-
Seq data to the reference RNA-seq data of WEWSeq 1.0 
acc. Zavitan resulted in a mapping rate of approximately 
82% for each of the three libraries. A total of 62,490 genes 
were identified in the parental and hybrid libraries, with 
∼ 38,000 genes in common.

Variations in gene expression patterns
The study used Principal Component Analysis (PCA) to 
compare the gene expression patterns between the paren-
tal lines and their F4 hybrid. The analysis was conducted 
on normalized gene counts of more than 38,000 genes 
identified through RNA-Seq. The results showed that the 
first and second components (PC1 and PC2) explained 
63.38% and 21.53% of the total variation in the transcrip-
tome (Fig.  1). PCA analysis separates the parental lines 
and F4 hybrid (Fig. 1). F4 hybrid was positioned between 
the parental lines on the PC1 axis, but appeared less simi-
lar to them on the PC2 axis (Fig. 1). It was observed that 
the main differences within the groups were found in F4 
and Mt. Amasa. On the PC1 and PC2 axes, Mt. Amasa 
showed the most significant variation within the group, 
which was more pronounced on the PC1 axis. On the 
other hand, F4 exhibited relatively high variation within 
the group over the PC2 axis. This within-group variation 
was also noticed when differentially expressed genes were 
analyzed. In addition, the heatmap (Fig. 2) displaying the 
total transcriptome expression value per sample sup-
ported the PCA analysis. The heatmap suggests that the 
F4 hybrids are positioned between the parental lines and 
are slightly closer to Mt. Hermon. Moreover, it highlights 
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the within-group variation observed in both F4 and Mt. 
Amasa to a greater extent.

Differentially expressed genes between parental lines vs. 
F4 hybrid
Differential expression analysis was performed using 
DESeq2. It is important to note that significant differen-
tial expression levels between groups were considered 
to be ∼ 2-fold or more. In total, 6602 genes showed dif-
ferential expression between the parental lines and the 
F4 hybrid. Out of these, 3679 genes showed differential 
expression between the Mt. Hermon line and the F4 
hybrid, while 2311 genes showed differential expression 
between the Mt. Amasa line and the F4 hybrid. Addition-
ally, 612 genes demonstrated similar expression levels in 
both parental lines, while different expression levels were 
observed in the F4 hybrid.

ClusterGap analysis [20] of 6602 differentially 
expressed genes in parental lines vs. F4 hybrids revealed 
eight patterns of clusters (Fig.  3). Each cluster repre-
sents a group of genes with similar expression patterns 
in the parental lines and F4 hybrid (Fig. 3). Overall, the 
eight clusters can be classified into four expression pat-
tern categories: (1) Clusters 1, 3, 4, and 5 consists of 3576 
genes that show under-expression in one parental line vs. 
F4 hybrid (Figs. 3 and 4a). (2) Clusters 2 and 8 consists 

of 2414 genes overexpressed in one parental line vs. F4 
hybrid (Figs. 3 and 4c). (3) Cluster 6 consists of 362 genes 
under-expressed in both parental lines vs. F4 hybrid 
(similar expressions in both parents) (Figs. 3 and 4b). (4) 
Cluster 7 consists of 250 genes overexpressed in both 
parental lines vs. F4 hybrid (similar expressions in both 
parents) (Figs. 3 and 4d).

SNPs detection between parental lines vs. hybrids
We used the GATK variant calling to identify differences 
in Single Nucleotide Polymorphisms (SNPs) between 
the parental lines and their hybrid. After filtering, we 
obtained 13,170 high-quality SNPs (HQ SNPs) with an 
overall GQ > 15 across all samples. Out of these, 5,818 
SNPs were found in the Mt. Amasa parental line and 
7,291 SNPs were found in the Mt. Heromn parental line. 
Due to the small sample size, we only considered SNPs 
that matched all three samples per group. In total, we 
found 1,403 SNPs in 477 differentially expressed genes.

The clusters 1, 4, 5 of Mt. Hermon showed overexpres-
sion, while cluster 2 showed underexpression. The largest 
SNP groups, consisting of 641 and 312 SNPs, were asso-
ciated with over and under-expressed genes respectively. 
These SNPs were linked to 273 and 113 genes for over 
and under-expressed genes, respectively. In Mt. Amasa, 
clusters 8 and 3 displayed over and under-expressed 

Fig. 1 PCA plot of F4 hybrids and Mt. Amasa (MA) and Mt. Hermon (MH) parental lines. PCA was generated from over 38,000 genes identified through 
RNA-Seq. PC1 explains 64% of the variance, separates between the groups F4 and parental lines. PC2 explains that 20% of the variance separates between 
parental lines and F4 hybrid
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genes. The SNPs linked with these genes numbered 194 
and 151, respectively, and were associated with 73 and 
57 genes. F4 had clusters 6 and 7, with upregulated and 
downregulated genes respectively. These clusters had 38 
and 67 SNPs each, linked with 18 genes in each group. 
SNPeff was used to assign SNPs to their respective genes 
and then rank each SNP based on its possible effect on 
those genes. Out of the total SNPs, 642 had a predicted 
low impact on genes (synonymous SNPs), 303 SNPs had 
a moderate impact on genes (non-synonymous SNPs), 6 
SNPs had a high effect on genes (premature stop codon), 
and 452 SNPs were predicted to be modifier SNPs (SNPs 
found in UTR).

After that, we examined whether the SNPs matched 
the expression pattern revealed by the differential expres-
sion analysis. We considered SNPs matched SNPs only if 
they were foundin line with expression patterns. Specifi-
cally, SNPs in genes overexpressed in Mt. Hermon (clus-
ters 1, 4, and 5) were only found in Mt. Hermon samples 
but not in F4 and Mt. Amasa samples, or only in F4 and 
Mt. Amasa but not in Mt. Hermon. To this end, out of 

the 1403 SNPs that were observed, 1024 (73%) matched 
with the expression patterns. Mt. Hermon over and 
under-expressed clusters had 20–30% unmatched SNPs 
(clusters 1,4,5, and 2, respectively), while Mt. Amasa over 
and under-expressed clusters (3 and 8, respectively) had 
less than 1% unmatched SNPs. The F4 over and under-
expressed clusters (6 and 7, respectively) had approxi-
mately 90% unmatched SNPs (Fig. S5, Additional file 2).

Gene annotations and functional analysis
We used the gene annotation data, publicly available for 
WEWSeq 1.0 acc. Zavitan genome, as a reference to ana-
lyze the differentially expressed genes in both parental 
lines and F4 hybrid. To understand the gene functions 
and biological pathways, we performed a Gene Ontol-
ogy assessment using SEA analysis in agriGO v2.0 [21]. 
To this end, 2680 genes were annotated and significantly 
classified into; biological processes (BP), cellular compo-
nents (CC), and molecular function (MF) pathways (Fig. 
S6, Additional file 2). Overexpressed genes in Mt. Amasa 
parents (cluster 8) were associated with 25 BP GO terms, 

Fig. 2 Heatmap of Euclidian distance between samples. Samples (F4 hybrids, Mt. Amasa (MA), and Mt. Hermon (MH) parental lines) from each group 
were sorted by hierarchical clustering (top). Color corresponds with similarity. Dark blue indicates high similarity, while light blue indicates low similarity
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while under-expressed genes (cluster 3) were associated 
with 2 BP, 29 MF, and 7 CC GO terms (Fig. S6, Addi-
tional file 2). Overexpressed genes in Mt. Hermon par-
ents (clusters 1,4 and 5) were associated with 152 BP, 73 
MF, and 7 CC terms, while under-expressed genes (clus-
ter 2) were associated with 6 BP and 1MF terms (Fig. S6, 
Additional file 2). Overexpressed genes in the F4 hybrid 
(cluster 6) were associated with 4 BP, 32MF, and 3 CC 
terms (Fig. S6, Additional file 2). To visualize the differ-
ence in specific GO terms between parental lines and 
F4 hybrid genotypes, we used over and under-expressed 
enriched GO categories from clusters 1,2,3,4,5, 6, and 8 
to run a REVIGO analysis, which summarizes GO results 
by removing redundant terms and providing graph-based 
visualization [21].

In the biological processes class (BP), significant GO 
terms associated with the under-expressed genes in one 
parental line vs. F4 hybrid (clusters 1, 3, 4, and 5) were 
annotated as photosynthesis-related (GO:0019685), 
dark reaction (6 genes), defense response (GO:0006952, 
78 genes), protein phosphorylation (GO:0006468, 194 
genes), ncRNA metabolic process (GO:0034660, 89 

genes), protein-DNA complex assembly (GO:0065004, 
22 genes) and ribonucleoprotein complex biogenesis 
(GO:0022613, 76 genes) (Fig.  5a, Fig. S7b-d, Additional 
file 2). Overexpressed genes in one parental line vs. F4 
hybrid (clusters 2 and 8) were annotated as response 
to hexose (GO:0009746), nucleotide phosphorylation 
(GO:0046939, 15 genes), defense response (GO:0006952, 
83 genes), response to hexose (GO:0009746, 13 genes), 
and defense response to fungus (GO:0050832, 27 genes) 
(Fig. 5b, Fig. S7a, Additional file 2). Finally, overexpressed 
genes in the F4 hybrid (cluster 6) were annotated as pho-
tosynthesis light reaction (GO:0019684, 15 genes) (Fig. 
S7e, Additional file 2).

In the molecular function class (MF), significant GO 
terms associated with under-expressed genes in one 
parental line vs. F4 hybrid (GO terms were found only 
in clusters 1, 3, and 5) were annotated as phosphotrans-
ferase activity, alcohol group as acceptor (GO: 0016773, 
244 genes), purine nucleoside binding (GO:0001883, 481 
genes) (Fig.  5d, Fig. S8a, b, Additional file 2). Overex-
pressed genes in the F4 hybrid (cluster 6) were annotated 
as electron transporter, transferring electrons within 

Fig. 3 Clustered differentially expressed gene expression by samples. Differential expression analysis revealed a total of 6602 differentially expressed 
genes among samples. K-mean analysis was performed on a Z-score scaled rlog transformed expression data. Each line represents the mean expression 
pattern of samples per cluster. Y-axis represents the Z-score scaled rlog transformed expression level. Sample names are on the X-axis. MH – Mt. Hermon 
samples, MA – Mt. Amasa samples
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the cyclic electron transport pathway of photosynthesis 
activity (GO:0045156, 6 genes) and chlorophyll-binding 
(GO:0016168, 8 genes) (Fig. 4c).

In the cellular component class (CC), GO terms were 
found only in genes associated with under-expressed 
genes in one parental line vs. F4 hybrids (GO terms 

were found only in clusters 1 and 3) and overeex-
pressed genes in F4 hybrid (cluster 6). Genes under-
expressed in one parental line were annotated as 
photosystem I (GO:0009522, 15 genes) and membrane 
part (GO:0044425, 199 genes), and protein-DNA com-
plex (GO:0032993, 21 genes) (Fig. S9 a, b, Additional file 

Fig. 4 Examples of expression patterns of the four cluster categories. Y-axis notes normalized average counts for each group taken from DESeq2. A. Gene 
TRIDC1AG025480 encodes to a protein associated with plant basic secretory protein (BSP) family related with defense response. This gene belongs to 
cluster 1, under-expressed genes in Mt. Hermon compared to F4. B. Gene TRIDC2BG018130 encodes to a protein associated with photosystem II. This 
gene belongs to cluster 6, under-expressed in both parental lines compared to F4. (C) Gene TRIDC1AG036170 is an orthologue of genes encoding to 
Annexin superfamily protein associated with stress response. This gene belongs to cluster 8, Overexpressed in Mt. Amasa compared to F4. (D) Gene 
TRIDC2AG021310 encodes to a protein associated with sucrose synthase activity. This gene belongs to cluster 7, overexpressed in both parental lines 
compared to F4
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2). Under-expressed genes in the F4 hybrid were anno-
tated as photosystem II (GO:0009523, 8 genes). Note 
that a detailed list of all annotated genes can be found in 
Additional file 3 and Fig. S5, Additional file 2.

Discussion
Wheat production has hit breaking record yields thanks 
to the implementation of modern agricultural and pure 
lines breeding programs. However, growing world-
wide food demand requires constant improvement and 
increases in wheat production [22]. An important factor 
hindering the attempt to increase wheat yield is the nar-
row and homogeneous gene pool among domesticated 

wheat species, making wheat more susceptible to dis-
eases, pests, and climate change [3–5, 22]. In the past few 
decades, scientists have looked to the wild ancestors of 
wheat, like wild emmer wheat, as potential sources for 
rejuvenating the genetic diversity of cultivated wheat. 
The significant potential of wild emmer wheat in pro-
viding crucial genes for enhanced yield, adaptability to 
various environmental conditions, and resilience against 
both biotic and abiotic stressors has gained widespread 
recognition. In addition, the recent breakthroughs in the 
whole-genome sequencing [6] and the whole-genome 
assembly of the wild emmer wheat genome [18] have 
provided an opportunity to investigate and assess the 

Fig. 5 Significantly enriched GO categories were projected onto a two-dimensional semantic space using REVIGO. Color intensity reflects the signifi-
cance of the enrichment test, with dark colors corresponding to lower P values and white to P closer to 0.05. Circle size indicates the frequency of the GO 
term in the underlying GOA database (bubbles of more general terms are larger). Revigo assigns names to bubbles representing terms with low dispens-
ability value, meaning non-redundant terms concerning semantically close terms. A. BP in cluster 1, Under expressed in Mt. Hermon. B. BP in cluster 8, 
Overexpressed in Mt. Amasa. C. MF in cluster 6, Under expressed in both parental lines. D. MF in cluster 5, Under expressed in Mt. Hermon
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transcriptomic changes and reveal functional changes 
within wild emmer wheat.

In this novel research, changes in methylation patterns 
and transcriptomes were analyzed in two distinct natural 
populations of wild emmer wheat—Mt. Hermon and Mt. 
Amasa—as well as in their genetically stable F4 hybrid. 
These populations represent the cold and hot edge spread 
of wild emmer wheat populations in Israel and face dif-
ferent environmental challenges. Understanding the 
underlying mechanism of these populations’ specific 
adaptations has been an essential goal in wheat research 
throughout the years [4, 5, 11, 23]. Our objective was to 
investigate alterations in methylome and transcriptome 
levels, as well as identify differentially expressed genes 
and pathways. This analysis aimed to provide deeper 
insights into how functional variation contributes to the 
adaptation of wild emmer wheat to diverse habitats. We 
observed a notable reduction in methylation levels in the 
F4 hybrids when compared to the parental lines. Fur-
thermore, we pinpointed 6602 genes that exhibited dif-
ferential expression between Mt. Hermon, Mt. Amasa, 
and their F4 hybrid. Gene ontology analysis associated 
these genes with photosynthesis, defense response, and 
phosphorylation.

DNA methylation status in parental lines vs. hybrids
Reduced methylation levels, known as demethylation, 
have been linked to various factors including responses 
to environmental stresses, defense mechanisms, activa-
tion of transposable elements, and gene expression [24, 
25]. The presence of environmental stressors can disrupt 
the normal growth and development of plants, prompt-
ing adjustments in genomic DNA methylation levels as a 
responsive mechanism to counteract the stress [26, 27]. 
In rice (Oryza sativa), it has been reported that drought 
stress triggers widespread alterations in the level of DNA 
methylation across the genome [27]. In maize, methyla-
tion levels were observed to decrease by 1.0–2.2% under 
cold stress [26]. A reduction in methylation can also take 
place following a ‘genomic shock’, as seen in events like 
hybridization or allopolyploidization [28]. As an illus-
tration, in maize, hybrids derived from two inbred lines 
exhibited decreased methylation levels in comparison to 
their corresponding inbred counterparts, with the high-
est degree of demethylation observed in the hybrids 
[29]. Similarly, in this study, the methylation levels in 
the F4 hybrids were found to be lower compared to the 
parental lines. Upon our evaluation of the overall meth-
ylation changes at CCGG sites, we observed a greater 
number of demethylation events in the F4 hybrid com-
pared to hypermethylation events. Research conducted 
on soybeans has shown that the greater the reduction in 
methylation levels, the more pronounced its impact on 
gene expression levels [30]. In this study, we observed 

a reduction in methylation levels, leading to a higher 
occurrence of demethylation events in the F4 hybrids 
when compared to their parental lines. These results sug-
gest a potential elevation in gene expression. Neverthe-
less, it’s important to note that we did not directly assess 
the impact of methylation decrease on gene expression in 
this study.

Transcriptome variation
Through a comprehensive examination of genetic diver-
sity and a differential expression analysis, our objective 
was to discern the influence of each parental lineage on 
hybrid gene expression. Various models have been pro-
posed to anticipate this effect. The additive genetic model 
posits that gene expression is equally inherited from both 
parents, resulting in intermediate expression levels in the 
hybrid. On the other hand, the dominance genetic model 
proposes that expression levels are determined by spe-
cific alleles, resulting in similarity to one of the parental 
lineages [31–33]. Additional models, such as the parental 
effect model, propose that gene expression in hybrids is 
governed by parental mechanisms like maternal provi-
sioning or genomic imprinting. Consequently, it resem-
bles the gene expression pattern of either the maternal 
or paternal lineage [32, 34]. Despite our main focus not 
being the determination of the most fitting model for this 
case study, it is apparent that the overall genetic diver-
sity of the F4 hybrid lies between that of both parental 
groups, signifying an intermediate state (Fig.  1). In our 
examination of differential expression, we found that 
both the Mt. Amasa group and F4 exhibited a higher 
count of genes displaying notable expression variations, 
encompassing both overexpression and underexpres-
sion, as opposed to the Mt. Hermon group. Notably, the 
most prominent cluster of differentially expressed genes 
was the underexpressed category in Mt. Hermon, which 
comprised three distinct clusters (1,4 and 5, Fig.  4). 
This set of 2,433 genes accounts for 37% of the differen-
tially expressed genes. These findings align more closely 
with the additive or parental effect models rather than 
the overdominance model. This is because the hybrid 
exhibited a relatively modest number of differentially 
expressed genes when compared to both parental lines 
(clusters 6 and 7). While we may not have definitively 
identified the most fitting model, it is evident that while 
the F4 hybrid overall genetic diversity was intermediate 
between both parental groups (Figs. 1 and 2), its differen-
tially expressed genes displayed a distinct expression bias 
towards the paternal line, Mt. Amasa.

SNPs in differentially expressed genes
Employing SNPs (Single Nucleotide Polymorphisms) is a 
crucial methodology in genetics, breeding, as well as eco-
logical and evolutionary research. SNPs serve to create 
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genetic markers, uncover cis-regulatory variations, and 
pinpoint genes linked to particular genetic traits. The uti-
lization of RNA-seq data for SNP identification, although 
a relatively recent approach, offers several advantages. 
Firstly, it enables the identification of thousands of SNPs 
that are correlated with the expression levels of func-
tional genes. Secondly, these SNPs can be linked to bio-
logical traits and used to evaluate phenotypes based on 
genotype. Finally, this method proves to be cost-effective 
in comparison to other approaches [35, 36].

However, it’s important to note that when utilizing 
RNA-seq data for variant calling and SNP identification, 
researchers should be mindful of the potential for false 
positives and the necessity for high-quality sequencing. 
The precision of SNP discovery is significantly influenced 
by factors such as pair-end/single-end sequencing and 
the length of reads [36].

To mitigate these challenges, we implemented stringent 
and cautious filtering protocols in this study. Addition-
ally, our analysis was grounded in the well-established 
relationships between parental groups and hybrids, 
further bolstering the validity of each identified SNP. 
Moreover, we consider the identification of SNPs within 
differentially expressed genes as a preliminary indication, 
providing a solid foundation for subsequent research and 
identification efforts. We aimed to determine if SNPs 
within these genes exhibit a correlation with expression 
patterns. Our results demonstrated a notable correlation 
between the expression patterns and the SNPs identified 
in differentially expressed genes specific to one parental 
line (clusters 1, 2, 3, 4, 5, and 8). Notably, SNPs in the F4 
hybrids consistently originated from one parental line, 
and we did not observe any entirely new SNPs in the F4 
hybrids.

Hybridization effects
In natural populations, hybridization constitutes a sig-
nificant evolutionary mechanism capable of augment-
ing populations. It achieves this by introducing adaptive 
traits, generating novel lineages, bolstering overall 
genetic diversity, and engendering heightened pheno-
typic traits a phenomenon commonly referred to as het-
erosis or hybrid vigor [37, 38]. Although hybrid vigor is 
known to be greatly reduced after the first generation, 
studies have shown that DNA methylation changes asso-
ciated with small interfering RNAs in hybrids can influ-
ence gene expression patterns related to growth and 
stress responses, potentially extending the benefits of 
hybrid vigor beyond the F1 generation [39, 40]. Addi-
tionally, hybridization can catalyze the development of 
more robust reproductive barriers, ultimately culminat-
ing in population isolation. This is achieved through the 
creation of sterile or necrotic hybrids, which hinder gene 
flow and foster genetic divergence between populations 

[37, 38]. To assess the functionality of genes impacted 
by hybridization, we employed Gene Ontology (GO) 
annotation analysis (Fig. 5, Fig. S6-S9, Additional file 2). 
Our findings indicate that hybridization between acces-
sions from Mt. Amasa and MH populations may have an 
impact on defense response, photosynthesis, phosphory-
lation, as well as DNA and RNA metabolism. Notably, 
hybrids exhibited expression patterns similar to those of 
Mt. Amasa in the subset of differentially expressed genes 
that were under-expressed in Mt. Hermon (clusters 1, 4, 
5, Fig. 4). The identified genes were linked to critical pro-
cesses such as photosynthesis (specifically the dark reac-
tion), stress response, DNA and RNA metabolism, and 
developmental processes. These terms suggest enhanced 
resilience and adaptability in hybrids, potentially offering 
increased stress tolerance and metabolic capabilities. For 
example, an increase in carbon fixation and photosynthe-
sis [40] indicates potential improvements in growth and 
energy utilization [41], which are crucial for plant sur-
vival under diverse environmental conditions.

It is possible that the Mt. Amasa parental line can trans-
mit these beneficial traits through hybridization (Fig. S7c, 
d, Additional file 2). Conversely, the Mt. Hermon line pri-
marily transmitted traits linked to the MF classification 
associated with nucleic binding and enzymatic activity. 
Terms such as tRNA binding (GO:0000049), methio-
nine-tRNA ligase activity (GO:0004825), and nucleotide 
binding (GO:0000166) suggest improvements in protein 
synthesis and general metabolic efficiency [42]. (Fig. S9b, 
Additional file 2). Morover, the F4 hybrid did not exhibit 
any reduced expression levels of advantageous traits 
when comparing differentially expressed genes against 
both parental lines (cluster 7). Additionally, the F4 hybrid 
displayed high expression levels in genes associated with 
photosynthesis (GO:0015979 and GO:0019684) and pro-
tein-chromophore linkage (GO:0018298) (cluster 6, Fig. 
S7e, Additional file 2), in hybrids compared to parental 
lines which suggest an increase in photosynthetic effi-
ciency and light-utilization mechanisms. increased pho-
tosynthesis indicates that hybrids may achieve higher 
rates of carbon fixation and more effective energy con-
version [43]. Additionally, improved protein-chromo-
phore interactions imply advanced capabilities in light 
sensing [44]. These findings indicate that the F4 hybrid 
might demonstrate some vigorous traits associated with 
photosynthesis. However, the phenotypic examinations 
conducted during the study did not detect differences in 
chlorophyll content between the F4 hybrids and parental 
lines (Fig. S2). The lack of observable differences in chlo-
rophyll content does not rule out the possibility of other 
differences in photosynthetic processes in the F4 hybrids, 
suggesting that further detailed examinations are neces-
sary to uncover this potential.
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Conclusions
To sum up, intraspecific hybridization within natural 
plant populations, particularly in wild emmer wheat, 
has been a relatively understudied area. This study 
delves into the impact of hybridization on methylation 
alterations, transcriptome-wide changes, differentially 
expressed genes, and associated pathways. We observed 
a decrease in methylation levels in hybrids, although we 
couldn’t directly link this decrease to the observed gene 
expression patterns. Additionally, we identified notable 
effects on DNA and RNA metabolism, photosynthesis, 
phosphorylation and developmental processes. Notably, 
most differentially expressed genes related to these traits 
were predominantly inherited from one parental lineage. 
Future investigations should focus on understanding how 
variations in gene expression between hybrids and their 
parental lines contribute to the adaptation of the nascent 
hybrid to diverse environmental conditions.

Methods

Plant material
Wild emmer wheat accessions from two marginal and 
natural populations (Mt. Hermon and Mt. Amasa) were 
chosen for hybridization. These populations represent 
the most northern population (Mt.Hermon, Coordi-
nates: 32.7461°N, 35.0258°E) and the most southern (Mt. 
Amasa, Coordinates: 31.3525°N, 35.1103°E ). Previous 
work in our lab found a population-specific genetic and 
epigenetic profile in both populations [11]. Accessions 
from both populations were collected, hybridized, and 
kindly provided by Dr. Sergei Volis. Reciprocal hybrid-
ization was performed by crossing one plant from Her-
mon and one from Amasa to create the F1 generation. 
The hybrids underwent selfing to produce subsequent 
generations, including the F2, F3, and F4 generations ( 
For parental lines and F2-F4 example see Fig. S10, Addi-
tional file 2). There were two maternal lineages: Mt. 
Hermon’s maternal lineage and Mt. Amasa’s maternal lin-
eage. Plants were grown in a greenhouse under common 
garden conditions at Ben-Gurion University between 
October 2018 to April 2018. All plants throughout all 
experiments were grown in a 4-liter pot, one for each. 
The validations of hybrid in the reciprocal crosses were 
tested by typical AFLP DNA markers (data not shown). 
Leaf samples for RNA and DNA extraction were col-
lected between the 4th and the 6th -week post-germina-
tion. All hybrid plants used in this study were taken from 
the Hermon maternal lineage.

DNA extraction and methylation level assessment
Twelve plants were used to assess differences in meth-
ylation between parental lines and F4 hybrids. For each 
group of the parental lines, Mt. Hermon and Mt. Amasa, 

and the F4 hybrids, we conducted four biological repli-
cates. DNA was extracted using a DNeasy Plant MINI Kit 
(Qiagen). DNA quality and concentrations were deter-
mined on a 1% gel agarose and by NanoDrop®.

The methylation level was assessed using MSAP 
(Methylation-Sensitive Amplified Polymorphism). MSAP 
is a modification of AFLP. It involves two isoschizomers, 
HpaII and MspI [11, 45, 46]. Both enzymes cut unmethyl-
ated CCGG sites. The genomic restriction fragments are 
then amplified using two PCR reactions.

HpaII and MspI differ in their sensitivity to the exter-
nal or internal cytosine methylation state at the restric-
tion stage. HpaII will cleave in cases of external cytosine 
hemimethylation (only one strand is methylated). MspI 
cleaves when the internal cytosine is methylated. MSAP 
creates a pattern of monomorphic bands between the 
HpaII and MspI isoschizomers. If both isoschizomers 
digest the DNA templates (from the same DNA sample), 
it indicates that the CCGG site is unmethylated, while 
polymorphic bands indicate methylated sites. After 
the restriction stage, fragments were ligated to adaptor 
DNA, which includes an overhang complementary to the 
overhang produced by the restriction enzyme samples. 
Samples were then amplified twice: The first PCR ampli-
fication was a non-selective amplification using primers 
complementary to the adaptor sequence. The second 
PCR amplification was a selective amplification using 
the same primers from the non-selective amplification 
but with the addition of three random nucleotides. The 
methylation level of an individual was measured as the 
number of polymorphic bands between the MspI and 
HpaII MSAP reactions in the same individual out of the 
total number of MSAP bands. Primer sequences used in 
this study are shown in Additional File 1.

Selective amplification products were electrophoresed 
in a 3730xl DNA analyzer (Applied Biosystems) and 
analyzed using GeneMapper v6.0 (Applied Biosystems). 
Results from GeneMapper were transferred to an Excel 
table that summarized the presence (1) / absence (0) of 
bands at every site in all samples. The methylation level 
was calculated manually as the number of polymorphic 
bands between HpaII and MspI patterns divided by the 
total number of bands (loci) in the two patterns.

RNA extraction and sequencing
Overall, nine plant samples were selected for RNA-Seq 
analysis; three from each one of the parental lines, Mt. 
Hermon and Mt. Amasa, and three from the F4 hybrid. 
RNA was extracted using a ZR Plant RNA mini-prep 
kit (Zymo Research, Irvine, USA). Samples were sent to 
the Technion genome center (Haifa, Israel) for sequenc-
ing. RNA quality was assessed using Agilent Bioana-
lyzer. RNA Libraries were prepared using Illumina 
TruSeq RNA Library Preparation Kit v2. (Illumina). RNA 
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sequencing was performed on two lanes on the Illu-
mine Hiseq2500 machine at a read length of 50  bp SR. 
Quality control was evaluated using FASTQC v0.11.5 
[47]. RNA-seq reads were aligned against wild emmer 
wheat reference genome WEWSeq 1.0 acc. Zavitan [18] 
using Salmon [48]. Tximport [49] was used to aggregate 
transcript-level counts and abundances into gene-level 
counts and abundances before normalization and differ-
ential expression analysis.

Differential gene expression analysis
Normalization and differential gene expression analy-
sis were conducted using the ‘DESeq2’ R package [50]. 
Differential gene expression pairwise comparison (e.g., 
F4 Vs. MH group) was performed using a Wald test 
(adjusted p-value > 0.05). Genes with fold-change > 2 
were considered viable for further analysis. Differen-
tially expressed gene counts were transformed using rlog 
transformation. Rlog transformation transforms the nor-
malized counts to the log2 scale to minimize differences 
between samples with low and high counts.

SNPs and variant calling
Variant calling was performed to observe if there is a pos-
sible effect of Single Nucleotide Polymorphism (SNP) on 
the observed DEGs. Cleaned reads were mapped using 
the STAR program [51]. All three groups (parental and 
F4 hybrids) were mapped to the wild emmer wheat ref-
erence genome WEWSeq 1.0 acc. Zavitan, After filtra-
tion (described in the following paragraphs) F4 hybrids 
samples were matched against each parental group in 
order to identify actual SNPs found in our samples [18]. 
SNPs were identified using the Genome Analysis Toolkit 
(GATK, version 4.0.5.0) [52] recommended pipeline, with 
hard SNPs filtering as an exception. SNP variant calling 
was done using HaplotypeCaller and GenotypeGVCFs 
packages of GATK.

As wild emmer wheat is not liable for the GATKs 
VQSR filter tool, high-strength filtering based on GATK-
recommended parameters was done. Each parameter 
threshold was determined following data distribution 
and used stricter thresholds than GATK-recommended 
thresholds. Credible variants were defined as variants 
that satisfied the following parameters: quality depth 
(QD) < 2.0, FisherStrand (FS) > 60.0, RMSMappingQuality 
(MQ) < 40.0, and ReadPosRankSum < -8.0.

Filtered SNPs were annotated using SNPeff [53]. SNPeff 
assigns SNPs to their respective gene and predicts the 
possible effect onset genes (e.g., change in amino acids) 
[53]. SNPs were then uploaded to R for further analysis. 
Additional filtration was done using the GQ (Genotype 
quality) parameter. SNPs with GQ higher than 15 across 
all samples were used for further analysis. SNP’s homo/
heterozygosity for each sample was determined using AB 

(allelic balance) parameter. SNPs with AB between 0.2 
and 0.8 were considered heterozygotes. Finally, we exam-
ined any correlation between SNPs’ appearance in differ-
entially expressed genes and the expression level in each 
group (parental and hybrids). For example, SNPs in genes 
overexpressed in one parental group could only be found 
in that set group but not in hybrids or the other parental 
group or vice versa, these SNPs could only be found in 
hybrids and the other parental group.

Gene functional classification and pathway analysis
Genes were annotated using matched orthologue genes 
using Ensemblplants Biomart [54] and BLASTn (E-value 
cutoff of 10− 10, Additional file 3) against bread wheat 
(Triticum aestivum), Arabidopsis (Arabidopsis thaliana), 
and rice (Oryza sativa Japonica). AgriGO v2 [21] was 
used to perform Gene Ontology (GO) singular enrich-
ment analysis (SEA) for all differentially expressed genes. 
GO is a functional tool that classifies and characterizes 
information on an attribute of gene products in distinct, 
not overlapping, groups [21]. GO analysis takes a group 
of genes associated with a specific criterion (e.g., similar 
gene expression). It identifies biological processes, cellu-
lar components, or molecular functions overrepresented 
in that group compared to a background population from 
which the query list is derived. Differentially expressed 
genes (DEGs) were used as gene groups while the wild 
emmer wheat reference genome WEWSeq 1.0 acc. Zavi-
tan [18] was used as the background population. Reduc-
tion and Visualization GO analyses were performed 
using REVIGO (http://revigo.irb.hr/). REVIGO removes 
redundant GO terms using SimRel semantic similarity 
measure (the analysis allowed for a medium level of simi-
larity, set at 0.7.) [55].

Statistical analysis
Pairwise comparison between two specific groups (for 
example, F4 to MH group) was performed using a Wald 
test (adjusted p-value > 0.05).

To observe the overall genetic distance between and 
within sample groups, we used Principal component 
analysis (PCA) and heatmap.

PCA observed the overall genetic distance between 
samples. It is a technique used to highlight variation in 
data and flash out strong patterns in multi-dimensional 
data sets such as transcriptomic data Fields [56]. The out-
put of a PCA transformation can be used to make data 
easy to explore and visualize. PCA projects data onto a 
two-dimensional (or three-dimensional in some cases) 
plane so that they spread out in the two directions that 
explain most of the variance between samples [57]. The 
first principal component (PC1) explains the most signifi-
cant possible variance in the data (e.g., 60% of the vari-
ance between control and tested samples is explained by 

http://revigo.irb.hr/
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the genes defining PC1). PC2 explains the second most 
significant portion of variance, and so on. Traditionally, 
the first few PCs are used for visualization since they cap-
ture most variation from the original data set [58].

PCA plot was conducted using log-transformed data. 
PCA graph was plotted using the ggplot2 package in R 
[59].

Transformed DEGs counts were scaled using Z-score 
(standard score) To perform K-mean cluster analysis 
and heatmaps of differentially expressed genes. Scaling 
was performed to identify clusters of genes with similar 
expression profiles rather than similar expression levels.

A total samples expression level heatmap was con-
structed using the ‘pheatmap’ package in R [60] Samples 
were sorted by hierarchical clustering using the default 
clustering provided by the pheatmap package.

DEGs were clustered according to their expression 
level across all samples using K-mean. The k-mean clus-
ter uses an a priori number of clusters to split the data 
accordingly. The number of clusters (the number of Ks) 
was determined by applying Gap statistics [61] using the 
clusGap.

function in R [20]. K-means clustering was performed 
according to the number cluster using the K-means 
base function in R. Clusters were then subjected to gene 
ontology analysis using AgriGO.
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