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Abstract 

Rainfed regions have inconsistent spatial and temporal rainfall. So, these regions could face water deficiency dur‑
ing critical stages of crop growth. In this regard, multi‑environment trials could play a key role in introducing stable 
genotypes with good performance across several rainfed regions. Grass pea, as a potential forage crop, is a resilient 
plant that could grow in unsuitable circumstances. In this study, agro‑morphological attributes of 16 grass pea 
genotypes were examined in four semi‑warm rain‑fed regions during the years 2018–2021. The MLM analysis of vari‑
ance showed a significant genotype‑by‑environment interaction (GEI) for dry yield, seed yield, days to maturity, days 
to flowering, and plant height of grass pea. The PLS (partial least squares) regression revealed that rainfall in the grass 
pea establishment stage (October and November) is meaningful. For grass pea cultivation, monthly rainfall dur‑
ing plant growth is important, especially in May, with an aim for seed yield. Regarding dry yield, G5, G10, G11, G12, 
G13, and G15 were selected as good performers and stable genotypes using DY × WAASB biplots, while SY × WAASB 
biplot manifested G2, G3, G12, and G13 as superior genotypes with stable seed yield. Considering equal weights 
for yield as well as the WAASB stability index (50/50), G13 was selected as the best one. Among test environments, E2 
and E11 played a prominent role in distinguishing the above genotypes from other ones. In this study, MTSI (multi‑
trait stability index) analysis was applied to select a stable genotype, considering all measured agro‑morphological 
traits simultaneously. Henceforth, the G5 and G15 grass pea genotypes were discerningly chosen due to their 
commendable performance in the WAASBY plot. In this context, G13 did not emerge as the winner based on MTSI; 
however, it exhibited an MTSI value in close proximity to the outer boundary of the circle. Consequently, upon com‑
prehensive consideration of all traits, it is deduced that G5, G13, and G15 can be appraised as promising superior 
genotypes with stability across diverse environmental conditions.
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Introduction
Lathyrus sativus L. commonly recognized as grass pea, 
cicerchia, blue sweet pea, chickling pea, chickling vetch, 
Indian pea, white pea, and white vetch, belongs to the 
legume family and boasts a rich agricultural heritage. 
Its cultivation has been deeply rooted in various regions 
of Iran, serving as a staple for both human and animal 
consumption, utilized both as forage and grain [1]. Grass 
pea, characterized by its brief growth cycles adaptable to 
both cold and hot seasons, stands out as a hardy plant 
capable of thriving in arid conditions, thereby dem-
onstrating resilience in unfavorable environments. Its 
advantageous features, including elevated yield, a nota-
ble protein content, nitrogen-fixing abilities, and toler-
ance to drought, salinity, and waterlogging, underscore 
its significance in facilitating crop rotation, enhancing 
soil quality, and mitigating challenges associated with 
weeds, pests, and diseases [2]. These attributes position 
it as an exceptional crop, contributing significantly to 
ensuring nutritional security, particularly in anticipation 
of impending climate challenges [3]. In addition, consid-
ering the vast distribution of dryland regions around the 
globe [4], producing promising genotypes with high for-
age and seed yields under such conditions would assist 
the livestock and poultry industries. In arid conditions, 
the quantity and distribution of rainfall stand as pri-
mary limiting factors [5]. The introduction of grass pea 
cultivars tailored to these constraints holds substantial 
potential for enhancing both biological and grain yield. 
Beyond the compatibility of a specific grass pea cul-
tivar, achieving yield stability across diverse environ-
ments is crucial. The significant impact of climatic and 
edaphic conditions on grass pea yield is well-established, 
with a notable genotype by environment interaction, as 
reported for its yield [6].

Yield stability refers to the consistent performance of 
a given genotype across various environments over mul-
tiple years. In the pursuit of introducing new varieties, 
the evaluation of genotype yield occurs through multi-
environment trials (MET) conducted in diverse settings 
[7]. The presence of interaction between genotype and 
environment, especially in the case of complex traits 
such as yield, slows down the process of selecting geno-
types and introducing new varieties. Therefore, the cor-
rect interpretation of this interaction is of fundamental 
importance in the process of evaluating and identifying 
superior genotypes. A suite of univariate as well as mul-
tivariate statistical methods has been introduced for the 
interpretation of genotype × environment interaction. As 
a multivariate method, the additive main effects and mul-
tiplicative interaction (AMMI) method, as described by 
Gauch [8], has been extensively utilized for the analysis 
of yield stability in various crops, notably in the case of 

grass pea [9]. In conjunction with the AMMI method, the 
best linear unbiased prediction (BLUP) method has been 
employed to assess both the adaptability and stability of 
targeted genotypes in multi-trial scenarios. While both 
AMMI and BLUP aim to extract genotype-by-environ-
ment interaction from random error, they differ in their 
underlying nature. Gauch [10] demonstrated that AMMI 
analysis captures the majority of the G × E pattern in the 
first interaction principal component axis (IPCA), with 
most random error being accounted for in the subse-
quent IPCAs. Concurrently, the BLUP method evaluates 
the genetic merit of the studied genotypes by estimating 
their mean yield in mixed models with high efficiency 
[11]. Building upon the existing literature, Olivoto et al. 
[12] introduced a novel approach termed weighted aver-
age absolute scores of BLUPs (WAASB), which combines 
elements from both the AMMI and BLUP methods. In 
essence, singular value decomposition is applied to a 
BLUP matrix, facilitating the analysis of genotype × envi-
ronment interaction within a linear mixed model (LMM) 
framework. Subsequently, the WAASBY biplot, depicting 
the interaction of WAASB with the trait mean (Y), offers 
a comprehensive interpretation of both stability and trait 
productivity. Recognizing the importance of considering 
traits related to yield alongside yield measurements in 
the variety realization process, Olivoto et  al. [13] intro-
duced the MTSI (Multi-Trait Stability Index). Calculated 
based on the distance from the ideal genotype estimated 
through factor analysis, the MTSI index has demon-
strated efficacy in various crops, including guar [14], 
maize [15, 16], lentil [17], sugar beet [18], and oilseed 
rape [19]. While there is no existing report on the appli-
cation of the MTSI index in grass pea stability analysis, 
its successful application in other crops underscores its 
potential utility in this context.

The interaction between genotype and environment 
has been extensively explored by researchers focusing 
on grass pea, with a predominant emphasis on economic 
aspects, particularly yield [20, 21]. Previous stability anal-
yses in grass pea have predominantly employed univari-
ate approaches [22] and relevant multivariate analyses 
such as AMMI [9] and GGE biplot analysis [21]. However, 
there is limited knowledge regarding the stability analysis 
of grass pea using WAASB, and little attention has been 
given to the simultaneous measurement of a diverse array 
of agro-morphological traits. This study aims to fill this 
gap by evaluating the agro-morphological responses of 
16 grass pea genotypes across four rainfed regions in 
Iran over three consecutive years. The objectives are to: i) 
identify the monthly rainfall influencing grass pea perfor-
mance in rainfed conditions, and ii) assess the efficacy of 
WAASB and MTSI in identifying high-productivity and 
stable grass pea genotypes well-adapted to these regions.
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Material and methods
Plant materials
The plant materials used comprised seven grass pea 
inbred lines originating from Greece, Hungary, Nepal, 
Morocco, and Bangladesh, along with seven inbred lines 
of unknown origin. Additionally, one grass pea line from 
ICARDA (International Center for Agricultural Research 
in the Dry Areas) and one inbred line (serving as a con-
trol) from Iran were included in the study (Table 1). This 
germplasm was sourced from the gene bank section of 
DARI (Dryland Agricultural Research Institute) in Iran.

Environments and experimental design
The field study was conducted at four locations, Gach-
saran, Mehran, Kuhdasht, Shirvan and Chardavol, over 
three consecutive years (2018–2019, 2019–2020, and 
2020–2021). These locations, situated in three geographi-
cally diverse provinces of Iran, were categorized as semi-
warm regions based on climatic attributes (Fig.  1). The 
physical and chemical properties of studied region`s 
soil was presented in Table  S1. For each environment 
(year × location), the experimental design employed a 
randomized complete block design (RCBD) with three 

Table 1 Code and origin of grass pea genotypes used in the multi‑environment experiments

Number Code Origin Number Code Origin

G1 – – G9 IFLA No.127 Greece (GRC)

G2 IFLA No.1961 Nepal (NPL) G10 PN = 223 –

G3 IFLA No.2990 Bangladesh (BGD) G11 PN = 225 –

G4 IFLA No.1847 Bangladesh (BGD) G12 PN = 226 –

G5 IFLA No.2968 Bangladesh (BGD) G13 PN = 219 –

G6 IFLA No.1707 Morocco (MAR) G14 PN = 222 –

G7 IFLA No.Bio520 ICARDA G15 PN = 224 –

G8 IFLA No.276 Hungary (HUN) G16 Naghadeh Iran

Fig. 1 Geographical coordinates, agro‑climatic characteristic of test locations. The map constructed by using elevation, temperature, 
and precipitation information of presented environments in ArcGIS 10.8 software
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replications. Each plot consisted of four rows, each 4.5 
m in length, with a spacing of 25 cm between rows. The 
seeding rate was maintained at 150 seeds per  m^2 across 
all environments. Field practices, including weed con-
trol, were executed manually during crop growth and 
development.

Measured traits
During the growing season, various traits such as days to 
flowering (DF), days to maturity (DM), and plant height 
(PH) were recorded. At the time of harvest, traits such as 
number of pods per plant (PP), number of seeds per pod 
(SP), wet fodder yield (WY), dry fodder yield (DY), and 
grain yield (GY) were measured. GY measurements were 
obtained by harvesting the central four rows for each line 
in all experiments. WT and DY at 50% flowering stage 
and grain yields at physiological maturity (ton  ha−1) were 
determined by converting the yields obtained from the 
plots to hectares.

Data analysis
The data was tested for normality by the Anderson–Dar-
ling test and checked for outliers, then Levene’s test was 
used for the homogeneity of variance test to confirm the 
homogeneity of individual error mean squares. To evalu-
ate the genotypes’ stability across the environments, a 
linear mixed model was used [13]. Accordingly, the sig-
nificance of each effect for the studied traits was tested 
by the likelihood ratio test (LRT) with a two-tailed chi-
square test with one degree of freedom. So, for each 
environment, the traits were initially fitted into a linear 
mixed-effect model by considering environment and 
environment-by-genotype interaction as random effects 
and genotype as a fixed effect [12]. The following stand-
ard linear mixed model [11] was computed with the 
function “gamem_met” from the metan R-package [13].

where y is a vector of response variable, b is a vector of 
fixed effects, u is a vector of random effects, X is a design 
matrix of 0s and 1s relating y to b, Z is a design matrix 
of 0s and 1s relating y to u, and ϵ is a vector of random 
errors.

After analysis of variance, it is assumed that geno-
type and GEI are random effects [12] to predict genetic 
parameters using the argument “genpar” in the function 
gamem_met. Then, stability analysis was exerted by the 
calculation of WAASBi using the function “waasb” in the 
metan package. In this process, WASSB was estimated 
based on a single value decomposition of the G × E inter-
action effects from the matrix of the BLUP as follows:

y = Xb + Zu + ∈

where WAASBi is the weighted average of absolute scores of 
the ith genotype or environment,  IPCAik is the absolute score 
of the ith genotype or environment in the kth IPC, and  EPk is 
the magnitude of the variance explained by the kth IPC.

As shown, WAASBYi is the superiority index with dif-
ferent weights between yield and stability for the gth gen-
otype, ƟY and ƟS are the weights for yield and stability, 
respectively;  rGg and  rWg are the rescaled values of the 
gth genotype for yield and WAASB, respectively.

In the present study, MTSI was applied to calculate the 
mean performance and simultaneous stability of traits having 
significant G × E interaction comprising DM, PH, DF, DY, and 
SY, considering that higher values for studied traits except DM 
are suitable. In this regard, the vector of trait importance as c 
(l, h, h, h, h) was defined and incorporated into the WAASB 
analysis before the MTSI approach [14]. Then, MTSI analysis 
was done by the function MTSI in package metan as follows:

Where MTSIi is the multi-trait stability index of the geno-
type i, 𝛾ij is the score of the genotype i in the factor j, and 𝛾j 
is the score of the ideal genotype in the factor j. Scores were 
calculated based on factor analysis for genotypes and traits.

Incorporating rainfall as a covariate for explaining the 
GEI was done by using partial least squares (PLS) regres-
sion analysis in GEA-R software [23]. Hence, monthly 
rainfall from October to May is regarded as an environ-
mental covariable. The PLS model consists of an inde-
pendent matrix X (rainfall data), a dependent matrix Y 
(yield), and the latent variables t as follows:

where matrix T contains X-scores, matrix P contains the 
X-loadings, matrix Q contains the Y-loadings, and F and 
E are the residual matrices. Finally, PLS results were pre-
sented in the form of a biplot.

Results
It was inferred from ordinary analysis of variance 
(Table S2) and LRTe (Table 2) that the environment effect 
is highly significant for all of the studied traits, and so 

WAASBi =

p
k=1 |IPCAik × EPk |

p
k=1 EPk

WAASBYi =

(
rGg × θY

)
+

(
rWg × θS

)

θY + θS

MTSIi = [

f∑

j=1

(γ ij − γ j)2]0.5

x = t1p′1 + t2p′2 + · · · + E = TP′ + E

y = t1q′1 + t2q′2 + · · · + E = TQ′ + E
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there is a difference among the tested environments. The 
GEI was significant for the majority of traits except PP, 
SP, and WY, according to LRTge. The phenotypic vari-
ance varied between 0.304 (SY) and 57.800 (PH). Both the 
genotypic and residual coefficients of variation showed 
variation for the studied traits. In this study, the coeffi-
cient of variation of GEI (Table 2) interaction as an indica-
tor of trait reaction in response to environment was low 
for traits with non-significant GEI. Herein, rainfall dur-
ing the grass pea growth period is considered a covari-
ate through PLS regression to identify effective monthly 
rainfall that impacts DY, SY, and their GEI (Fig. 2A and B). 

For DY (Fig. 2A), the first and second factors in the PLS 
biplot explained 45.25% and 17.76% of the GEI variance, 
while for SY (Fig.  2B), factor 1 and factor 2 interpreted 
45.28% and 20.425% of it. Regarding the eight months 
from planting (October) to harvest time (May), rainfall in 
all months except May for DY and December and April 
for SY had remarkable effects on GEI. In detail, rainfall in 
April and February is important for the dry yield of geno-
types G5 and G15; rainfall in October, November, and 
March was meaningful for G2; and also, December rain-
fall has a greater contribution to G3 (Fig. 2A). Among the 
test environments, the highest values of monthly rainfall 

Table 2 Likelihood ratio test (LRT) values, and genetic parameters for agro‑morphological traits of 16 grass pea genotypes across 12 
environment

** significant at 1% (p < 0.01), *significant at 5% (p < 0.05), ns nonsignificant, LRTe and LRTge Likelihood ratio tests for environment and genotype-by-environment 
interaction, respectively; phenotypic variance, GEIr2 the coefficient of variation for GEI effects, CVg and CVr are genotypic and residual coefficient of variation 
respectively, DF days to flowering, DM days to maturity, PH plant height, PP number of pods per plant, SP number of seeds per pod, WY wet fodder yield, DY dry fodder 
yield, and GY grain yield

Trait LRTe LRTge σ 2
p

CVg CVr GEIr2

DF 891.000** 2.790** 9.520 0.213 2.160 0.293

DM 830.000** 3.550** 27.400 0.000 3.100 0.127

PH 402.000** 8.230** 57.800 1.630 11.700 0.142

PP 188.000** 2.900 ns 40.500 0.000 27.300 0.053

SP 1.530** 0.003 ns 1.230 2.970 31.800 0.001

WY 153.000** 0.074 ns 16.000 2.490 29.900 0.005

DY 4.050** 0.125** 0.995 6.170 22.300 0.126

SY 0.618** 0.068** 0.304 5.990 31.200 0.223

Fig. 2 Biplot based on PLSR method with months’ rainfall as covariates for DY (A) and SY (B) of 16 grass pea genotypes in 12 environments. In each 
plot, the environments depicted by "E" and each months depicted with green color



Page 6 of 11Maleki et al. BMC Plant Biology          (2024) 24:559 

for October, November, January, and March were seen for 
E3, E6, and E9, while E5 had the highest value of monthly 
rainfall for February and April (Fig. 2A). Considering seed 
yield (Fig. 2B), most genotypes had no significant relation-
ship with monthly rainfall, except for G5, G6, G12, and 
G13, which were affected by October, November, January, 
and March monthly rainfall. The E3, E6, and E9 had the 
highest values of rainfall in October, November, January, 
and March, while the E8 had the maximum value of rain-
fall in May (Fig. 2B).

The fluctuation of economic parts of grass pea includ-
ing DY, WY, and SY, across test environments (Fig. 3A), 
was also implied by the existence of GEI for the men-
tioned traits. As shown in Fig. 3A, environments E3, E4, 
E5, and E6 jointly have no remarkable role in produc-
ing GEI for DY, WY, and SY. Regarding DY, WY, and SY 
traits, the average performance of each grass genotype 
in each of the test environments, the total average per-
formance of each genotype in all environments, as well 
as the average performance of each environment, are 
presented in Fig. 3B. Overall genotype performance was 
varied among test environments, which verify GEI. The 
maximum values of DY and WY were detected for G9 in 

E11, while the maximum value of SY was seen in E7 for 
G2. Also, the highest mean performance for DY and WY 
belonged to E11, and considering SY, it was detected for 
E7. Among the studied genotypes, G5 with DY = 4.5, G9 
with WY = 15, and G2 with SY = 1.8 had the maximum 
performance through test environments (Fig. 3A and B).

The differing performance of studied grass pea germ-
plasm across several environments makes it mandatory 
to identify high-yielding as well as stable genotypes to 
deliver for all of the studied rainfed locations. Hence, 
by utilizing DY and SY as responsible variables against 
WAASB values (Fig. 4A and B), the grass pea genotypes 
with stable performance could be distinguished. In the 
biplot of DY × WAASB (Fig. 4A), the first quarter serves 
as an indicator of both unstable and low-yield genotypes 
and environments. Therefore, genotypes G4, G6, G7, and 
G16 associated with environments E4, E5, E6, and E10 
were identified. Similarly, the heatmap concerned with 
DY (Fig. 3A) also showed low mean values for the above-
mentioned environments. In the second quarter, geno-
types G1, G2, and G3 had a higher average performance 
than the overall average performance, but they had low 
WAASB values (Fig.  4A). This means that E1 and E9 

Fig. 3 Genotype × environment plot of 16 grass pea genotypes in 12 test environments for DY (A), WY (B), and SY (C). Above plots showed 
fluctuation of yield across environments while below plot showed raw data recorded for each genotype across environments
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(Figs. 3A and 4A) are good discriminators for genotypes 
like those located in quarter two. Here, some genotypes, 
such as G8 and G9, had poor DY but were stable (quar-
ter three). As shown in Fig. 4A, genotypes G5, G10, G11, 
G12, G13, and G15 with low values of the WAASB stabil-
ity index as well as high DY could be considered the best 
ones, and environments E2 and E11 played a key role in 
distinguishing these genotypes from other ones. About 
the SY trait (Fig.  4B), the distribution of the genotypes 
and test environments in the two-dimensional space 
of the SY × WAASB plot was varied compared with the 
DY × WAASB. In the SY × WAASB biplot, G2, G3, G12, 
and G13 (in quarter four) possessed low WAASB values 
and also performed better than the overall mean. The 
genotypes G4, G5, G8, and G16 were detected as stable 
but with low yield genotypes. Considering Fig.  4B, G1, 
G7, and G10 were unstable genotypes, with SY greater 
than the overall mean performance.

To customize the magnitude of stability index and 
yield performance in identifying interest genotypes, 
plotting WAASB values against the responsible variable 
(WAASBY) was done regarding several weights for each 
WAASB and yield across test environments (Fig. 5A and 
B). Accordingly, a change in the ranking of genotypes 
considering the weight of DY and GY traits and the sta-
bility index (WAASB) was presented (Fig.  5A and B). 
In the first column on the left side (Fig.  5A and B), the 
ranking of genotypes based solely on the WAASB index 
(0/100) indicated that G5 and G10 were the most stable 
genotypes for DY and SY, respectively. In the last column 
on the right side, the rankings of genotypes were based 
solely on grain yield (100/0), making G13 and G10 the 

most superior genotypes regarding DY and SY, respec-
tively. The red rectangle (Fig. 5A, B) is ranking the gen-
otypes based on the equal weight for stability and the 
responsible variable (DY and GY), which is similar to 
the ranking of genotypes in Fig. 4A and B. In detail, G10, 
G13, and G15 were the best genotypes when DY with sta-
bility had equal weights (50/50), while G3, G12, and G13 
were the superior genotypes based on GY in that selected 
condition. In grass pea, DY and GY are economic parts of 
the plant influenced by several agro-morphological traits, 
and hence, plant breeders frequently try to incorporate 
several traits into a new genotype to achieve a high yield. 
For achieving this, MTSI was computed based on simul-
taneous usage of DY and SY and other agro-morphologi-
cal traits that had significant GEI, including DF, DM, and 
PH. Factor analysis after scaling the trait using BLUP for 
genotype mean performance resulted in two factors with 
eigenvalues greater than 1 that explained 76.7 percent of 
total variation (Table  3). This suggests that the two fac-
tors were successful in capturing a substantial amount of 
variability in the traits. Moreover, the communality val-
ues for the variables ranged from 0.688 for the DY trait 
to 0.813 for the DF trait, with a mean of 0.767. These val-
ues suggest that a significant portion of the variability of 
each variable was explained by these factors. Considering 
the loading coefficients in correspondence to each trait 
(Table  3), the studied agro-morphological attributes of 
the grass pea panel could be classified. Hence, in FA1 and 
FA2, traits DF and DY had positive loadings, while traits 
PH, DM, and SY possessed negative loadings. In Fig.  6, 
the experimental genotypes are ranked from the high-
est to the lowest value of the MTSI, so that the genotype 

Fig. 4 Yield × WAASB biplot for DY A and SY B as responsible variable across 12 environments. Each plot devided to four sections and in each plot, 
genotypes with good stability as well as yield performance higher than mean is located in section IV
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with the highest value of the MTSI is in the center and 
the genotype with the lowest value of the MTSI is located 
in the outermost circle. The genotypes determined by the 
red dots were selected based on their MTSI values at 10% 
selection intensity. G12 was in the first rank, followed 
by G10, as the most ideal stable genotype. The average 
value of all traits except DM in selected genotypes has 
increased, which was aimed at the intended goals. In gen-
eral, the selected genotypes caused a favorable selection 
differential in all traits (Table 4).

Discussion
The cultivation and advancement of forage legumes that 
are well-adapted to rainfed conditions present a promis-
ing perspective for rainfed crop rotation and forage sup-
ply. Opting to grow forage legumes in rainfed regions, 
instead of leaving the land fallow, holds the potential to 
enhance soil organic and nitrogen content. This, in turn, 
could contribute to an increase in the subsequent cereal 

yield cultivated in the rotation [24]. In this regard, grass 
pea as a forage legume with a short growth period as well 
as high compatibility with unsuitable circumstances has 
been reported [25]. In the present study, seed yield, dry 
yield, fresh yield, and agro-morphological traits of grass 
pea were evaluated for 3 years in 4 rainfed regions, which 
were calculated as semi-warm rainfed climates [20]. The 
tested environments differed from each other and signifi-
cantly affected all of the grass pea traits. It is clearly infer-
able from the geographical attributes of selected regions 
that the elevation, temperature, and precipitation of the 
studied areas are varied. Accordingly, these regions were 
applied in most adaptability and stability studies han-
dled by DARI as hot points for semi-warm rainfed stud-
ies. Studying GEI in grass pea revealed significant effects 
on all investigated agro-morphological traits, including 
seed yield and dry yield. The resulted GEI for the major-
ity of traits manifests that genotypes ranking in differ-
ent environments could be varied. Significant GEI for 
yield of grass pea was reported in some research works 
[9, 20–22, 26]. However, there are narrow studies about 
the evaluation of agro-morphological traits of grass pea 
in multi-trials.

Regardless of the aim of grass pea planting—dry 
yield or seed yield—the PLS regression analysis found 
that rainfall in October and November could influ-
ence grass pea establishment in rainfed environments. 
So it is concluded that while rainfall in rainfed condi-
tions holds greater significance [27, 28], the distribu-
tion of rainfall during critical stages of crop growth in 

BA

Fig. 5 Heatmap showing the rank of 16 studied grass pea genotypes based on different weights for DY A and SY B versus WAASB stability index. 
The red rectangular (50/50) and white rectangular (60/40) shows that with change in weights of yield and stability the genotypes`s rank could be 
varied

Table 3 Factorial loadings and communalities obtained from 
the factor analysis

Trait FA1 FA2 Communality

DF 0.0182 0.901 0.813

DM ‑0.878 ‑0.0723 0.776

PH ‑0.801 ‑0.412 0.811

DY 0.22 0.8 0.688

SY ‑0.864 ‑0.024 0.748
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dryland conditions [27, 29] also proves to be crucial. In 
rainfed conditions, the precipitation in the last month 
of the growing period is important for the production of 
grass pea seeds, while with the aim of raising grass pea 
dry yield, having rainfall in the months leading up to the 
final month is more effective. Another application of 
PLS regression is in determining which month`s rain-
fall contributed the most to a given genotype yield and 

also which environment has the highest value of monthly 
rainfall [30]. In accordance with previous studies [27], 
PLS regression could effectively distinguish genotypes as 
well as environments in grass pea. For instance, E3, E6, 
and E9 have suitable values of precipitation in October, 
November, January, and March, which is prerequisite for 
achieving remarkable dry yield and seed yield in the stud-
ied grass pea germplasm under rainfed conditions.

Although the identification of the desired environment 
and effective weather factor is vital in rainfed conditions, 
it should be emphasized that rainfed circumstances are 
varied over years and locations, so meticulous identifica-
tion of well-adapted and stable genotypes is significant 
[31]. So, considering the detected significant GEI effect 
for DY and SY in the present study, the WAASB analy-
sis was performed to identify stable genotypes based on 
DY × WAASB and SY × WAASB biplots. According to the 
literature review, there are narrow studies about yield sta-
bility analysis of grass pea and all of them utilized GGE 
biplot [21], non-parametric [20], and AMMI [9] in yield 

Fig. 6 Genotypes ranking based on the multi‑trait stability index. In this graph, the multi‑trait stable genotypes signed with red point

Table 4 Selection differential for the waasb index (up section) as 
well as mean of the traits (down section)

Trait Factor Xo Xs SD Goal

DM FA1 158 158 ‑0.0816 decrease

PH FA1 59.5 59.7 0.268 increase

SY FA1 1.53 1.54 0.00896 increase

DF FA2 120 120 0.0538 decrease

DY FA2 4.03 4.16 0.125 increase
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stability analysis. Meanwhile, it is possible to take advan-
tage of WAASB as a new method derived from AMMI 
and BLUP methods for identifying superior grass pea 
genotypes for rainfed conditions. The WAASB method 
was successfully applied in several field crops [15, 18, 32, 
33], but there have not been any reports about its usage 
in forage crops till now. However, our findings showed 
that Y × WAASB biplot could distinguish adaptable 
and stable genotypes in forage crops such as grass pea. 
Accordingly, for dry yield, the genotypes G5, G10, G11, 
G12, G13, and G15, and for seed yield, the genotypes G2, 
G3, G12, and G13 out of the studied grass pea genotypes 
were identified as stable ones. Since simultaneous evalu-
ation of yield and yield stability is very important [34] in 
multi-environment analysis, ranking genotypes based on 
different weights of the yield and WAASB (WAASB/Y 
heatmap) can be more useful. Albeit, by assuming equal 
weights for both yield and stability index, the G13 had 
the best rank for dry yield and seed yield, but a plant 
breeder could designate differing weights for either yield 
or stability index through the key ability of WAASB anal-
ysis [12]. In this study, compared to yield performance, 
the stability of genotype was more desired, so weights 
of 40/60 (yield performance/stability) were chosen, and 
similarly, G13 was selected based on DY and SY.

Varietal recommendations would be more reliable if 
they were based on the mean performance and stability 
of multiple agronomically desirable traits [12], which are 
named MTSI. In MTSI, genotypes with the lowest MTSI 
are considered closer to the ideotype (ideal genotype) 
and thus selected. Here, G5 and G15 grass pea genotypes 
were selected, which also had average ranks (Fig. 5A and 
B) considering yield performance and WAASB index 
with 50/50 weights. Also, the selection differential was 
positive for all of the studied traits except for days to 
maturity, suggesting the effectiveness of the selection 
intensity [33]. About days to maturity in rainfed condi-
tions, the development of early flowering plants with 
high yields could be calculated as a highlighted breeding 
objective to escape from water-deficient stress.

Conclusions
Significant genotype × environment was found for major-
ity of agro-morphological traits of grass pea specially for 
SY, and DY as economic parts of plant. This GEI high-
lighted importance of mutlti-environment trials in grass 
pea breeding programs. Partial least square regression 
method was found as reliable method for identifying 
effective monthly rainfall in ran-fed condition. Here in, 
this method emphasized on the critical role of rainfall 
during the initial growth stage (October and November) 
and highlighted the ongoing importance of monthly rain-
fall post-establishment, especially in May, for optimizing 

seed yield. In this study the WAASB stability parameter 
accompanied with either seed or dry yield (Y × WAASB) 
could effectively screened grass pea germplasm. Hence, 
regarding dry yield the genotypes G5, G10, G11, G12, 
G13, and G15 and regarding seed yield the genotypes 
G2, G3, G12, and G13 has been identified as superior 
and stable genotypes for examined rain-fed regions. A 
interesting findings of this research is screening grass pea 
germplasm by means of weighting each Y and WAASB 
items and so, a grass pea breeder could select interested 
genotype regarding breeding aim. For instance, with 
50/50 of Y and WAASB the genotype G13 emerged as the 
top-ranked genotype for both dry and seed yield among 
the studied genotypes. In general, yield as dependent 
variable is correlated with several agro-morphological 
traits and therefore, plant breeders also try to incorpo-
rate several traits into a new genotype. Accordingly, it 
is recommended to evaluate performance of these traits 
along with yield. Here, by means of multiple trait selec-
tion index (MTSI) genotypes G5, G13, and G15 identified 
as promising superior genotypes which either have sta-
ble yield and also have acceptable performance regarding 
simoultenous considering agro-morphological traits.
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