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Abstract
Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security 
of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain 
quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this 
context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-
index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 
2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. 
The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 
seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was 
conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), 
multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and 
Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, 
presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection 
of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their 
performance for multiple traits closest to the ideotype and could be recommended as new varieties.
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Introduction
Common beans are rich in protein [1], with high nutri-
tional quality, antioxidant and anti-inflammatory 
properties, and could help reduction of obesity and car-
diovascular diseases [2–4]. Brazil is one of the world’s 
largest producers and consumers of common bean, with 
an average yield of 1,043 kg ha− 1, varying from one loca-
tion to the other location [5]. Researchers strive to cre-
ate genotypes with valuable trait combinations, but it’s 
challenging to combine many desirable traits [5]. Select-
ing superior genotypes is complex due to the quantitative 
nature of important agronomic traits [6].

In the final stage of bean cultivar development, breed-
ers prioritize specific traits linked to grain yield, as selec-
tion based on multiple traits couldan disrupt trait balance 
and interact with the environment negatively. Selection 
indexes such as Smith-Hazel (SH) index are employed to 
stream line trait selection [7, 8]. While the SH index is 
commonly utilized as a multi-trait selection index, there 
is substantial evidence suggesting that its application 
may not be advantageous in plant breeding. This holds 
true not only in initial trials, as indicated by Bhering et 
al [9], but also in the more advanced phases of breeding 
programs, as observed by Jahufer and Casler [10]. These 
advanced stages often involve multi-environment trials, 
as demonstrated by Dallo’ et al [11], Olivoto et al [12], 
and Woyann et al [13].

Olivoto and Nardino [14] developed a new simultane-
ous selection index based on factor analysis, known as 
Multi-Trait Genotype-Ideotype Distance Index (MGIDI), 
to circumvent the adversities encountered in traditional 
indexes, focused on genotype selection and treatment 
recommendation based on multiple trait information. 
The proposed index’s effectiveness was assessed through 
Monte Carlo simulations. These simulations involve eval-
uating its performance in selecting traits with desired 
gains under various scenarios. These scenarios encom-
pass a range of factors, such as the number of genotypes, 
the traits under consideration, and the correlation struc-
ture between these traits. Yan and Frégeau-Reid [15] 
introduced the GYT approach for selecting superior gen-
otypes by considering multiple traits. In crops, grain yield 
is often the key trait, and GYT analysis helps to identify 
genotypes that excel in both yield and other important 
variables, not just individual traits [8, 13].

Given the context, the present study aimed to select 
superior black bean lines using the multi-trait genotype-
ideotype distance index and Smith and Hazel index and 
to evaluate the genotypes with multiple traits utilizing 
the genotype by yield*trait biplot analysis.

Materials and methods
Cultivation site and experimental design
The trials were conducted in Campos dos Goytacazes 
-RJ, in 2020 and 2021. The municipality is located in the 
northern region of Rio de Janeiro, at 21º 19’ 23’’ S and 
41º 19’ 40’’ W, with an altitude ranging from 20 to 30 m. 
According to the Köppen classification [16], the region’s 
climate is humid tropical (Aw), with rainy summers and 
dry winters. According to the Weather Station, the loca-
tion has a small temperature range and average annual 
precipitation of 1,055.3 mm (Fig. 1).

A randomized block experimental design was used, 
with 28 genotypes (Table  1) and three replications. The 
experiment consisted of 28 genotypes of normal and 
early cycle black beans, of which 23 genotypes were 
advanced lines developed by Embrapa Arroz e Feijão and 
five control cultivars (BRS-ESTEIO, BRS-CAMPEIRO, 
BRS-FP403, IPR-UIRAPURU and IAC-VELOZ) The 
experimental plot consisted of four rows 4.0  m long, 
spaced at 0.50 m apart, with a sowing density of 15 seeds 
per meter. Only central rows were used for the evaluation 
and data recording on days to flowering (DF), pod length 
(PL), number of pods per plant (NPP), number of grains 
per pod (NGP), 100-grain mass (100 M), and grain yield 
(YIEL). The grain yield was evaluated by a manual harvest 
of the plants contained in the two central rows of 4.0 m in 
length in each experimental unit. The plants, after being 
uprooted, were dried in the sun and then mechanically 
threshed. The grains were weighed, the yield was esti-
mated in kg ha− 1, and the humidity was corrected to 13%.

Statistical analysis
The restricted maximum likelihood/best linear unbiased 
prediction (REML/BLUP) approach was employed, uti-
lizing the following model:

	 y= Xb + Zg + Wc + e

y: Represents the data vector for fixed effects, which are 
block averages across different environments. b: Denotes 
the vector of fixed effect coefficients. g: Stands for gen-
otype effects, which are considered random. c: Corre-
sponds to genotype-environment interaction effects, 
also treated as random. e: Signifies random errors in 
the model. Additionally, the matrices X, Z, and W serve 
as incidence matrices for the fixed effects (b), genotype 
effects (g), and genotype-environment interaction effects 
(c), respectively.

Multiple trait Stability Index (MTSI)
The process of choosing individuals with average perfor-
mance and stability, taking into account multiple traits, 
relied on the assessment of genotype-ideotype distance. 
This distance was measured using Euclidean distance, 



Page 3 of 12Ambrósio et al. BMC Plant Biology          (2024) 24:525 

utilizing scores derived from an exploratory factor analy-
sis, outlined as follows

	 X = µ + Lf + ε

X represents a ×1p×1 vector of observations; µ is a 
1p×1 vector of means; L is 1p×1 matrix of factor load-
ings; f is a 1p×1 vector of common factors; ε is a 1p×1 

vector of residuals, where p and f denote the number 
of traits and retained common factors, respectively. 
The eigenvalues and eigenvectors were derived 
from the correlation matrix of rXij​. Initial loads 
were determined by considering only factors with 
eigen values greater than 1. Analytical rotation and 
estimation of final loads were accomplished using the 

Table 1  Relationship of genotypes of normal black beans and early black beans, evaluated in the municipality of Campos dos 
Goytacazes in the State of Rio de Janeiro
ID Genotype Type Source ID Genotype Type Source
G1 BRS-ESTEIO N Embrapa G15 CNFP17494 N Embrapa
G2 BRS-CAMPEIRO P Embrapa G16 CNFP17466 P Embrapa
G3 BRS-FP403 N Embrapa G17 CNFP19248 N Embrapa
G4 IPR-UIRAPURU N IAPAR G18 CNFP18310 P Embrapa
G6 IAC-VELOZ P IAC G19 CNFP19263 N Embrapa
G7 CNFP16422 P Embrapa G20 CNFP19740 P Embrapa
G7 CNPF16422 N Embrapa G21 CNFP19266 N Embrapa
G8 CNFP17435 N Embrapa G22 CNFP19741 P Embrapa
G9 CNFP17058 P Embrapa G23 CNFP19325 N Embrapa
G10 CNFP17445 N Embrapa G24 CNFP19745 P Embrapa
G11 CNFP17457 P Embrapa G25 CNFP19347 N Embrapa
G12 CNFP17456 N Embrapa G26 CNFP19746 P Embrapa
G13 CNFP17489 P Embrapa G27 CNFP19349 N Embrapa
G14 CNFP17459 N Embrapa G28 CNFP19747 P Embrapa
ID: Identification; N = Normal-cycle; P = Early-cycle. G: Genotype

Fig. 1  Temperatures and precipitation during the black bean experiment. Campos dos Goytacazes, Rio de Janeiro, 2020–2021
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varimax rotation criterion. Genotype scores were cal-

culated based on the equation:	 F = Z
(
ATR−1

)T

F is a g×f matrix containing factorial scores; Z is a g×p 
matrix featuring standardized means; A is a p×f matrix 
representing canonical loads; R is a p×p correlation 
matrix among the traits. Here, g, f, and p denote the num-
ber of genotypes, retained factors, and analyzed traits, 
respectively.

According to the definition, the ideotype attains the 
maximum WAASBY score (100) for all variables under 
analysis. The calculation of WAASBY follows the given 
equation:

	
WAASB =

p∑

k=1

|IPCAikxEPk|/
p∑

k=1

EPk

In this context: WAASB represents the weighted aver-
age of absolute scores for the i-th genotype; IPCAik is 
the score of the i-th genotype along the k-th principal 
interaction component axis (IPCA); and EPk signifies 
the amount of variance explained by the k-th IPCA. It is 
noteworthy that, as established by Olivoto et al. [12], the 
genotype characterized by the lowest WAASB value is 
regarded as the most stable.

The last and third phase involved calculating the 
multi-trait stability index (MTSI) based on the provided 
equation:

	
MTSIi =




f∑

j=1

(Fij − Fj)
2




0,5

In this context: MTSIi represents the multi-trait stabil-
ity index corresponding to the i-th genotype, Fij indicates 
the j-th score associated with the i-th genotype, and Fj 
denotes the j-th score linked to the ideotype. Genotypes 
exhibiting a reduced MTSI are in proximity to the ideo-
type, showcasing elevated performance and stability 
across all scrutinized variables. The calculation of the 
selection differential for mean performance was con-
ducted for each trait, considering a selection intensity set 
at 30%.

Genotype-ideotype multi-trait distance index (MGIDI)
The MGIDI distance index, introduced by Olivoto and 
Nardino [14] was applied to pinpoint the genotypes that 
effectively combine the majority of traits within each 
environment in a desired manner. MGIDI consists of 
knowing the optimal genotype and rescaling the variables 
so that they are all in a range of 0-10014, according to the 
following equation [14]:

	
rXij =

ηnj − φnj

ηoj − φoj
x (θij − ηoj) + ηnj

where ηnj and φnj are the new maximum and minimum 
values for trait j after rescaling, respectively; ηoj and φoj 
are the original maximum and minimum values for trait 
j, respectively, and θij is the original value for the j-th trait 
of the i-th genotype. For DF in which lower values are 
desired, ηnj = 0 and φnj = 100 are considered. For all other 
traits where higher values are desired, ηnj = 100 and φnj = 0 
were considered. Thus, the optimal genotype would be 
100 for all traits after rescaling.

Subsequently, exploratory factor analysis was per-
formed with rXij to group the related traits and reduce 
the dimensionality of the data, generating factor loads for 
each genotype [14] through the following equation:

	 X = µ + Lf + ε

X is a 1p×1 vector representing rescaled observations; µ 
is a 1p×1 vector denoting standardized means; f is a 1p×1 
vector representing common factors; ε is a 1p×1 vector 
of residuals, where p and f are the numbers of retained 
traits and common factors, respectively. The eigenvalues 
and eigenvectors are derived from the correlation matrix 
of rXij. Only those with eigenvalues exceeding 1 are 
retained. The scores are computed using the equation:

	 F = Z
(
ATR−1

)T

In this context: F is a g×f matrix containing factorial 
scores; Z is a g×p matrix featuring standardized means; 
A is a p×f matrix representing canonical loads; R is a 
p×p correlation matrix among the traits. Here, g, f, and 
p indicate the number of genotypes, retained factors, and 
analyzed traits, respectively. Subsequently, the computa-
tion of the Euclidean distance between genotype scores 
and ideal genotypes was conducted, determined by the 
MGIDI index [14] using the following equation:

	
MGIDIi =




f∑

j=1

(Yij − Yj)
2




0,5

Yij denotes the score of the i-th genotype on the j-th fac-
tor (i = 1,2,…,g;j = 1,2,…,f), where g and f represent the 
number of genotypes and factors, respectively.Yj signifies 
the score of the j-th ideotype. The genotype with the min-
imum MGIDI is in proximity to the ideotype, showcasing 
desirable values for all the assessed traits. The selection 
differential for all traits was computed with a selection 
intensity set at 30%. Consequently, genotypes with lower 
MGIDI, i.e., those closer to the ideotype, were chosen.
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Multi-trait index based on factor analysis and genotype-
ideotype distance (FAI-BLUP)
To obtain the FAI-BLUP, the distance between the ideo-
type and each genotype was estimated and then con-
verted into a spatial probability to rank the genotypes 
[7]. The formula for calculating the FAI-BLUP index is as 
follows:

	
Pij =

1
dij∑i=n;j=m

i=1;j=1
1
dij

where: Pij is the probability that genotype (i = 1, 2,…,n) 
is similar to ideotype j (j = 1, 2,…,m); dij is the genotype 
to ideotype j distance, based on the standardized mean 
Euclidean distance.

Smith-Hazel Index
The formula for calculating the Smith-Hazel index (SH) 
for the classic method of multi-trait stability assessment 
is as follows:

	
Ii =

∑

k

bk
−
yik

𝐼𝑖Ii represents the value of the index computed for prog-
eny i; 𝑏𝑘bk is the weighting coefficient associated with 
trait k; yik signifies the phenotypic mean of progeny 
i in relation to trait k. The values of 𝑏𝑘bk were deter-
mined through b = P− 1Gxa, where:P− 1 is the inverse of 
the matrix representing mean phenotypic covariances 
between traits; G is the matrix indicating genotypic vari-
ances and covariances in the progeny mean across traits; 
a is the vector containing the economic weights of the 
traits. A selection intensity of 30% was employed.

Genotype by Yield*Trait (GYT) biplot
The Genotype by Yield*Trait analysis employed the theo-
retical framework introduced by Yan and Frégeau-Reid 
[15]. This analytical approach relies on the utilization of 
phenotypic averages. When the breeder’s objective is to 
augment a particular variable, it is multiplied by the grain 
yield. Conversely, when the breeder aims to diminish a 
trait, such as, for instance, the number of days to flower-
ing, the variable’s mean is divided by the grain yield. Prior 
to conducting the GYT analysis, the data underwent 
standardization to ensure that the mean for each trait 
was adjusted accordingly. The standardization process 
adhered to the following equation:

	 Pij = (Tij−
−
T /Sj)

In the context of this equation: Pij  = represents the stan-
dardized value of genotype i for the specific variable or 

the combination of grain yield and trait j.; Tij = signifies 
the original value of genotype i for the specific variable 
or the combination of grain yield and trait j in the GT 
or GYT table. −

T  = stands for the mean value across all 
genotypes for the specific variable or the combination of 
grain yield and trait j. Sj = represents the standard devia-
tion for the specific variable or the combination of grain 
yield and trait j.

The GYT Biplot utilized the initial two principal com-
ponents (PC) derived through singular value decom-
position (SVD). Nevertheless, prior to conducting 
simultaneous selection, standardization was applied to all 
the data. The SVD conducted on the GYT table was sub-
sequently transformed into genotype eigenvalues, trait 
eigenvalues, and singular values, following the equation 
introduced by Yan and Frégeau-Reid [15]:

	
Pij = (dλα

1ξi1)

(
λ1−a
1 τ1j
d

)
+ (dλa

2ξi2)

(
λ1−a
2 τ2j
d

)
+ εij

where: ξi1 and ξi2 are the eigenvalues of PC1 and PC2 for 
genotype i, respectively; τ1j and τ2j are the eigenvalues 
of PC1 and PC2, respectively, for the combination grain 
yield x trait j; λ1 and λ2 are the singular values of PC1 
and PC2, respectively; α is the singular value partition-
ing factor; d is the scalar distance that was chosen so that 
the longest length of the vector between the genotypes 
remained equal to the length between the traits; εij is the 
residual of the fit of PC1 and PC2 for genotype i in the 
combination grain yield x trait j.

Results
It is observed that the estimate of residual variance pre-
sented the highest proportion of the phenotypic variance 
for all variables. However, for days of flowering (DF), the 
proportion of genotypic variance estimate (1.07) was 
similar to estimates of residual variance (1.08), reflecting 
directly on higher heritability (Table 2).

The highest heritability estimates were observed for 
DF (0.50) and 100 M (0.42). The other variables showed 
low or moderate values for heritability, ranging from 0.08 
for NPP to 0.19 for yield. Regarding the accuracy of the 
selection of genotypes, variations from 0.46 to 0.87 were 
observed for NPP and DF, respectively. The ratio between 
CVg/CVr ranged from 0.30 for NPP to 1.0 for the DF.

Selected genotypes and coincidence index
A 30% selection intensity was assumed for the selection 
indexes, represented by the red circle. It can be observed 
that the MTSI index selected only four genotypes, G1, 
G3, G27, and G9 (Fig.  2A). For the MGIDI index, eight 
genotypes were selected, G15, G19, G9, G1, G3, G27, 
G23, and G13 (Fig. 2B). The genotypes G2 and G25 were 
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close to the cutoff point (red circle) for the MTSI and 
MGIDI indexes, respectively.

The Smith-Hazel (Fig.  3A) and FAI-BLUP (Fig.  3B) 
indexes selected four genotypes, G17, G3, G23, and G19 
and G17, G13, G23, and G3, respectively. It is worth not-
ing that both indexes selected the genotypes G17 and 
G23 in the same position.

Genotypes G3, G27, and G23 were selected more often, 
followed by G1, G9, G15, G19, and G13 (Fig. 4), imply-
ing that these two genotypes performed better and were 
more stable in different environments. Of the eight geno-
types selected, the MGIDI index shares the four selected 
by the FAI-BLUP index and SH index. The genotypes G3, 
G23, and G27 were common to all indexes; this suggests 
that these genotypes show a wide adaptation, perform-
ing well in different environments. Genotype G17 was 
selected exclusively by the FAI-BLUP index and SH. They 
were suggesting a close adaptation of this genotype.

It is observed that the variable 100  M obtained the 
lowest gain in the direct selection. However, it showed 
positive gains in the indirect selection indexes (Table 3). 
The NGP variable showed a higher frequency of negative 
selection deviation (SD) in all indexes, with FAI-BLUP 
indentation. This can cause a high frequency of selected 
genotypes with negative individual selection devia-
tions. We should also consider that the selection objec-
tive of the DF variable is for reduction; thus, only direct 
selection and the FAI-BLUP index showed gains for this 
variable.

Among the selected variables, YIEL, 100  M, and NPP 
showed the highest genetic gains (11.42%, 6.15%, and 
10.47%) in the MTSI index. Regarding the FAI-BLUP 
index, it was the only one that showed negative gains 
for the variables PL and NPP, 0.14% and 6.09%, respec-
tively. The MTSI index generally provided higher total 

Table 2  Estimated variance components and genetic parameters for days to flowering (DF), pod length (PL), number of pods per 
plant (NPP), number of grains per pod (NGP), 100-grain mass (100 M), and grain yield (YIEL) evaluated in 28 black bean genotypes
Component DF PL NPP NGP 100 M YIEL

σ̂g 1.07 0.05 3.60 1.96 2.81 11580.09

σ̂r 1.08 0.54 40.81 11.09 4.06 49532.12

σ̂f 2.15 0.60 44.41 13.05 6.87 61112.20

h2 0.50 0.09 0.08 0.15 0.42 0.19

Accuracy 0.87 0.48 0.46 0.59 0.54 0.64
CVg 2.24 1.91 12.48 17.65 4.60 10.72
CVr 2.25 6.04 42.04 42.01 12.57 22.17
CVg/CVr 1.00 0.32 0.30 0.42 0.37 0.48

Fig. 2  Multi-trait stability index (MTSI) (A) and Multi-trait genotype-ideotype distance index (MGIDI) (B) for 28 black bean genotypes. Selected genotypes 
are indicated in red, and the red circle represents the cut-off point according to the selection pressure
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gains, i.e., 28.3% for the variables with positive selection 
differential.

The GT-biplot analysis captured 79.82% of the variance, 
with PC1 contributing 65.59% and PC2 14.23% (Fig. 5A). 

Conversely, the genotype by yield*trait biplot exhibited 
PC1 (76.55%) and PC2 (21.16%), totaling 97.71% of the 
total variance explained by the first two axes (Fig.  5B). 
Both methods displayed sufficient explanatory power 

Fig. 4  Venn diagram with the genotypes selected by the multi-traits stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), Smith-
Hazel index (SH), and FAI-BLUP index for 28 black bean genotypes

 

Fig. 3  Smith-Hazel index (A) and FAI-BLUP index (B) for 28 black bean genotypes. Selected genotypes are indicated in red, and the red circle represents 
the cutoff point according to selection pressure
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for data visualization, as more than 70% of the variance 
should be accounted for in graphical representations.

A polygon was formed regarding the who-wins-where 
biplot (Fig.  6A), derived from the linkage between gen-
otypes characterized by the longest vertices in various 
directions, a polygon was delineated. Along each side of 
this polygon, a line was extended from the origin of the 
Biplot, represented by a red line, effectively partitioning 
it into sectors that portray the genotypic profiles across 
different traits. Within this framework, it became evident 
that the genotypes located at each vertex exhibited the 
most elevated values when considering the combinations 
of grain yield and traits.

The polygon showed the formation of seven sectors, 
but only three contained the variables analyzed. At the 
apex of the first sector, G2 showed the highest values for 
Y*NGP, and genotype G16 also showed potential for this 
combination. The genotypes G3 and G17 were the best 

for Y*100  M, Y*PL, and Y/DF combinations. The geno-
type G9 was superior in the Y*NPP combination.

Regarding the “means x stabilities” plot (Fig.  6B), it 
observes two lines intersecting at the origin of the biplot 
(center of the plot). The red line is the axis of the mean 
tester (MTA). The location of the MTA in the figure 
denotes the average placement of all yield*trait combina-
tion vectors. The arrow points to higher average values 
of the genotypes across all yield*trait combinations. The 
MTA serves to rank genotypes based on their overall 
superiority or utility. The blue line, meanwhile, separates 
genotypes with above-average overall performance from 
those with below-average overall performance [15].

The order of the genotypes that had superior rank-
ings based on the ability to combine grain yield and tar-
get traits was G3 > G17 > G23 > G1 > G27 > G19. On the 
other hand, G8, G18, and G6 were considered the worst 
compared to the others. G3 and G17 were found to be 
the most balanced for several traits. Also, G1 is the most 

Table 3  Genetic selection differential based on direct selection (DS) and indirect selection via MTSI, MGIDI, SH, and FAI-BLUP indexes, 
considering selection intensity of 30%
Variable Selection Differential (%)

SD MTSI MGIDI SH FAI-BLUP
DF -0.38 (0.82) 0.04 (0.08) 0.50 (1.08) 0.80 (1.73) -0.75 (1.63)
PL 0.28 (2.31) 0.02 (0.17) 0.10 (0.85) 0.15 (1.22) -0.02 (0.14)
NPP 0.43 (2.81) 1.60 (10.47) 1.24 (8.13) 1.29 (8.47) -0.93 (6.09)
NGP 0.31 (3.84) -0.67 (8.48) -0.90 (11.36) -0.86 (10.8) 0.94 (11.90)
100 M 0.01 (0.06) 1.21 (6.15) 0.65 (3.30) 0.68 (3.45) 0.61 (3.10)
YIEL 14.65 (1.46) 114.80 (11.42) 84.05 (8.37) 88.20 (8.78) 93.20 (9.28)
DF - days to flowering, PL - pod length, NPP - number of pods per plant, NGP - number of grains per pod, 100 M − 100-grain mass, and YIEL - grain yield

Fig. 5  Genotype by trait biplot (A) and genotype by yield*trait biplot (B) of 28 black bean genotypes grown in 2020 and 2021
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stable for most traits, however, it is within the group with 
overall below-average performance.

Discussion
The CVg/CVr (Table  2) ratio estimates observed indi-
cate that, in general, the variables analyzed show greater 
expression of the environmental component to the det-
riment of the genetic component and, consequently, 
lower gains with selection through these variables since 
they obtained moderate or low estimates of heritability 
(h2). As Cruz et al. [25] points out, the lower the genetic 
variance and the greater the environmental effect, the 
lower the heritability of the trait, which can be proved 
by the results obtained. The expression of these traits is 
complex within this scenario, given the large number of 
segregating locus controlling the trait, while suffering 
the influence of environmental effects. Consequently, 
understanding the heritability and the determining com-
ponents of their variation are vital in the study of quanti-
tative traits [26, 27].

For Resende [28], heritability is classified as low 
(h < 0.15), median (0.15 < h < 0.50), and high magnitude 
(h > 0.50). But it should be noted that values of small and 
medium magnitude for heritability are expected, mostly 
because it is a quantitative trait, which are susceptible to 
climate variations along the years. However, considering 
the values of the genetic coefficient of variation, which 
quantifies the magnitude of genetic variation available for 
selection, one can infer the existence of genotypes with 
superior genetic constitutions [29].

In advanced populations, genetic variability is lower 
than in the early stages. The probability of obtaining 
genotypes with simultaneously high individual selec-
tion differentials is lower than in early-stage populations 
subjected to higher selection intensity. This fact justifies 
the 30% selection intensity used in this study. However, 
the experimental design employed in this phase provides 
more accurate estimates of genotypic values due to repli-
cations and evaluations in multiple locations. In addition, 
the frequency of genotypes with undesirable traits that 
affect yield, such as susceptibility to pests and diseases, 
is lower.

The assessment of experimental precision was con-
ducted by analyzing the estimates of selective accuracy. 
This particular parameter serves as an indicator of the 
effectiveness of both the information and methodologies 
employed for predicting genetic values. Selective accu-
racy, closely linked to the accuracy of selection, quanti-
fies the correlation between the predicted genetic values 
and the actual genetic values of individuals, as described 
by Pimentel et al. [17]. According to Resende et al. [30], 
moderate to high accuracy values were observed, repre-
senting good accuracy in identifying superior individuals. 
States accuracy above 90% is only possible for traits with 
high heritability, and that accuracy values greater than 
0.70 are sufficient to provide a more accurate inference 
about the genetic value of progenies. As a measurement 
related to precision in selection, accuracy is the main 
element of genetic progress which may be modified by a 
person aiming at maximizing genetic gain [30]. Most of 

Fig. 6  Who-wins-where biplot considering genotype by yield*trait (A) and mean, adaptability, and stability for genotype by yield*trait (B) of 28 black 
bean genotypes grown in 2020 and 2021
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the genotypes selected by the indexes were the advanced 
lines (Figs.  2 and 3). Thus, it can be inferred that the 
selected lines have the genetic potential to originate new 
cultivars, presenting the desired traits and, thus, differen-
tiating themselves from cultivars already on the market. 
One should note, in addition to the selected individuals, 
those close to the cutoff point (red circle), which suggests 
that these genotypes may have interesting traits. Thus, 
the researcher should investigate genotypes very close to 
the cutoff point [12]. In a study with the species Avena 
sativa L., the authors Olivoto et al. [12] applied a selec-
tion intensity of 15%, the three selected genotypes were 
also within the cutoff point (red circle) considering the 
selection intensity. Therefore, in future studies it would 
be interesting to investigate the performance of geno-
types that are very close to the cutoff point.

In the Veen diagram (Fig. 4), it is possible to verify that 
the common genotypes that were selected by all indices 
show broad adaptation, presenting good performance in 
different environments. Correlated data are common in 
breeding experiments [14]. The simulation study created 
by Olivoto et al. [12, 14] revealed that the pattern of cor-
relation between characteristics will influence the success 
of the selection.The selection differentials for pod length 
were low for most indexes (Table 3). The not so expres-
sive gains can be explained by the fact that simultaneous 
selection for several traits reduces the genetic gain per 
trait individually. However, for the traits where the gains 
were more reduced, Zetouni et al. [18] point out that the 
genetic gains in the trait set can balance this reduction 
[19]. In this study it is possible to apply the selection of 
superior genotypes through positive selection differen-
tials for traits that wanted to increase and negative selec-
tion differentials for a trait that wanted to decrease. This 
should be useful for breeders and agronomists who aim 
at simultaneous selection for average performance and 
considering several traits, as it provides a unique selec-
tion process that is easy to interpret and considers the 
correlation structure between traits [12].

Overall, the MGIDI (Table 3) index provided satisfac-
tory gains, with good effectiveness in selecting genotypes 
close to the ideotype where larger pod size, a higher 
number of pods per plant, 100-grain mass, and higher 
grain yield values are desired. In the simulation study on 
a simulated data set to evaluate the performance of the 
MGIDI index and compare it with the classic Smith-
Hazel (SH) index and the modern FAI-BLUP index in 
terms of percentage of success in feature selection with 
desired gains, the MGIDI was found to outperform the 
FAI-BLUP and SH indexes in all simulation scenarios, 
and its superiority is more evident in datasets with a low 
correlation between traits. Generally, MGIDI presents 
71.7% of success in selecting traits with desired gains [14]. 
The indexes’ performance is dependent on the number of 

traits, the number of genotypes analyzed and the degree 
of correlation between traits. The differences in selection 
success are more evident in datasets with a low correla-
tion between traits, where the MGIDI index presents the 
higher success rates [14].

However, the gains obtained in these traits are accom-
panied by a reduction in the number of grains per pod. 
Negative selection differentials are interesting when 
aiming to reduce the variable in the ideotype design. 
That said, considering the FAI-BLUP index, we verified 
the possibility of success in using the selection index 
to reduce the cycle by reducing days to flowering and 
increasing the grain yield.

Comparing the Smith-Hazel index with the FAI-BLUP 
index, MTSI, and MGIDI, the sum of the SH selection 
differentials shows positive gains (23.56%). The total SH 
gains were close to those found for the MGIDI index 
when considering grain yield and yield components. 
However, the SH index was lower than that observed for 
MTSI and FAI-BLUP.

An ideotype-based breeding program focuses on multi-
traits simultaneously. This method differs from other 
multivariate approaches in plant breeding, such as the 
Smith-Hazel index, which tends to focus on a few traits. 
Focusing directly on a few variables statistically simplifies 
the problem [20]; however, important information may 
be overlooked in data analyses.

Thus, several studies have reported the efficiency of 
multivariate selection indexes for simultaneous selection 
in plant breeding. Here are some instances: the identifica-
tion of drought and salinity-resistant soybean genotypes 
[21], the development of bread wheat ideotypes tailored 
for early sowing conditions [22], the selection of millet 
strains with resistance against shoot fly infestations [23], 
and the breeding of chickpea genotypes with enhanced 
drought tolerance [24].

In the GYT-biplot analysis (Fig.  5), the variables tend 
to be positively correlated as they are yield components, 
even if these variables per se are negatively correlated 
[15]. This approach allows us to rank genotypes based on 
their levels of yield-trait combinations.

For Fig.  6A, it can be inferred that the genotypes G3 
and G17 were the best for combining grain yield traits 
with grain mass and earliness. In bean breeding pro-
grams, cultivars are not selected only when they present 
a high grain yield. Other traits, such as DF and 100 M, are 
important to improve the quality and, consequently, the 
final value of the product. As a result, the earliness and 
grain size traits are relevant in the analyses for the ideo-
type of the bean. Thus, seeking to increase the variability, 
it would be interesting to cross these genotypes to obtain 
segregating populations with greater yield potential and 
precocity.
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This superiority could be explained by the G3 cultivar 
(RS-FP403), which is already sold in the market for its 
superior agronomic traits, besides its ability to adapt to 
the conditions of the Cerrado and Atlantic Forest. The 
same interpretation can be made for the G1 genotype 
(BRS-Esteio), as it was among the genotypes with supe-
rior performance for all traits.

It should also be noted that ten genotypes, including 
the control cultivar, were present in those sectors that did 
not contain any yield*trait combinations, which implies 
that these genotypes obtained the worst performance of 
the traits studied in combination with grain yield com-
pared to the rest of the genotypes.

The visualization of the mean tester axis (MTA) in the 
“means*stabilities” plot (Fig.  6B) is the unique trait of 
the GYT biplot, as it displays the rankings of compet-
ing genotypes based on the strengths and weaknesses of 
each genotype that cannot be visualized in other biplots, 
including GT biplot [24]. This view categorized the lower 
and upper genotype groups separated by the blue line.

In this study, the MTA biplot grouped 12 genotypes 
as superior. Among these genotypes, G3, G17, G23, and 
G1 had superior trait profiles, i.e., closer to the ideo-
type. It should be noted that these genotypes were the 
ones selected by the multivariate indexes, equally by the 
SH index, indicating the superiority of these genotypes 
and the coincidence of the indexes with the GYT biplot 
method in selecting superior genotypes.

Another important point is that the genotypes near the 
cutoff point (Figs. 2 and 3) are present among the group 
of superior genotypes (Fig. 6B), ratifying the importance 
of attention to this group of individuals, as they may 
present traits of interest. In contrast, the other inferior 
genotypes had an unfavorable trait profile when evalu-
ated with grain yield, so that they can be rejected based 
on these multiple traits.

In situations where a breeding program aims to 
enhance the performance of multiple traits, tools akin to 
the GYT-biplot become pivotal. These tools enable the 
identification of genotypes that exhibit superior perfor-
mance across multiple traits concurrently. The synergy 
between GYT-biplot analyses and multi-trait selection 
indexes, along with the incorporation of BLUP values, 
offers a significant advantage, as noted by Woyann et al. 
[13].

This is related to the fact that GYT-biplot analysis and 
multi-trait indexes stand out as useful methodologies 
that surpass classical methodologies to deal with the 
multi-trait scenario and by being a visual tool to describe 
the performance of genotypes and rank them. Ultimately, 
combining these analyses improves the reliability of the 
results.

Conclusion
The multivariate indexes efficiently selected superior 
black bean genotypes, showing desirable selection gains 
for most traits.

The use of multivariate indexes and GYT enable the 
selection of early genotypes with higher grain yields. 
The lines G9 (CNFP17058), G13 (CNFP17489), G17 
(CNFP19248), G23 (CNFP19325), and G27 (CNFP19349) 
were selected based on the best performance for multiple 
traits, are the closest to the ideotype, and can be recom-
mended as new cultivars.

The phenotypic means of the selected lines were equal 
or higher when compared to the phenotypic means of the 
controls (control cultivars). This indicates the productive 
potential of the lines studied here, allowing them to be 
registered and recommended as new cultivars.
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