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Abstract 

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and develop‑
ment of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella 
on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar 
treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used 
as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total 
protein content of Trifolium repens decreased. On the other hand, ROS, such as O2

.− and H2O2, and antioxidant 
enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal 
study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. 
For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column 
chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated 
layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant 
component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede 
the growth and development of Trifolium repens. This approach could help to understand the competitive abilities 
of this weed species and in further research provide an alternate weed management strategy.
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Introduction
Exotic plants are a significant threat to biodiversity, as 
they disrupt ecosystems by outcompeting native species 
They have traits that give them a competitive edge, such 
as fast growth, high reproductive rates, and tolerance 
to various environmental conditions. Exotic plants also 
release chemicals that inhibit the growth of native plants, 
further enhancing their dominance [1].

Allelopathy involves the incorporation of allelochemi-
cals produced by one organism that inhibit or promote 
the growth of another. Allelopathic plants in intercrop-
ping settings produce allelochemicals through root 
exudates, Volatile organic compound emissions from 
above-ground parts, and leaching or decomposition of 
plant detritus [2]. Allelochemicals are secondary metab-
olites generated as byproducts of plant physiological 
activities [3]. When they are released, they can impede 
germination, growth, and development, creating imbal-
ances in the levels of certain phytohormones and reduc-
ing root and shoot length, resulting in the degradation of 
photosynthetic pigments, cell membrane damage, dena-
turation and the inhibition of protein synthesis [4–8].

Allelochemicals disturb the reactive oxygen spe-
cies (ROS)–antioxidant equilibrium and modify the 
physiological state of plants [9]. Plants generate ROS, 
comprising superoxide anion radical (O2

.−), hydrogen 
peroxide (H2O2), hydroxyl radical (OH−), and singlet 
oxygen (1O2), which are crucial signalling molecules in 
response to environmental stressors [10, 11]. However, it 
may undergo scavenging as a result of enzymatic activity, 
including that of catalase (CAT), superoxide dismutase 
(SOD) and class III peroxidases (PODs) [12].

Rumex acetosella is a exotic weed found in grasslands, 
pastures, waste areas, and along roadsides [13–15]. It 
is considered one of the world’s worst weeds, infesting 
45 different crops in 70 countries [16]. It is susceptible 
to shading by other plants [17], but heavy grazing can 
reduce shading and allow it to compete with native for-
age grasses [14]. Additionally, it recovers quickly from 
clipping treatments, which may explain its abundance 
in grasslands and pastures [18]. It is the predominant 
exotic species in domestic agriculture in several prov-
inces in South Korea, including Gyeonggi, Gangwon, 
Chungcheongbuk, Chungcheongnam, Jeollabuk, Jeolla-
nam, and Jeju [19]. The presence of R. acetosella has been 
shown to have a negative impact on both the production 
and quality of grass in these areas. According to Cooper 
et al. (1985) [20], the consumption of substantial quanti-
ties of R. acetosella by cattle leads to the production of 
oxalic acid-calcium chelate or induces calcium deficiency, 
resulting in fatality.

White clover (Trifolium repens) is a leguminous plant 
that grows in temperate regions and is known for its 

high-protein forage [21] and its ability to fix nitrogen at 
a high rate [22]. Historically, white clover has been used 
in crop rotations to maintain yields, but its use declined 
with the introduction of mineral fertilizers in the twen-
tieth century. It is still used in organic systems and in 
grass/clover leys to improve forage and grassland qual-
ity [23, 24]. Recent scholarly investigations have revealed 
that white clover can serve as living mulch (cover crops) 
[25], for phytoremediation [26], or as a source of biologi-
cally active compounds for protection [27–29]. Frankton 
and Mulligan [30] reported that a large soil seed bank 
of R. acetosella can also result in crop failure for clover. 
Few studies have investigated the allelopathic interaction 
between Rumex acetosella and Trifolium repens [31, 17, 
32–34]. This research aimed to explore the allelopathic 
effects of the plant R. acetosella on T. repens. The objec-
tive of this study was to determine the mechanisms of 
allelochemical-plant interactions and use this under-
standing to develop an environmentally friendly weed 
control strategy.

Materials & methods
Collection of plant material
The R. acetosella plant material used in the experiment 
was collected in May 2022 from Yugyum-ri, Gang-
dong-myeon, Gyeongju-si, and Gyeongsangbuk-do 
(35°59′15’’N, 129°16′34’’E). The specimen was later iden-
tified by Professor Dr. In-Jung Lee and deposited into the 
National Institute of Agricultural Sciences with the depo-
sition number HCCN-2020–4 (for plant) and WS000589 
(for seeds). First, the collected plant material was sub-
jected to freeze-drying using a freeze dryer (PVTFD20R, 
Ilshin Lab, Seoul, Korea). Subsequently, the freeze-dried 
sample was divided into shoot and root parts. The seg-
ments were then finely pulverized using a homogenizer 
(29000A0, IKA, Staufen, Germany). T. repens was pur-
chased from Dongguk Seedling Industry Inc. (Dongguk 
Seedling White Clover Seed Landscape, Dongguk Seed-
ling Industry Inc., Seoul, Korea).

Preparation of the methanol extract
To prepare the samples, 500 g dry weight of crushed R. 
acetosella shoot and root were separately placed in a 
2 L Erlenmeyer flask (FK10202000, Dongsung Science 
Inc., Gwangju, Korea). Within each flask, 1 L of metha-
nol (MeOH) was added, and the mixture was stirred 
using a magnetic stirrer (MSH-20D, DAIHAN Scientific 
Inc., Wonju-si, Gangwon-do, Korea) for a period of 24 h. 
After that, filter paper (Advantec No. 2, Toyo Roshi Kai-
sha Inc., Tokyo, Japan) was positioned on a Büchner fun-
nel to obtain the methanol extract, and this process was 
repeated three times to ensure thorough extraction. The 
methanol extracts were placed in a recovery flask, and 
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concentrated extracts were obtained through the use of 
a rotary evaporator (Eyela Rotary Vacuum Evaporator 
NN series, Eyela, Tokyo, Japan). Then, 100  mL of dis-
tilled water was added. The resulting sample was stored 
in a deep freezer (IU2386D, Thermo Fisher Scientific, 
Marietta, OH, United States) by aliquoting 20 mL into a 
conical tube (50 mL, SPL Life Science, Pocheon, Korea). 
Then, the sample was dried using a freeze dryer. Finally, 
the 39 g of dried samples were stored in a refrigerator at 
4 °C [35].

In vitro seed bioassay
An experiment was conducted to investigate the effect 
of methanol extracts derived from both the shoot and 
root parts of R. acetosella on the germination of T. repens 
seeds through a seed bioassay. To ensure the steriliza-
tion of T. repens seeds, a solution of sodium hypochlorite 
(3%) in dH2O was used. Subsequently, 20 sterilized seeds 
were evenly spread on Petri dishes (60 mm × 15 mm, SPL 
Life Science, Pocheon, Korea) covered with filter paper. 
Two stock water solutions, each with a concentration of 
20 g/L, were prepared using the shoot and root extracts 
of R. acetosella. Serial dilutions were performed to create 
a range of concentrations for the experiment, including 
20, 10, 5, 2.5, 1.25, and 0.625  g/L. After the addition of 
1 mL of methanol extract to a Petri dish with seeds, the 
plants were grown for a period of seven days in a con-
trolled plant growth chamber (JSPC-420C, JSR Corpora-
tion, Gonju, Korea) at a temperature of 20 °C, humidity of 
60%, and light intensity of 6850  lx. The growth parame-
ters were carefully investigated during the growth period. 
A dose‒response curve was obtained based on the meas-
ured fresh weight, allowing for the calculation of the IC50 
value, which represents the concentration of the extract 
at which plant growth is inhibited by 50%. This experi-
ment was repeated three times to ensure the reliability of 
the results.

Foliage treatment and chlorophyll content measurement
T. repens seeds were subjected to sterilization through 
a sodium hypochlorite (3%) solution, and subsequently, 
20 seeds were planted in separate 100  mm × 90  mm 
pots containing cocopeat (68%), perlite (11%), zeo-
lite (8%), as well as micronutrients available as 
NH4

+∼0.09  mg/g; P2O5∼0.35  mg/g; NO3
−∼0.205  mg/ g; 

and K2O ∼0.1 mg/ g. After preparing the stock solution 
of the R. acetosella shoot extract at a concentration of 
200,000  mg/L, serial dilution was carried out, and the 
adjuvant Tween20 (0.01%) (Duksan Genetal Science Inc., 
Seoul, Korea) was added. The concentrations used in the 
experiment were 200 g/L, 100 m/L, 50 g/L, 25 g/L. Fol-
lowing a 14-day growth period (Trifoliate stage) from 
the time of sowing, foliar treatments were administered 

three times, each at weekly intervals with a 5 mL volume. 
Three days after the final foliar treatment, various plant 
growth parameters, including shoot length, root length, 
fresh weight, and dry weight, were assessed. The chloro-
phyll content was measured with a portable chlorophyll 
content metre (CCM-300, ADC Bioscientific Inc., Herts, 
UK).

Measurement of total protein content
To determine the total protein content, 0.1  g of shoot 
fresh sample was ground with liquid nitrogen and mixed 
with 1  mL of 100  mM sodium phosphate buffer (pH 
7.0) in an E-tube. The mixture was then centrifuged 
at 12,000 × g for 30  min, and the protein content of the 
supernatant was analyzed at 595  nm using a spectrom-
eter, following established methods [36].

Determination of ROS activity
The O2

− content was measured using the method 
reported by Navari-Izzo et al. in 1999 [37]. 0.1 g of freshly 
ground shoot sample was used, then 10 mM NaN3 solu-
tion, 0.05% NBT, and 10 mM potassium phosphate buffer 
(pH 7.8) were mixed, and they were agitated for some 
time. After chilling and centrifugation, the obtained solu-
tion was heated to about 85  °C for 15 min. The level of 
O2

− activity in the aqueous fraction was determined 
using a spectrophotometer at wavelength of 580 nm. The 
effect of H2O2 in T. repens leaves treated with R. aceto-
sella extract was examined with a commercial assay kit. 
The sample then was frozen in liquid nitrogen. After that, 
0.1 g of fresh phosphate was added to the ice-cold phos-
phate buffer solution (pH 7.8) that included 1 mM EDTA. 
The supernatant obtained after centrifugation was ana-
lysed using an OxiTec™ Hydrogen Peroxide/Peroxidase 
Assay Kit. The H2O2 Assay Kit uses oxiprobe and peroxi-
dase (POD) as enzyme pairs to enable the quantification 
of hydrogen peroxide (H2O2) activity.

Determination of antioxidant activity
The assessment of antioxidant enzymes in T. repens 
leaves after treatment with R. acetosella extract involved 
using a commercial test kit. A 0.1 g fresh weight of leaves 
sample was ground with liquid nitrogen in an E-tube 
and combined with 1  mL of 50  mM phosphate buffer 
pH 7.8 and 1 mM EDTA. The mixture was vortexed, ice-
incubated, and then centrifuged. The upper cell culture 
supernatant layer was used for OxiTec™ SOD, Catalase, 
and Hydrogen Peroxide/Peroxidase Assay Kits from 
Biomax Co., Ltd., following specified techniques [38]. 
The SOD Assay Kit analyzes SOD activity via xanthine 
oxidase and WST, with a spectrophotometer reading at 
450  nm indicating enzyme activity. The CAT Assay Kit 
uses oxiprobe, horseradish peroxidase, and catalase to 
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measure catalase activity by reacting H2O2 with catalase 
to produce water and oxygen. Unconverted H2O2 reacts 
with oxiprobe and peroxidase to form resorufin, which 
can be measured at 560  nm using a spectrophotometer 
[39]. There was an inverse relationship between the CAT 
activity and the observed absorbance. The POD Assay Kit 
uses an oxiprobe and hydrogen peroxide (H2O2) to quan-
tify peroxidase (POD) activity [40].

Quantification of abscisic acid (ABA)
Endogenous ABA in plants was quantified using the 
technique described by [41]. A 0.1 g dry weight of leaves 
of T. repens sample was mixed with 10  mL of ABA 
extraction solvent (95:5 isopropanol and acetic acid). 
After 30 min, the mixture was filtered and concentrated 
under reduced pressure with the addition of 100 ng of the 
[( ±)-3,5,5,7,7,7-d6] ABA standard. The residue was dis-
solved in 1 N NaOH, and the pH was adjusted to 12–13. 
Chlorophyll was removed with CH2Cl2, and the pH of 
the supernatant was adjusted to 2.5–3.5. Ethyl acetate 
(EtoAC) was added, and the solution was concentrated 
under reduced pressure. After dissolution in pH 8.0 phos-
phate buffer, the solution was mixed with 1  g of PVPP 
and filtered, and the pH was adjusted to 2.5–3.5. The 
supernatant was collected, concentrated, and dried with 
N2 gas. The samples were methylated with diazomethane, 
dissolved in 50 µL of CH2Cl2, and analysed by GC/MS 
after injecting 1 µL of each sample.

Quantification of jasmonic acid (JA)
Endogenous jasmonic acid (JA) in plants was quanti-
fied using the method outlined by [42]. A solution of 
extracted JA (acetone and 50 mM citric acid, 70:30, v/v) 
was added to 0.3  g of dry weight of leaves of T. repens 
and agitated for 30 min. The [9,10-2H2]-9,10-dihydro-JA 
standard was then added, and the mixture was filtered 
using a Buchner apparatus and filter paper. The result-
ing solution was concentrated under reduced pressure 
and dissolved in 100 mM phosphate buffer (pH 7.5), and 
the pH was adjusted to 2.5. The sample was treated with 
diethylaminoethyl cellulose (DEAE cellulose) and shaken 
for one hour before being filtered too. The bottom layer 
was separated by chloroform and transferred into an 
open column containing of anhydrous NaSO4 to get rid 
of the remaining water. The liquid was concentrated by 
reducing the pressure. The final residue was dissolved 
with ethyl ether and then transferred to an amino car-
tridge (Grace Pure™ SPE Amino, Grace Dev, IL, USA). 
Contaminants were removed using a solution of chloro-
form and isopropanol (2:1) and a mixture of ethyl ether 
and acetic acid (49:1). In the end, solution was decanted, 
evaporated and concentrated to the necessary concen-
tration under reduced pressure. The residual part was 

dissolved in ethyl ether, put into a vial, and dried up 
with N2 gas. The samples were methylated by the use of 
diazomethane, dissolved in anhydrous CH2Cl2 and ana-
lyzed by the combination of gas chromatography and 
mass spectrometry (GC/MS).

Quantification of salicylic acid (SA)
The endogenous salicylic acid (SA) in the plants was 
quantified by slight changes of the method described in 
[42]. A solution consisting of 90% MeOH was used to the 
sample that contained 0.1 g of dry weight of leaves of T. 
repens. After sonication of the mixture it was transferred 
to an E-tube. Afterwards, centrifugation was carried out 
at 12,000 rpm for 15 min at 4  °C. After the supernatant 
collection, 100% methanol (MeOH) solution was added 
and the process was continued. The concentration of 
the supernatant was performed on a speedvac (model 
SPD2030, Thermo Fisher Scientific, Waltham, MA, 
USA). Finally, 5% trichloroacetic acid was placed in the 
obtained residue and the resulting mixture was trans-
ferred to E-tube with subsequent centrifugation. Fol-
lowing the separation of the supernatant, an extraction 
solution consisting of ethyl acetate, cyclopentane, and 
isopropanol at a volumetric ratio of 49.5:49.5:1 (v/v/v) 
ratio was applied. Subsequently, the supernatant was sub-
jected to separation. The supernatant, which included 
the SA component, was thoroughly dried using nitrogen 
gas (N2). The residue was dissolved in 1 mL of injection 
solution consisting of 100% methanol (MeOH), and a vol-
ume of 20 µL was thereafter injected into the high-per-
formance liquid chromatography (HPLC) system for the 
purpose of quantitative analysis.

Identification of allelochemicals from the shoot extract 
of Rumex acetosella
Liquid‒liquid extraction (LLE)
LLE was performed with the methanol extract of the 
shoot of R. acetosella, which was freeze-dried. After 40 g 
of the sample was dissolved in 400 mL of distilled water, 
it was placed in a separate funnel. In the case of sol-
vents, n-hexane, dichloromethane (CH2Cl2), chloroform 
(CHCl3), and ethyl acetate (EtOAc) were selected because 
of their miscibility and polarity. The same amount of sol-
vent as the sample dissolved in distilled water was added 
to a separate funnel, and LLE was performed three times. 
After filtering with anhydrous sodium sulfate (NaSO4) to 
completely remove water from the solvent, the mixture 
was concentrated in a recovery flask using a vacuum con-
centrator. After freeze-drying, each concentrated layer 
was subjected to the seed bioassay described above. As 
a result of the seed bioassay, the n-hexane layer with the 
lowest IC50 value was used in the next process.
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Thin Layer Chromatography (TLC)
Thin layer chromatography (TLC) was performed to 
determine the ratio of the mobile phase developing sol-
vent used for the first and second column chromatogra-
phies. TLC was performed on 60G silica gel F254 25 glass 
plates (2020 cm) [43].

Column chromatography
First, column chromatography was performed to separate 
substances with allelopathy potential from the n-hexane 
layer, which had the lowest IC50 value among the solvent 
fractions. A mixed solution of n-hexane–ethyl acetate 
(29:11, v/v) was used as the mobile phase, and 5  mL of 
each mixture was subjected to elution fractionation by 
chromatography (silica gel 60, 0.040–0.063 mm, Merck). 
After fractionation, TLC was performed as described 
above, and the samples were separated into the following 
fractions: n-hexane layer fraction A (HA), n-hexane layer 
fraction B (HB), n-hexane layer fraction C (HC), n-hex-
ane layer fraction D (HD), and n-hexane layer fraction E 
(HE). After concentrating each fraction, a seed bioassay 
was performed, and secondary column chromatography 
was performed on the HD fraction with the lowest IC50 
value. Before proceeding with the second chromatog-
raphy, the mobile phase was composed of an n-hexane-
dichloromethane-ethyl acetate mixed solution (29:8:11, 
v/v/v) through TLC, and 5 mL of each was subjected to 
elution fractionation by chromatography. After fractiona-
tion, TLC was performed as described above, and the 
samples were separated into the n-hexane layer fraction 
DA (HDA), n-hexane layer fraction DB (HDB), n-hexane 
layer fraction DC (HDC), n-hexane layer fraction DD 
(HDD), and n-hexane layer fraction DE (HDE) from the 
n-hexane layer fraction D (HD). After concentrating each 
fraction, a seed bioassay was performed for each fraction, 

and among them, instrumental analysis was performed 
for the HDC fraction with the lowest IC50 value [44].

Instrumental analysis
The HDC fraction was dissolved in n-hexane at a concen-
tration of 25  mg/0.5  ml and then analysed by gas chro-
matography‒mass spectrometry (GC/MS) with a scan 
system (7890B Network GC System and 5977B Network 
Mass Selective Detector; Agilent Technologies, Palo Alto, 
CA, USA).

Statistical analysis
The experiments were repeated three times. Statistical 
analysis (One-way ANOVA) was performed using SAS 
On Demand for Academics (Version 3.1.0, SAS Insti-
tute Inc., CARY, North Carolina, USA), with significance 
tested at p < 0.05 using Duncan’s multiple range test 
(DMRT). IC50 values were calculated in GraphPad Prism 
5 (version 5, GraphPad Software, San Diego, CA, USA) 
using log[inhibitor] vs. normalized response—variable 
slope in dose‒response – inhibition.

Results
In vitro seed bioassay
To conduct the in vitro seed bioassay, we measured the 
half-maximal inhibitory concentration (IC50) (in g/L) for 
T. repens germination and growth using extracts from 
both the shoot and root parts of R. acetosella (Fig. 1). The 
IC50 values obtained were 1.72  g/L for the root extract 
and 1.31  g/L for the shoot extract. Therefore, the sub-
sequent foliage treatment experiment was carried out 
exclusively with the shoot extract.

Fig. 1  IC50 values of the A Root and B Shoot Extracts of R. acetosella 
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Measurement of growth parameters
The results revealed a notable variation in the impact of 
R. acetosella extract at different concentrations on the 
morphological attributes of T. repens (Fig. 2). Specifically, 
for shoot length, no significant differences were observed 
among the groups treated with the concentrations of 
25, and 50 g/L when compared to the control group. In 
contrast, significant differences were observed in shoot 
length at concentrations of 100 and 200  g/L. In terms 
of root length, the application of R. acetosella extract at 
different concentrations did not significantly affect root 
length. Furthermore, no significant differences in fresh 
weight were observed at concentrations of 25  g/L com-
pared to the control group. Nonetheless, significant dif-
ferences were detected at concentrations of 50, 100, and 
200 g/L (Table 1).

Determination of chlorophyll content
The impact of varying concentrations of R. acetosella 
extract on the chlorophyll content is visually repre-
sented in Fig.  3. Notably, as the concentration of the 
shoot extract increased, there was a consistent reduc-
tion in chlorophyll content across all treatments. Sig-
nificantly, compared with those in the control group, the 
chlorophyll content in all treatment groups substantially 
decreased. With each increase in extract concentra-
tion, the chlorophyll content decreased by 3.9%, 4.3%, 

6.8%, and 7.9%, respectively, in comparison to that in the 
control.

Visualization of ROS (H2O2)
H2O2 was detected by staining the mature leaves of T. 
repens with 3,3′-diaminobenzidine (DAB). This stain-
ing process relies on the oxidation of DAB by hydrogen 

Fig. 2  The impact of varying concentrations of R. acetosella shoot extract on the growth parameters of T. repens 

Table 1  Effect of different concentrations of R. acetosella shoot extract on the growth parameters of T. repens. The values indicate the 
means ± SDs for 3 replications

Different letters denote significant differences, while similar letters denote nonsignificant differences among the treatments. Columns labelled with different letters 
indicate significant differences at the p ≤ 0.05 level

Morphological Parameters Control 25 (gL−1) 50 (gL−1) 100 (gL−1) 200 (gL−1)

Shoot length (cm) 7.3 ± 0.35a 7.2 ± 0.22ab 6.4 ± 0.42ab 5.9 ± 0.36bc 4.9 ± 0.66c

Root length (cm) 12.5 ± 0.47a 12.1 ± 0.58a 11.3 ± 0.18a 11.2 ± 0.24a 10.7 ± 0.28a

Fresh weight (g) 0.55 ± 0.06a 0.46 ± 0.12ab 0.33 ± 0.03bc 0.32 ± 0.12bc 0.21 ± 0.03c

Fig. 3  Effect of different concentrations of R. acetosella shoot 
extract on the chlorophyll content of T. repens. The values indicate 
the means ± SDs for 3 replications. Bars labelled with different letters 
indicate significant differences at the p ≤ 0.05 level
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peroxide, especially in the presence of certain heme-con-
taining proteins, such as peroxidases, resulting in the for-
mation of a distinct dark brown precipitate. In contrast to 
the control group, the foliar treatment groups exhibited 
brown staining, indicating a substantial presence of H2O2 
in the mature leaves of T. repens (Fig. 4).

Determination of hydrogen peroxide (H2O2) 
and superoxide anion (O2

−) activity
These results revealed the intricate relationships 
between foliar treatment with different concentrations 
of R. acetosella extract and foliar H2O2 and O2

−content. 
As shown in Fig.  5 (A), the H2O2 content significantly 

Fig. 4  Effect of R. acetosella extract treatment on the H2O2 content of T. repens 

Fig. 5  Measurement of the of A hydrogen peroxide (H2O2) and B superoxide anion (O2
−) in T. repens leaves after treatment of different 

concentrations of shoot extracts of R. acetosella. The values indicate the means ± SDs for 3 replications. Bars labelled with different letters indicate 
significant differences at the p ≤ 0.05 level
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increased in all treatment groups compared to that in 
the control group. With the increase in extract concen-
tration to 25, 50, 100, and 200  g/L, the H2O2 content 
increased by 18.4%, 31.2%, 84.1% and 180.9%, respec-
tively. These results clearly indicate that as the con-
centration of extract increases, so does the activity of 
hydrogen peroxide (H2O2) within the foliar tissue.

Conversely, a comparable trend was observed in the 
superoxide anion (O2

−) activity compared to that of 
the control (Fig. 5B). After the application of the foliar 
extract of R. acetosella, there was a notable increase in 
the activity of the superoxide anion (O2

−). This increase 
was measured at 33.6%, 34.4%, 47.5%, and 42.4%, cor-
responding to the incremental concentration of the 
extract, respectively. These findings underscore a con-
sistent increase in superoxide anion (O2

−) activity with 
increasing concentrations of the R. acetosella extract.

Measurement of total protein content
The application of R. acetosella extract through foliage 
treatment at various concentrations had a noteworthy 
impact on the total protein content (Fig.  6). Except at 
25  g/L, a significant decrease in total protein content 
was evident in all treatment groups compared to that in 
the control group. The total protein content decreased 
by 0.9%, 14.5%, 22.3%, and 23.6% in the respective 
treatment groups compared to that in the control 
group. These data underscore the considerable reduc-
tion in total protein content with increasing R. aceto-
sella extract concentration.

Measurement of antioxidant activities
Plants rely on their antioxidant systems to protect 
themselves against the cytotoxic effects of environ-
mental stressors. Critical enzymes, including superox-
ide dismutase (SOD), catalase (CAT), and peroxidase 
(POD), play pivotal roles in enhancing plant resistance 
to free radical damage. The figure shows insights into 
the measurement of SOD activity within T. repens fol-
lowing exposure to foliar extracts of R. acetosella at 
various concentrations (Fig.  7A). Notably, there were 
no significant differences observed between the con-
trol group and the 25 g/L and 50 g/L treatment groups. 
However, a notable trend emerged as the concentra-
tions increased, with the 100 and 200  g/L treatments 
displaying significantly greater SOD activity than the 
control. This observation revealed the potential of R. 
acetosella extract to enhance SOD activity, particularly 
at relatively high concentrations.

The activity of catalase significantly increased in T. 
repens leaves after treatment with R. acetosella foliar 
extract across all concentrations, as depicted in Fig. 7B. 
This highlights the ability of the extracts to enhance 
catalase activity, contributing to improved antioxi-
dant protection. A similar trend was observed for POD 
activity in T. repens after treatment with various con-
centrations of R. acetosella extract (Fig. 7C). Compared 
with those in the control group, all treatment groups 
exhibited significantly greater POD activity at various 
concentrations, with increases of 13.4%, 42.9%, 39.4% 
and 30.5%, respectively. This indicates that the extracts 
can effectively boost POD activity, bolstering plant 
antioxidant defenses.

Determination of phytohormones
Different concentrations of R. acetosella extract had vary-
ing effects on endogenous ABA, JA, and SA in T. repens 
leaves. The ABA content significantly increased at 25, 50, 
100, and 200 g/L in response to foliage treatment with R. 
acetosella extract (Fig.  8A). In contrast, the JA content 
significantly decreased in all treatment groups compared 
to that in the control group, with no significant differ-
ences between the 100 g/L and 200 g/L treatment groups 
(Fig.  8B). These findings highlight the influence of the 
extracts on ABA and JA levels in T. repens leaves.

On the other hand, when T. repens was subjected to 
foliage treatment with R. acetosella extract at varying 
concentrations, the SA content significantly increased 
in all treatment groups compared to that in the control 
group. This finding underscores the ability of the extracts 
to increase the SA content within T. repens, thereby con-
tributing to a notable alteration in its physiological pro-
cess (Fig. 8C).

Fig. 6  Measurement of the total protein content of T. repens treated 
with different concentrations of R. acetosella extract. The values 
indicate the means ± SDs for 3 replications. Bars labelled with different 
letters indicate significant differences at the p ≤ 0.05 level



Page 9 of 16Gam et al. BMC Plant Biology          (2024) 24:523 	

Identification of allelochemicals in the shoot extracts of R. 
acetosella
Identification through LLE (liquid‒liquid extraction)
LLE was performed as described above, and after the 
concentration of each fraction, the seed bioassay was per-
formed. The IC50 values were 1.187 g L−1 for the n-hexane 
fraction, 1.798  g L−1 for the dichloromethane fraction, 
and 1.503 g L−1 for the EtOAc fraction. Therefore, the first 

column chromatography was performed with the n-hex-
ane fraction, which had the lowest IC50 value, except for 
the chloroform fraction, which had an ambiguous value.

Seed bioassays were performed on the HA, HB, HC, 
HD, and HE fractions separated by primary column 
chromatography. Among them, secondary column 
chromatography was performed on the HD fraction, 
which had the lowest IC50 value of 0.4189 g/L.

Fig. 7  Effect of different concentrations of R. acetosella shoot extract on the activity of A SOD, B CAT and C POD in T. repens leaves. The values 
indicate the means ± SDs for 3 replications. Bars labelled with different letters indicate significant differences at the p ≤ 0.05 level
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                                  A)

B) C)

Fig. 8  Quantification of phytohormones such as A abscisic acid (ABA), B jasmonic acid (JA) and C salicylic acid (SA) using different concentrations 
of shoot extracts of R. acetosella. The values indicate the means ± SDs for 3 replications. Bars labelled with different letters indicate significant 
differences at the p ≤ 0.05 level
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Seed bioassays were performed on the HDA, HDB, 
HDC, HDD, and HDE fractions separated by secondary 
column chromatography. Among them, GC/MS analysis 
was performed on the HDC layer, which had the lowest 
IC50 value of 0.3345 mg/L (Fig. 9).

Identification through GC/MS analysis
GC/MS analysis of the HDC layer revealed 6 major 
compounds with varying peaks, retention times (RTs) 
and peak areas (in terms of composition percentage), 
accounting for 91.3% of the overall composition. Among 
the compounds, gamma. -Sitosterol had the highest peak 
area of 60.23%, followed by 9,12-octadecadienoic acid 
(Z, Z)- (18.07%), campesterol (7.50%), and (Z)6(Z)9-pen-
tadecadien-1-ol. (2.23%),.alpha. Amyrin accounted for 
1.71%, and stigmastanol accounted for 1.56% (Table 2).

Discussion
The present study was designed to determine the allelo-
pathic effects of extracts from the shoots and roots of R. 
acetosella on T. repens. Allelopathy may be affected by 
allelochemicals produced by plants under environmental 

stress [45]. Due to the treatment of R. acetosella extracts 
in which some herbicidal actives, such as catechol and 
chrysophanic acid [46, 47], have been identified, it was 
expected that germination and growth would be inhib-
ited. The present study revealed that the IC50 values of 
the root and shoot extracts were 1.716 g L−1 and 1.305 mg 
L−1, respectively (Fig. 1). Due to the lower IC50 value in 
the present study, foliar treatment was performed using 
the shoot extract of R. acetosella (Fig.  1). The findings 
showed that R. acetosella shoot extracts allelopathically 
inhibited T. repens seedling growth.

In the present study, shoot length significantly 
decreased with increasing extract concentration 
(Table  1). In addition, the root length and fresh weight 
decreased with increasing shoot extract concentration 
(Table 1). The present findings are fully consistent with a 
previous study [48]in which reported that A. nilotica leaf 
extract at a relatively high concentration was toxic and 
significantly decreased plant growth in pea. In a study 
by [49], isoliquiritigenin, an allelochemical, inhibited the 
growth of lettuce plants at concentrations of 0.2–1.0 mM 
by affecting cell division and growth hormones, resulting 

Fig. 9  Isolation and identification of allelochemicals from shoot extracts of R. acetosella 
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Table 2   Main components isolated from the HBD fraction of R. acetosella 
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in shorter roots and shoots [50]. Allelopathic stress can 
lead to changes in pH, osmotic capacity, cell injury, mem-
brane permeability, mineral uptake, and water absorption 
in seedlings, ultimately reducing stem growth [51–53].

The present study showed that the chlorophyll con-
tent decreased, as a result of increasing concentrations 
of shoot extract (Fig. 3). Our results are consistent with 
those of [54], who reported that aqueous leaf extracts 
of K. integrifoliola reduced the chlorophyll content in L. 
perenne leaves, possibly by inhibiting proteins involved in 
chlorophyll synthesis [55].

Figure  6 shows a significant decrease in total protein 
content with different treatments in contrast to the con-
trol. The current results support the findings of a previ-
ous study [56], which showed that the aqueous leachate 
and organic fractions of Nicotiana reduced the total pro-
tein content in the weeds S. sophera, C. album, S. tora, 
and S. viridis. This may be due to the presence of allelo-
chemicals that inhibit protein synthesis, degrade nucleic 
material, or interfere with cell division [57].

The present investigation revealed that H2O2 activity 
and superoxide anion (O2

−) increased with increasing 
concentrations of the extract (Fig.  5A and 5B). Repre-
sentative ROS include hydroperoxide (H2O2), superoxide 
anion (O2

−), and hydroxyl radical (·OH). Singlet oxygen 
(1O2). This result is consistent with a previous study in 
which the O2

− content increased as the concentration 
of the extract increased, which is presumed to be due 
to oxidative stress caused by allelochemicals [58]. In 
the present study, SOD, CAT and POD increased with 
increasing extract concentration (Fig. 7A-C). When ROS 
levels increase, antioxidants quickly neutralize them [59, 
60]. This increase in antioxidants indicates that a plant is 
under stress, such as in an allelopathic interaction [61].

Moreover, ABA plays a pivotal role in regulating H2O2 
under plant stress conditions, and the H2O2 content 
increases as the amount of endogenous ABA in plants 
increases [62, 63]. The results of the ABA and H2O2 con-
tent analysis experiments showed that the ABA content 
increased significantly with increasing extract treatment 
concentration, and the H2O2 content also increased sig-
nificantly. These results are typical when considering the 
relationship between ABA and H2O2 as well as allelo-
chemical stress.

In the present study, endogenous phytohormone analy-
sis revealed that the ABA and SA contents increased with 
increasing concentrations of R. acetosella extract (Fig. 8A, 
B), while the JA content decreased (Fig.  8C). Similarly, 
ABA and SA contents increased during foliar treatment 
with allelochemicals [54, 64]. ABA acts as a signal trans-
mitter in response to abiotic and biotic stress in plants 
[65, 66], and this stress causes endogenous ABA accu-
mulation in plants. SA also participates in the response 

to abiotic stress and induces endogenous SA accumula-
tion in response to abiotic stress [67]. It is assumed that 
ABA and SA accumulation are caused by stress caused by 
allelochemicals contained in the R. acetosella extract. JA 
is a hormone that acts as a signalling pathway in response 
to abiotic stresses such as cold, drought, salt, heavy met-
als, and light [68]. However, unlike those of ABA and SA, 
the JA content decreased as the treatment concentration 
increased, presumably because SA and ABA act as antag-
onists of JA [69, 70].

GC/MS analysis revealed that gamma-sitosterol, which 
is the most common component in R. acetosella extract 
(Table 2), is an isomer of β-sitosterol. Gamma-Sitosterol 
is also known to have anti-inflammatory and antidiabetic 
potential [71, 72].Phytosterols (PSs) are part of the “trit-
erpene” family and are similar to cholesterol in terms of 
their action and structure. PSs have an additional side 
chain, unlike cholesterol [73]. In plants, PSs are struc-
tural components similar to cholesterol in humans. The 
two most prevalent PSs, sitosterol and campesterol, con-
tain additional methyl and ethyl groups at position C-24, 
respectively. Another PS is stigmasterol, which has a 
double bond at position C-22 and an extra ethyl group 
at position C-24 [74, 75]. Plant sterols, such as campes-
terol, sitosterol, and stigmasterol, can be converted into 
campestanol and sitostanol/stigmastanol when fully sat-
urated. These saturated forms have no double bonds in 
the steroid nucleus or the alkyl side chain. Plant sterols 
offer health benefits, including antiobesity, antidiabetic, 
antimicrobial, anti-inflammatory, and immunomodula-
tory effects. They may also reduce the risk of cancer by 
20% [76]. Therapeutic herbs contain beta-amyrin. Both 
in vitro and in vivo research have revealed the biological 
roles of beta-amyrin. The chemistry and pharmacology 
of amyrins and their analogues have garnered significant 
attention [77]. Plants produce beta-sitosterol, a white 
waxy powder, through a biological synthesis pathway. 
Studies suggest that beta-sitosterol has various pharma-
cological and therapeutic uses. Gamma-sitosterol is a ste-
reoisomer of beta-sitosterol [78]. It inhibits cell growth, 
apoptosis, and cell cycle arrest [79]. Docking studies indi-
cate that gamma-sitosterol has a strong binding energy 
and low inhibition constant, making it a promising can-
didate for development as a bioactive agent [71, 80–82].

Plants produce a wide variety of fatty acids, which 
are long linear hydrocarbon chains that are ‘saturated 
or unsaturated’ with an even number of carbon atoms 
[83]. 9,12-Octadecadienoic acid (ZZ) is a key fatty acid 
that plays a crucial role in prostaglandin biosynthesis 
and has various biological functions, including anti-
inflammatory, antihistaminic, antiarthritic, and hepato-
protective effects [84]. Fatty acid alcohols are effective 
at killing viruses, bacteria, and fungi. Studies have been 
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conducted for more than 50 years to determine whether 
lipids are involved in the body’s natural defense against 
pathogens [85]. (Z)6, (Z)9-Pentadecadien-1-ol is an 
alcohol derived from fatty acids and has antibiotic 
properties [86]. An appropriate concentration of allelo-
chemicals is crucial for their toxic effects. A concentra-
tion that is too high can affect multiple target sites [87]. 
From the GC‒MS analysis, gamma. -Sitosterol had the 
highest peak area of 60.23% (Table 2).

Conclusions
The study’s findings highlight the allelopathic effect of 
Rumex acetosella on the growth of white clover, with 
gamma-sitosterol identified as a significant inhibitory 
compound among others in the shoot extracts. This 
outcome suggests R. acetosella’s potential role in allel-
opathic interaction with white clover. However, given 
that gamma-sitosterol is a common sterol found in 
various plant species, and considering that we did not 
directly test the isolated compound, its specific con-
tribution to the observed allelopathic effects remains 
to be conclusively determined. Additionally, while we 
highlighted the fraction with the lowest IC50 value as 
potentially the most effective, the close range of IC50 
values across different fractions suggests a possible 
combined effect of multiple compounds. In light of 
these considerations, further investigation involving 
the isolation and direct testing of gamma-sitosterol and 
other active compounds within these extracts would be 
required to accurately quantify their individual allelo-
pathic impacts.

Allelopathic effects of invasive plant allelochemicals, 
particularly terpenes, have consistently inhibited the 
growth and development of clover. These compounds 
may also play a role in detecting neighboring plants and 
preparing for competition, although the specific mecha-
nisms remain unclear. Investigating these interactions 
at the molecular level presents a promising avenue for 
future research.Therefore, the results of this study serve 
as a starting point, which should be followed by a thor-
ough scientific study that would reveal the mechanisms 
of action, synergies between allelochemicals, and the 
long-term consequences of applying R. acetosella into 
grassland cropping systems.  In addition to this, verify-
ing the lab results in the field will be gaining more sig-
nificance for this data to be used by management in 
decision-making.
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