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Abstract

Background Plant growth and development are severely threatened by drought and salt stresses. Compared with
structural genes, transcription factors (TFs) play more pivotal roles in plant growth and stress adaptation. However,
the underlying mechanisms of sorghum adapting to drought and salt are insufficient, and systematic analysis of TFs in
response to the above stresses is lacking.

Results In this study, TFs were identified in sorghum and model plants (Arabidopsis thaliana and rice), and gene
number and conserved domain were compared between sorghum and model plants. According to syntenic analysis,
the expansion of sorghum and rice TFs may be due to whole-genome duplications. Between sorghum and model
plants TFs, specific conserved domains were identified and they may be related to functional diversification of TFs.
Forty-five key genes in sorghum, including four TFs, were likely responsible for drought adaption based on differently
expression analysis. MiR5072 and its target gene (Sobic.001G449600) may refer to the determination of sorghum
drought resistance according to small RNA and degradome analysis. Six genes were associated with drought
adaptation of sorghum based on weighted gene co-expression network analysis (WGCNA). Similarly, the core genes
in response to salt were also characterized using the above methods. Finally, 15 candidate genes, particularly two TFs
(Sobic.004G300300, HD-ZIP; Sobic.003G244100, bZIP), involved in combined drought and salt resistance of sorghum
were identified.

Conclusions In summary, the findings in this study help clarify the molecular mechanisms of sorghum responding to
drought and salt. We identified candidate genes and provide important genetic resource for potential development
of drought-tolerant and salt-tolerant sorghum plants.
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Background

The ongoing global issues of drought and soil salinization
are considered significant stress factors that constrain
agricultural production [1-5]. All over the world, food
security is challenged by multiple factors such as rapidly
increasing food demand, scarce freshwater resources,
and continuous incensement of saline and alkaline land
[6-8]. Approximately 43% of the world’s cultivated land
area is affected by arid and semi-arid climates [9, 10]. In
the world, over 1 billion ha lands are under the threat of
salinity, and about 30% of arable lands are being affected
by salinity in China [11, 12]. In addition, drought and salt
stresses often occur together, leading to the combined
stress on plant growth. According to relevant studies [13,
14], among various stresses, combined salt and drought
stress can commonly lead to an over 40% reduction in
crop yield. Therefore, increasing attention should be paid
to the effect of drought, salinity and their combination on
plant growth and development.

In the semi-arid tropical and sub-tropical fields where
drought and salt often co-occur [15-17], sorghum (sor-
ghum bicolor (L.) Moench) is wildly grown for its stress-
adaptive traits, including high water-use efficiency,
salinity tolerance, alkalinity tolerance and C4 photosyn-
thesis [18]. Sorghum may be one of the best crop plants
to study their resistance to drought or salt and even their
combination. Plants adapt to single or multiple environ-
mental stresses by regulating gene transcription, usually
[19]. MicroRNA(miRNA)-controlled post transcriptional
gene regulation is also demonstrated to be important for
the adaption of plants to stresses. Small RNA and mRNA
transcriptomes have been used to identify the expression
profiles of miRNAs and genes in response to drought and
salt in sorghum [20-27]. However, the molecular regula-
tory mechanisms of sorghum in response to drought and
salt are not very clear, especially the regulatory process
involving microRNAs (miRNAs) and their target genes.

In eukaryotic organisms, the process of transcription
initiation is highly complex and often requires the assis-
tance of multiple transcription factors (TFs) [28, 29]. TFs
are the proteins that located in cell nucleus and interact
specifically with cis-acting elements in genes promoter
regions, and they regulate gene transcription with spe-
cific strength at specific times and locations. TFs gener-
ally form complex with RNA polymerase II to participate
in the transcription initiation of genes [30, 31]. TFs usu-
ally take part in plants growth, development, secondary
metabolism, and stress resistance by controlling a great
many genes, thereby they may be better candidate genes
for improving agronomic traits and cultivating new vari-
eties in crops [16, 32].

Currently, the molecular regulatory mechanisms of
sorghum in response to drought and salt stress are being
revealed, while miRNAs-genes regulatory module about
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drought and salt stress, and the adaptive mechanisms of
sorghum in response to combined drought-salt stress are
not very clear. In addition, the functions of TFs in regu-
lating drought and salt stress resistance were not system-
atically understood. In this study, a comprehensive study
of TFs in sorghum, Arabidopsis thaliana and rice was
conducted. The conserved domains of TFs were com-
pared between sorghum and model plants (Arabidopsis
thaliana and rice), and the syntenies among these species
were performed. The responses of miRNAs, genes and
TFs to drought and salt were explored in sorghum using
small RNA, mRNA and degradome sequencing. Potential
candidate miRNAs, genes and TFs involved in drought,
salt, and their combination were identified. Here, impor-
tant clues for underlying the molecular basis of sorghum
adapting to drought and salt will be provided.

Results

Identification, conserved domain, and synteny analysis of
TFs

There were 1859, 1717 and 1862 TFs in sorghum, Ara-
bidopsis thaliana and rice, respectively (Fig. S1). The
number of TFs between sorghum and rice was basically
consistent, while TFs in Arabidopsis thaliana were less
than the above species (Fig. S1). The distribution of sor-
ghum genes and TFs on chromosomes was identified.
We found that genes and TFs were mainly located on two
ends of chromosomes (Fig. S2). Chromosome 01, 02, and
03 contained more TFs than the other chromosomes,
while a peak of TFs quantity occurred on the end of chro-
mosome 05 (Fig. S2).

Various conserved domains were found in sorghum
and model plants (Arabidopsis thaliana and rice). In sor-
ghum and model plants, most conserved domains were
consistent (Table S1). However, several distinct domains
were identified in sorghum and model plants. For exam-
ple, B3_DNA, PB1 and PHAO03247 domains were spe-
cific in model plants ARFs ( a type of TFs), and sorghum
ARFs specifically contained PHA03379; Compared with
sorghum, PLN02705 and PLN02905 domains were only
identified in model plants TFs; And PTZ00449 domain
was in sorghum TFs but not in model plants TFs. The
matters need attention are that some conserved domains
were only presented in model plants TFs, and no domains
were identified from sorghum TFs. For example, there
were Bbox1 BBX-like, Bbox_SF and BBOX domains in
model plants DBBs (a type of TFs), but sorghum DBBs
contained no domains; DELLA and GRAS domains were
in model plants GRAS TFs, while there was no domain
in sorghum ones. Something else interesting was that two
types of TFs (ARR-B and VOZ) shared no domains in
both model plants and sorghum.

Duplication events within gene pairs were identified
in duplicated blocks of sorghum, Arabidopsis thaliana
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and rice genomes, and 447, 503 and 400 gene pairs were
respectively in the above plant species (Fig. S1). We
performed collinearity analysis between sorghum and
model plant species. There were 300 and 2010 TF pairs
were identified in sorghum-A. thaliana and sorghum-
rice, respectively (Fig. S1). To clarify divergence among
these gene pairs, the non-synonymous to synonymous
substitutions (Ka/Ks) ratios were identified. The Ka/Ks
ratios of all TF pairs in sorghum were less than 1, while
the Ka/Ks ratio of Sobic.003G246800-Sobic.009G24:3600
was 1.005141 (Table S2). The Ka/Ks ratios of Arabidop-
sis TF in pairs ranged from 0.046 to 0.509 (Table S3). All
rice TF pairs shared Ka/Ks ratios with less than 1 (Table
S4). The Ka/Ks ratios between all TF pairs in sorghum-
A. thaliana were all less than 0.5 (Table S5). There were

6 sorghum-rice TF pairs (Sobic.002G280800-LOC_
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Sobic.003G253200-LOC_Os01g55340,S0bic.006G118200-LOC_
0s04g39960, Sobic.007G156700-LOC_0s02g52670 and
Sobic.008G073400-LOC_0OS14g10660) sharing Ka/Ks
ratios over 1, and Ka/Ks ratios of the other TF pairs were
less than 1 (Table S6).

Identification of DEGs in response to drought stress
at drought-resistant and drought-sensitive sorghum

genotypes

After PEG treatment for 1 and 6 h, the differen-
tially expressed genes (DEGs) that passed the cut-
off |Log,FC| > 1 and g-value<0.05 were identified in
two drought-resistant sorghums (BTx623 and SC56)
and two drought-sensitive sorghums (Tx-7000 and
PI-482,662) (Table S7-S14). Forty-seven DEGs were
differentially expressed at both 1 and 6 h in all for sor-
ghum genotypes, and 3 of them were TFs (Fig. 1a). A
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Fig. 1 The DEGs between control and drought-treated sorghum seedlings from different genotypes (a) Venn diagram showing the common DEGs of the
eight pairwise comparisons. (b) Expression profile of the common DEGs in the eight pairwise comparisons. Genes with high expression which induced
by drought were labeled with red asterisk. () GO analysis of the common DEGs. (d) KEGG analysis of the common DEGs
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total of 41 genes were commonly induced by drought,
and 18 DEGs (Sobic.005G122500, Sobic.003G215800,

Sobic.003G216166, Sobic.010G125400,
Sobic.001G034900, Sobic.007G187800,
Sobic.009G161800, Sobic.001G155300,
Sobic.004G300300, Sobic.001G524750,
Sobic.008G087500, Sobic.007G131600,
Sobic.001G319500, Sobic.005G055300,
Sobic.001G425600, Sobic.010G084700,
Sobic.001G065900 and Sobic.002G361100) showed

relatively high expression level (Fig. 1b). To identify the
function of DEGs, GO and KEGG enrichments were
performed (Fig. 1c and d). These DEGs were involved
in response to water, temperature, abiotic stimulus,
abscisic acid, stress and hormone signals based on GO
analysis (Fig. 1c). According to KEGG analysis, secondary
metabolites, carbohydrate and energy metabolism (i.e.,
carotenoid biosynthesis, biosynthesis of other secondary
metabolites, glycolysis, starch and sucrose metabolism,
and carbohydrate metabolism) were identified (Fig. 1d).

Usually, microRNAs (miRNAs) control plant growth
and stress responses through their target genes. MiRNAs
and their targets share opposite expression patterns, gen-
erally [33]. There were 60 miRNAs involving in the adap-
tion of sorghum to drought (Fig. 2a and Table S15). And
their targets were identified using degradome sequencing
(Table S16-17). Among the above target genes, 13 of them
were the DEGs which identified in Table S7-S14 (Fig. 2b).
According to the degradome analysis, miR5072-proba-
ble-5p-mature was predicted to bind to 12 bp at 5" end
of the Sobic.001G449600.1 mRNA, and the binding site
was confirmed by the target plot of miR5072-probable-
5p-mature (Fig. 2c). The expression of miR5072-prob-
able-5p-mature was repressed after drought treatment
(Fig. 2d), while its target was up-regulated in BTx623,
Tx-7000 and PI-482,662, and at 1 h in SC56 (Fig. 2e).

Transcription factors (TFs) serve as essential switches
of regulatory cascades in many plant processes, includ-
ing developmental and metabolic processes, biotic and
abiotic stresses [34]. In order to identify TFs regulating
drought adaption, the TFs-DEGs network was built with
all DEGs (Fig. 3). Four TFs, Sobic.008G050600 (ERF),
Sobic.007G077100 (ERF), Sobic.003G324400 (ERF) and
Sobic.003G033500 (Dof), were likely to be candidate
genes for sorghum resistance.

Identification of WGCNA modules and hub genes
associated with drought stress

In WGCNA, twenty-four modules were identified to
associate with phenotypes using 21,204 expressed genes
(Fig. 4a). Module-trait relationship analysis revealed
that root and seedling length were negatively correlated
with ‘brown4’ (r = -0.75, p<0.05; r = -0.72, p<0.05) and
‘corall’ (r = -0.72, p<0.05; r = -0.71, p<0.05) modules,
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and positively correlated with ‘navajowhite2’ (r=0.69,
p<0.05; r=0.64, p<0.05) module (Fig. 4b). The genes in
the above modules were significantly enriched in energy
metabolism, such as generation of precursor metabolites
and energy, photosynthesis, TCA cycle, carbon biosyn-
thesis and glycolysis (Fig. 4c and d).

Networks were established to analyze hub genes in the
above modules. In ‘brown4’ module, Sobic.003G268700
belonging to protein kinase superfamily was identi-
fied as the key gene (Fig. 5a). In the network, three
genes (Sobic.001G017100 responding to water stress,
Sobic.004G247300 and Sobic.004G302000 involving in
salt stress) possibly interacted with Sobic.003G268700
(Fig. 5a). Sobic.002G338800 and Sobic.001G405800
were determined in response to drought in ‘corall’
module (Fig. 5b). The water stress-related genes
Sobic.001G017100 and Sobic.003G271800, and salt stress-
related genes Sobic.001G509800, Sobic.002G115200,

Sobic.002G326800, Sobic.002G327700,
Sobic.004G247300, Sobic.010G041700 and
Sobic.006G161200 shared interaction with the

hub genes (Fig. 5b). There were two key genes
(Sobic.001G205350 and Sobic.003G374000) in ‘nava-
jowhite2” module; And two genes (Sobic.001G017100
and Sobic.003G271800) which responded to water,
and five genes (Sobic.001G509800, Sobic.002G326800,
Sobic.003G188000, Sobic.010G041700 and
Sobic.006G161200) which referred to salt stress showed
high correlation with the two hub genes (Fig. 5¢). Consid-
ering potential roles of TFs in the response of sorghum to
drought, Sobic.003G324500 (a ERF) was likely to be the
most important gene in the above three modules based on
TFs-genes network (Fig. 5d). And two water related genes
(Sobic.003G271800 and Sobic.001G017100), and several
salt related genes (Sobic.001G418200, Sobic.002G328800,

Sobic.002G327700, Sobic.006G161200,
Sobic.010G 104400, Sobic.002G328900,
Sobic.004G247300, Sobic.003G188000,
Sobic.009G014700, Sobic.001G509800,
Sobic.002G327201, Sobic.002G327300,

Sobic.002G115200 and Sobic.010G041700) were pre-
dicted to the targets of ERF (Fig. 5d).

Identification of DEGs in response to salt stress at root, leaf
sheaths and leaf blades of sorghum

The genes responding to salt were identified, there
were 214 genes to be differently expressed at two time
points in all tissues, and twenty-three of them were
TFs (Fig. 6a; Table S18-S23). Many genes were com-
monly down-regulated or up-regulated after salt stress
(Fig. 6b). A total of 18 genes were repressed by salt,
10 of them (Sobic.004G128600, Sobic.005G037300,
Sobic.001G403300, Sobic.003G231800,
Sobic.002G244400, Sobic.010G146100,
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Fig. 2 The analysis of miRNA and its target responding to drought. (@) The number of miRNAs identified in control and drought-treated sorghum. (b)
Venn diagram showing the common genes between the targets of miRNAs identified by degradome sequencing and DEGs in response to drought stress.
(o) Target plot (t-plot) for miR5072 targets confirmed by degradome sequencing. (d) Expression analysis of miR5072 in response to drought. (e) Expression

analysis of miR5072'target (Sobic.001G449600) in response to drought

Sobic.003G237600, Sobic.003G428800,
Sobic.003G326400 and Sobic.001G098600) showed
relatively high expression, and Sobic.003G428800 and
Sobic.003G231800 were two TFs (Fig. 6b). Over 100
genes were commonly induced by salt, and the expres-
sion of 21 genes were relatively high (Fig. 6b). These

DEGs were related to abiotic stimulus, water, abscisic
acid, osmotic stress and salt stress signals according to
GO analysis (Fig. 6¢c). Based on KEGG analysis, these
DEGs were enriched in carbohydrate metabolism and
plant hormone signal transduction (Fig. 6d).



Li et al. BMC Plant Biology (2024) 24:547

Fig. 3 Regulatory network of TFs-mediated drought response in sorghum

A total of 140 miRNAs may be involved in salt stress
in sorghum (Fig. 7a). Using degradome sequenc-
ing, target genes of miRNAs were identified, and we
found 111 of them were also DEGs (Fig. 7b). Accord-
ing to the target plots, miR156b, miR156g, miR408,
miR398 and miR164c were predicted to bind to sites in
the Sobic.002G257900 (a SBP TE), Sobic.003G406600
(a SBP TF), Sobic.001G393200, Sobic.001G149500 and
Sobic.008G164800 (a NAC TF) mRNAs (Fig. 7c and g).
The expression of these miRNAs were down-regulated
by salt (Fig. 7h), while their target genes were generally
induced by salt (Fig. 7i).

Among the DEGs, Sobic.002G421800, a WOX
gene, was likely to the most important gene (Fig. 8).

Water-related gene  Sobic.003G271800, and salt
stress genes (Sobic.003G193400, Sobic.010G104400,
Sobic.004G247300, Sobic.002G326650,
Sobic.002G326800, Sobic.009G004950,
Sobic.002G409200, Sobic.003G188100,
Sobic.009G014700, Sobic.002G327700,

Sobic.002G327400 and Sobic.004G302000) were the
potential targets of Sobic.002G421800 (WOX) TE.

Identification of WGCNA modules and hub genes
associated with salt stress

Na* and CI~ were the dominant inorganic ions in salt
toxicity. K* and Na* shared similar ion channels, exces-
sive Na* influx will reduce K* in plants under salt stress
[35]. Using WGCNA, 12 modules highly associated
with Na*, CI~ and K* were identified (Fig. 9a). The ‘dar-
kolivegreen’ module showed high correlation with Na*
(r=0.87, p<0.05), K* (r = -0.76, p<0.05) and CI~ (r=0.
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74, p<0.05), respectively; Nat (r=0.77, p<0.05) and K*
(r =-0.73, p<0.05) shared separately positive and nega-
tive correlation with ‘lightpink4’ module; And ‘pluml’
module shared negative relationship with K* at r = -0.7
and p<0.05 (Fig. 9b). As shown in Fig. 9c and d, the genes
in above modules categorized into photosynthesis (pho-
tosynthesis, light reaction, photosynthesis, and photo-
synthetic election transport chain), energy metabolism,
carbohydrate metabolism, biosynthesis of other second-
ary metabolites, glycolysis, carotenoid biosynthesis, fruc-
tose and mannose metabolism, and starch and sucrose
metabolism.

In ‘darkolivegreen’ module, a co-expression network
was constructed to identify hub gene. Sobic.009G128700
were determined in response to Na®, K* and CI~
stresses, and a salt-related gene Sobic.002G326800 and
a water-related Sobic.003G271800 were found to inter-
act with the hub gene (Fig. 10a). Sobic.001G462700
and Sobic.005G013600 were the two most important
genes in ‘lightpink4’ module, and Sobic.003G271800

which responded to water deprivation may be
under the control of the two hub genes (Fig. 10b).
Ten genes (Sobic.010G091000, Sobic.001G401000,
Sobic.005G101700, Sobic.005G101600,
Sobic.005G018500, Sobic.003G349700,
Sobic.001G400900, Sobic.007G151300,
Sobic.001G401200 and Sobic.004G086400) were hub
genes in the ‘pluml’ module; Sobic.001G509800,

Sobic.002G327201 and Sobic.002G327300 in response
to salt stress, and Sobic.003G271800 involving in water
stress may be targets of the ten hub genes (Fig. 10c). In
the above three modules, LBD (Sobic.003G052900)
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was the most important TF, and many salt-related
(Sobic.001G509800,

genes
Sobic.002G327201,
Sobic.002G409200,
Sobic.002G327300,
Sobic.002G115200,
Sobic.001G418200,

Sobic.003G188000  and

Sobic.001G209600)

Sobic.002G328800,
Sobic.010G104400,  possible targets
Sobic.007G029000,
Sobic.001G156600,
Sobic.002G328900, adaption
Sobic.006G161200, According to

and

three water stress-related genes (Sobic.007G169000,
Sobic.001G017100 and Sobic.002G103900) may be the

of LBD (Fig. 10d).

Venn analyses of genes mediating drought and salt stress

differential expression analysis and

WGCNA, a Venn diagram was constructed to investigate
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the genes commonly respond to drought and salt stress.
In total, 15 genes (Sobic.008G062700, Sobic.004G 142500,

Sobic.004G047900, Sobic.001G034900,
Sobic.001G155300, Sobic.010G084700,
Sobic.006G018400, Sobic.008G087500,
Sobic.009G161800, Sobic.003G244100,
Sobic.005G055300, Sobic.001G424400,
Sobic.004G300300, Sobic.001G226600 and

Sobic.010G247600) were identified to involves in com-
bined drought and salt stress, and two of them were TFs
(Sobic.004G300300, HD-ZIP; Sobic.003G244100, bZIP)
(Fig. 11 and Table S27).

Discussion

Drought and salt are two of the most adverse abiotic
stresses for plant growth and development, and they
will affect crop yield and quality. The understanding in
molecular mechanism of sorghum in response to drought
and salt stress has made progress. However, information
on systematic TFs identification, miRNAs-genes regula-
tory modules, and combined drought and stress adaption
remain limited in sorghum. In this study, TFs were sys-
tematically characterized for their essential functions in
directing interpretation of the genome and gene expres-
sion in sorghum [36]. The conserved domains and syn-
teny of TFs were further analyzed. MiRNA and their
target genes in response to drought and salt were identi-
fied. In addition, the gene expression profiles in response
to drought and salt stress were identified through dif-
ferential expression analysis and TF-gene network and
WGCNA.

Comparison of TFs between sorghum and model plants
There were more SbTFs and OsTFs compared with AtTFs
(Figure S1). According to synteny analysis, more ortholo-
gous TFs were identified in Arabidopsis thaliana (503
pairs) than sorghum (447 pairs) and rice (400 pairs) (Fig-
ure S1). Sorghum and rice have been reported to undergo
whole-genome duplication [37]. Therefore, the expan-
sion and evolution of TFs in sorghum and rice may be
caused by whole-genome duplications, not segmental
duplications.

Duplicated blocks of sorghum-Arabidopsis and sor-
ghum-rice were also identified, and respectively yielding
300 and 2010 TF pairs based on synteny analysis (Figure
S1; Table S5 and S6). The sorghum TFs in pairs are likely
to originate from common ancestors with the Arabidop-
sis and rice ones, indicating their similar functions with
the corresponding model plants ones. We may predict
the roles of sorghum TFs based on the Arabidopsis and
rice ones, while these comparisons need to be verified in
further experiments.

Gene function is closely associated with conserved
domains [38]. With several exceptions, the domains in
the TFs were typical among sorghum, Arabidopsis and
rice (Table S1), suggesting that they may have conserved
functions. However, the unique domains implied new
gene functions and should be paid greater attention.

The genes sharing key roles in the drought and salt
tolerance of sorghum

In this study, to explore their functions, the genes expres-
sion patterns were determined under drought and salt
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stresses. A total of 47 common DEGs were found at
drought-resistant and drought-sensitive sorghum geno-
types (Fig. 1a), and they were involved in abiotic stress
and energy metabolism (Fig. 1c¢ and d). Among them, 41
DEGs were commonly induced by drought, and 18 of 41
DEGs shared high expression level in samples (Fig. 1b).
MiR5072 and its target gene Sobic.001G449600 may
help examine the underlying mechanisms of drought

Sobic.008G050600

resistance in sorghum using an integrated analysis of
mRNA-seq, small RNA-seq and degradome (Fig. 2).
(ERF), Sobic.007G077100
Sobic.003G324400 (ERF) and Sobic.003G033500 (Dof)
may play essential roles in drought stress response based
on TF-DEGs network (Fig. 3). Using WGCNA, genes
with similar expression patterns, and the relationship
between modules and specific traits or phenotypes were

(ERF),
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clustered across multiple samples [39]. And WGCNA is
widely used to identify the association between pheno-
typic traits and genes. Six hub genes, including a ERF
TE, were identified in response to drought stress; And
water stress as well as salt stress-related genes were the
potential targets of hub genes (Fig. 5). Totally, 25 candi-
date genes in response to drought stress were found, and
future studies should pay attention to these genes.

There were 214 common DEGs in response to salt
stress based on GO and KEGG enrichment analysis
(Fig. 6a, c and d). Among them, 18 and 148 genes were
down-regulated or up-regulated by salt at all samples,
and 31 genes (i.e., Sobic.004G128600, Sobic.005G037300,
Sobic.003G064300, Sobic.006G181400 and do on) with
higher expression may have relatively important func-
tions (Fig. 6b). Five miRNAs and their target genes may
play essential roles in regulating sorghum salt resistance

using an integrated analysis of mRNA-seq, small RNA-
seq and degradome (Fig. 7). In TF-DEGs network, a
WOX TF (Sobic.002G421800) was the hub gene and
predicted to interact with water- and salt-related genes
(Fig. 8). In three WGCNA modules sharing high corre-
lation with salt, 14 hub genes, including a LBD TEF, were
identified (Fig. 10). Several genes responding to water
deprivation and salt stress were likely to interact with
core genes, suggesting that these core genes may take
part in salt stress adaption by interacting with these
genes. And the potential functions of these key genes
should be focused in future studies.

Fifteen genes were identified as key genes in the adap-
tion of sorghum to combined drought and salt stresses by
differently expression analysis, TF-DEGs network analy-
sis and WGCNA (Fig. 11). Considering TFs’ important
biological functions, HD-ZIP (Sobic.004G300300) and
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Fig. 8 Regulatory network of TFs-mediated salt response in sorghum
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Fig. 11 Venn diagram showing common candidate genes in response to
drought and salt stresses

bZIP (Sobic.003G244100) should be the most critical
candidate genes for breeding drought-tolerant and salt-
tolerant sorghum.

Conclusions

In general, TFs in sorghum were systematically identi-
fied. Their chromosomal locations, conserved domains
and syntenic relationships were characterized. Their
responding to drought and salt were investigated through
differential expression analysis, TF-DEGs network
and WGCNA. Over than 15 genes, especially HD-ZIP
(Sobic.004G300300) and bZIP (Sobic.003G244100), were
identified as potential hub genes for improving the adap-
tion of drought and salt. The functions of these genes
should be validated experimentally in future.

Methods

TF identification, conserved domains, chromosomal
location, and synteny

The TFs protein sequences of sorghum, Arabidopsis
thaliana and rice were downloaded from Plant Tran-
scription Factor Database (https://planttfdb.gao-lab.
org/). Using the Batch Web CD-Search Tool (https://
www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi),
the conserved domains in TFs were confirmed. Gene
density were calculated with gene structure annotation
(gff3) file, and visualized using “Advanced Circos” in
TBtools. “One Step MCScanX” in TBtools was used to
analyze TF duplication events with genome sequences
and gft3 files. Gene pairs in TFs were identified with “File
Merge for MCScanX” in TBtools. The Ka/Ks values of TF
pairs were calculated with their coding sequences (CDS)
using “Simple Ka/Ks Calculator (NG)” in TBtools.

Transcriptome and sRNA analysis

The raw data of transcriptome (mRNA-seq), small RNA-
seq and degradome were downloaded from NCBI data-
base (https://www.ncbi.nlm.nih.gov/sra/) using accession
numbers GSE157523, GSE157521, PRJNA977880,
PRJNA585370 and PRINA285718 [20, 22, 23]. Using fastp
software (v0.20.1), the overall sequencing quality of these
raw reads was evaluated, and low-quality reads were
removed. With Hisat2 (v2.1.0) and SAMtools (v1.6) soft-
ware, high-quality reads were aligned to sorghum refer-
ence genome sequences (https://phytozome-next.jgi.doe.
gov/info/Sbicolor_v3_1_1). The Fragments Per Kilobase
of exon model per Million mapped fragments (FPKM)
values of high-confidence genes were calculated with
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stringtie (v1.3.3b) software. The DEGs were defined with
p<0.05, false-discovery rate (FDR)<0.05 and |log2(fold-
change)| > 1 using the R package “edgeR” MiRNAs iden-
tification was performed with sSRNAminer software [11]
according to sSRNAminer Cookbook (https://www.yuque.
com/u758713/at2327/drhlg8). CleaveLand4.pl was used
to map the filtered degradome reads to sorghum cDNAs,
and then identify the valid targets of miRNAs [40].

Function enrichment analysis, WGCNA and TF-gene
network construction

The gene expression profiles were visualized using “Heat-
Map” in TBtools [41]. GO and KEGG enrichments were
performed with “GO Enrichment” and “KEGG Enrich-
ment Analysis” in TBtools using background files which
can be obtained from EggNOG-mapper (http://eggnog-
mapper.embl.de/), and visualized with “Enrichment Bar
Plot” WGCNA was completed with high-quality genes
using the R WGCNA package (v1.51). Significant mod-
ule-trait relationships with target traits were determined
by calculating modular trait gene values (|r| = 0.69, and
the P-value<0.01), and hub genes were the ones with
high weight and degree in the significant modules [9, 38].
TE-gene network was constructed with “Plant TF Motifs
Shift” and “Fimo: Binding Motif Scan” plugins of TBtools.
The sorghum TF binding pattern was built with the pro-
tein sequences of sorghum using “Plant TF Motifs Shift’,
and the gene-gene interacted network was analyzed with
“Fimo: Binding Motif Scan”. With Cytoscape (v3.8.2) soft-
ware, gene co-expression network maps were visualized.
Venn diagrams were visualized using “UpSet Plot (Up to
Any Sets)”.

Abbreviations

DEG Differentially expressed gene

WGCNA  Weighted gene co-expression network analysis
TF Transcription factor

Ka/Ks Non-synonymous to synonymous substitution
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cr- Chlorine

K* Potassium
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